Your SlideShare is downloading. ×
Formula Matematika
Formula Matematika
Formula Matematika
Formula Matematika
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Formula Matematika

331

Published on

this article describes about math formula used in engineering mathematics

this article describes about math formula used in engineering mathematics

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
331
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. MA205 Matematika Teknik I (3 sks) Dosen: Ir. Sihar, MT. Departemen Sistem Komputer – Fak. Teknik Bandung 2003 Referensi: [1]. Ayres, F., Mendelson, E. Calculus - 5th edition. Schaum's Series. McGraw-Hill. 1999. [2]. Edwards, L. Calculus-9th edition. Cengage Learning. 2010. [3]. Simamora, S.N.M.P. “Tuntunan JavaScript”. Dept. T. Informatika, Fak. Teknik. ITHB. Bandung. 2002. [4]. Walker, J. Fundamentals of Physics - 9th edition. John Wiley & Sons. 2003. Formula Matematika Jika diketahui: ax2 + bx + c = 0 maka, x1,2 = ି௕േඥሺ௕ మିସ.௔.௖ሻ ଶ.௔ contoh: ݂ሺ‫ݔ‬ሻ ൌ ‫ ݔ‬ଶ െ 4‫ ݔ‬െ 32 maka: x2 – 4x – 32 = 0 ; (x-8)(x+4)=0 x1 = 8 ; x2 = -4 menggunakan rumus abc: x1 = x2 = ିሺିସሻାඥሺିସሻమ ିሺସሻሺଵሻሺିଷଶሻ ሺଶሻሺଵሻ ିሺିସሻିඥሺିସሻమ ିሺସሻሺଵሻሺିଷଶሻ ሺଶሻሺଵሻ =8 = -4 Kode dalam JavaScript adalah sbb: <script language=JavaScript> aa=window.prompt("Tentukan konstanta a:","0"); a=parseFloat(aa); bb=window.prompt("Tentukan konstanta b:","0"); b=parseFloat(bb); cc=window.prompt("Tentukan konstanta c:","0"); c=parseFloat(cc); b1=Math.pow(b,2); d1=b1-4*a*c; d=Math.pow(d1,0.5); x1=(-1*b+d)/(2*a); x2=(-1*b-d)/(2*a); document.write("f(x) = ",a,"x<sup>2</sup> + ",b,"x + ",c,"<br>"); document.write("x<sub>1</sub> = ",x1,"<br>"); document.write("x<sub>2</sub> = ",x2); </script> 1
  • 2. Turunan Trigonometri: ݀ sin ‫ ݔ‬ൌ cos ‫ݔ‬ ݀‫ݔ‬ ݀ cos ‫ ݔ‬ൌ െ sin ‫ݔ‬ ݀‫ݔ‬ Dalam kode JavaScript sbb: <script language=JavaScript> x=window.prompt("Tentukan sin-x atau cos-x:","sin-x"); if(x=="sin-x") { document.write("Turunannya = cos-x"); } else { document.write("Turunannya = -(sin-x)"); } </script> Tabel sudut-sudut Sudut (θo) 0 30 45 60 90 120 180 225 360 istimewa dalam nilai trigonometri sin(θo) cos(θo) 0 1 0.5 0.8660 0.7071 0.7071 0.8660 0.5 1 0 0.8660 -0.5 0 -1 -0.7071 -0.7071 0 1 tan(θo) 0 0.5774 1 1.7321 +∞ -1.7320 -∞ 1 0 Kode dalam JavaScript sbb: Untuk mencari sin(θo) : <script language=JavaScript> derajat=(2*(Math.PI))/360; x=window.prompt("Pilihan sudut?","0"); teta=parseFloat(x); x1=teta*derajat; sinx=Math.sin(x1); document.write(sinx); </script> Untuk mencari cos(θo) : <script language=JavaScript> derajat=(2*(Math.PI))/360; x=window.prompt("Pilihan sudut?","0"); teta=parseFloat(x); x1=teta*derajat; cosx=Math.cos(x1); document.write(cosx); </script> Untuk mencari tan(θo) : <script language=JavaScript> derajat=(2*(Math.PI))/360; x=window.prompt("Pilihan sudut?","0"); teta=parseFloat(x); 2
  • 3. x1=teta*derajat; tanx=Math.tan(x1); document.write(tanx); </script> Bentuk eksponen dan logaritma: Bentuk eksponen ab = c 32 = 9 210 = 1024 105 = 100000 Bentuk logaritma log a c = b ⇔ alog c = b 3log 9 = 2 2log 10log 1024 = 10 100000 = 5 Jika e = Bil. Eksponensial, maka: ex = x ௗ ௗ௫ ݁ ௫ = ex dan ‫ ݁ ׬‬௫ ݀‫ ݁ = ݔ‬௫ ܽ ௫ ൌ ݁ ሺ୪୬ ௔ሻ௫ sehingga, untuk a 1 dan u merupakan fungsi diffrensial dari x: ௗ [ܽ ௫ ] = ሺln ܽሻܽ ௫ ௗ௫ ௗ௨ ௗ [ܽ௨ ] = ሺln ܽሻܽ௨ ௗ [log ܽ ௫ ] = ሺ୪୬ ௔ሻ௫ ௗ [log ܽ௨ ] = ሺ୪୬ ௔ሻ௨ ௗ௫ ௗ௫ ௗ௫ ௗ௫ ௗ௫ ଵ ଵ . ௗ௨ Contoh berikut dalam kode JavaScript untuk mendapatkan nilai e (=2.7182818): <script language=JavaScript> document.write("Bilangan eksponensial (e) = ",Math.E); </script> Integral Trigonometri ‫ ׬‬sin ‫- = ݔ݀ ݔ‬cos x ‫ ׬‬cos ‫ = ݔ݀ ݔ‬sin x ሬ Ԧ Untuk θo merupakan sudut di antara dua garis vektor a, dan b (ܽ dan ܾ)maka: Ԧ ሬԦ = ܾ • ܽ = ܽ௫ ܾ௫ + ܽ௬ ܾ௬ + ܽ௭ ܾ௭ = ܽ. ܾ. cos ߠ ሬԦ Ԧ ܽ •ܾ Ԧ หܽ × ܾ ห = ܽ. ܾ. sin ߠ Ԧ ሬԦ 3
  • 4. Cramer’s Rule: Jika diketahui: ܽଵ‫ܾ + ݔ‬ଵ ‫ܿ = ݕ‬ଵ dan ܽଶ ‫ܾ + ݔ‬ଶ ‫ܿ = ݕ‬ଶ dimana x dan y masing-masing adalah variabel yang dicari, maka: ‫ݔ‬ ௖ ௕భ ฬ భ ฬ ௖ ௕ ൌ ௔మ ௕మ భ ฬ ฬ భ ௔మ ௕మ dan ‫ ݕ‬ൌ ௔ ቚ௔భ మ ௔ ฬ భ ௔మ ௖భ ௖మ ቚ ௕భ ฬ ௕మ ௖భ ௕మ ି௖మ ௕భ = ௔భ ௕మ ି௔మ ௕భ = ௔భ ௕మ ି௔మ ௕భ ௔భ ௖మ ି௔మ ௖భ 4

×