Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# teori informasi

328

Published on

Published in: Education, Technology
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total Views
328
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
12
0
Likes
1
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Teori InformasiTeori Informasi Ir. Sihar, M.T. T. Informatika – Fak.Teknologi Informasi Bandung - 2012
• 2. Daftar PustakaDaftar Pustaka 1) Hartley, R.V.L. "Transmission of Information". Bell Labs Technical Journal. 1928. 2) Nyquist, H. "Certain Factors Affecting Telegraph Speed". Bell Labs Technical Journal. 1924. 3) Shannon, C. E. "A Mathematical Theory of Communication". Bell Labs Technical Journal. 1948.
• 3. Area dan domainArea dan domain Telegraph (th.1830) Telephone (th.1870) Wireless telegraph (th.1890) AM radio (th.1900) Single-Sideband-Modulation (1920) Television (th. 1930) Teletype (th.1930) Frequency Modulation (th.1930) PCM (th.1930) Vocoder (th.1930) Spread-spectrum (th.1930)
• 4. Skema sistem komunikasi Information source transmitter message signal noise source receiver destination message received signal Noise berasal dari lingkungan luar yang bersama-sama dengan sinyal data W= K log m W: speed of transmission data was transmitted K: Konstanta m: number of curret value was transmitted
• 5. W= K log m H: the amount of information a was transmitted S: number of possible symbols n: number of symbols in transmission H= log S n 12KB transmitted digital discrete H S n S n H
• 6. W= K log m H: the amount of information a was transmitted S: number of possible symbols n: number of symbols in transmission H= log S n 12KB transmitted digital discrete H S n S n H T RF(t)f 1 (t) f 2 (t)
• 7. Dalam Matematika Informasi menggunakan Shannon-Approach sbb: Engineering Mathematical Logic & Abstract Science
• 8. X + Y = Y + X X.Y = Y.X X + (Y + Z) = (X + Y) + Z X(Y.Z) = (X.Y)Z X(Y + Z) = X.Y + X.Z X + Y.Z = (X+Y)(X+Z) 1*X = X 0*X = 0 1+X = 1 0+X = X X + X’ = 1 X.X’ = 0 0’ = 1 1’ = 0 (X’)’ = X circuit terminal-A terminal-B XAB 0 1 ‘closed’ (zero-impedance) ‘opened’ (infinite-impedance)
• 9. Case and example:
• 10. Case and example: