Your SlideShare is downloading. ×
Data mining slides
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Data mining slides

18,415
views

Published on

Published in: Technology

1 Comment
48 Likes
Statistics
Notes
No Downloads
Views
Total Views
18,415
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
1
Likes
48
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Data Mining Presented By: Sarfaraz M Manik Making Sense Of Data
  • 2. Data, Information & Knowledge
    • Data
      • The most elementary descriptions of things, events, activities, and transactions
    • Information
      • Organized data that has meaning and value
    • Knowledge
      • The concept of understanding information based on recognized patterns in a way that provides insight to information.
  • 3.  
  • 4. Business Intelligence
      • Business intelligence ( BI ) refers to applications and technologies which are used to gather, provide access to, and analyze data and information about their company operations.
      • Data Mining is an important part of Business Intelligence.
  • 5. Business Intelligence & Data Mining IT Business Intelligence Behavioral Biases Models Tools Methods Data Decision Problems
  • 6. What is Data Mining?
    • Data mining: The task of discovering interesting patterns from large amounts of data
  • 7. Data Mining : Confluence of Multiple Disciplines Data Mining Database Technology Statistics Other Disciplines Information Science Machine Learning Visualization
  • 8. Data, Data everywhere yet …
    • I can’t find the data I need
    • I can’t get the data I need
    • I can’t understand the data I found
    • I can’t use the data I found
    Why Data Mining?
  • 9. Why Data Mining?
    • Data explosion problem
      • Advance data collection tools and database technology lead to tremendous amounts of data stored in databases.
    • We are drowning in data, but starving for knowledge!
    • Solution: Data warehousing and data mining
      • Data warehousing and on-line analytical processing
      • Extraction of interesting knowledge using Data Mining
  • 10. Application Of Data Mining Industry Application Finance Credit Card Analysis Insurance Claims, Fraud Analysis Telecommunication Call record analysis Transport Logistics management Consumer goods promotion analysis Scientific Research Image, Video, Speech Utilities Power usage analysis
  • 11. Steps of Data Mining
    • Data integration
    • Data selection
    • Data cleaning
    • Data transformation
    • Data mining
    • Pattern evaluation
    • Knowledge presentation
  • 12. Steps of Data Mining
  • 13. Data Mining Techniques
    • Classification and Prediction
      • Example - Focused Hiring
    • Cluster Analysis
      • Example - Market Segmentation
    • Outlier Analysis
      • Example - Fraud Detection
    • Association Analysis
      • Example - Market Basket Analysis
    • Evolution Analysis
      • Example – Forecasting stock market index using Time Series Analysis
  • 14. Is Data Mining a threat to Privacy and Information Security?
    • Solutions:
    • Purpose Specifications & Use Limitation
    • Openness
    • Security Measures like encryption
  • 15. Data Warehousing
    • A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management’s decision making process.
    • The most common form of data integration.
      • Copy sources into a single database and try to keep it up-to-date.
      • Usual method: periodic reconstruction of the warehouse, perhaps overnight.
      • Frequently essential for analytic queries.
  • 16. Data Warehouse Customers Etc… Vendors Etc… Orders Data Warehouse Enterprise “ Database” Transactions Copied, organized summarized Data Mining
    • Data Miners:
    • “ Farmers” – they know
    • “ Explorers” - unpredictable
  • 17. Data Warehousing
    • Data Warehousing provides the Enterprise with a memory
    • Data Mining provides the Enterprise with intelligence
  • 18. OLTP & OLAP
    • On-Line Transaction Processing (OTLP):
      • Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
      • Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.
    • On-Line Application Processing (OLAP):
      • Few, but complex queries --- may run for hours.
      • Queries do not depend on having an absolutely up-to-date database.
      • Examples: Analysts at Wal-Mart look for items with increasing sales in some region.
  • 19. Data Mining Tools
      • Microsoft SQL Server 2005
      • Microsoft SQL Server 2008
      • Oracle Data Mining
      • DBMiner
  • 20.
    • Thanks To All

×