Upcoming SlideShare
Loading in...5
×

# teori informasi

360

Published on

this article describes about information-theory for communication-channel

Published in: Education, Technology
0 Comments
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

No Downloads
Views
Total Views
360
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
14
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

### teori informasi

1. 1. Teori InformasiTeori Informasi Ir. Sihar, M.T. T. Informatika – Fak.Teknologi Informasi Bandung - 2012
2. 2. Daftar PustakaDaftar Pustaka 1) Hartley, R.V.L. "Transmission of Information". Bell Labs Technical Journal. 1928. 2) Nyquist, H. "Certain Factors Affecting Telegraph Speed". Bell Labs Technical Journal. 1924. 3) Shannon, C. E. "A Mathematical Theory of Communication". Bell Labs Technical Journal. 1948.
3. 3. Area dan domainArea dan domain Telegraph (th.1830) Telephone (th.1870) Wireless telegraph (th.1890) AM radio (th.1900) Single-Sideband-Modulation (1920) Television (th. 1930) Teletype (th.1930) Frequency Modulation (th.1930) PCM (th.1930) Vocoder (th.1930) Spread-spectrum (th.1930)
4. 4. Skema sistem komunikasi Information source transmitter message signal noise source receiver destination message received signal Noise berasal dari lingkungan luar yang bersama-sama dengan sinyal data W= K log m W: speed of transmission data was transmitted K: Konstanta m: number of curret value was transmitted
5. 5. W= K log m H: the amount of information a was transmitted S: number of possible symbols n: number of symbols in transmission H= log S n 12KB transmitted digital discrete H S n S n H
6. 6. W= K log m H: the amount of information a was transmitted S: number of possible symbols n: number of symbols in transmission H= log S n 12KB transmitted digital discrete H S n S n H T RF(t)f 1 (t) f 2 (t)
7. 7. Dalam Matematika Informasi menggunakan Shannon-Approach sbb: Engineering Mathematical Logic & Abstract Science
8. 8. X + Y = Y + X X.Y = Y.X X + (Y + Z) = (X + Y) + Z X(Y.Z) = (X.Y)Z X(Y + Z) = X.Y + X.Z X + Y.Z = (X+Y)(X+Z) 1*X = X 0*X = 0 1+X = 1 0+X = X X + X’ = 1 X.X’ = 0 0’ = 1 1’ = 0 (X’)’ = X circuit terminal-A terminal-B XAB 0 1 ‘closed’ (zero-impedance) ‘opened’ (infinite-impedance)
9. 9. Case and example:
10. 10. Case and example:
1. #### A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.