A Case of Gitelman's Syndrome

4,264 views
3,961 views

Published on

Published in: Health & Medicine
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,264
On SlideShare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
113
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

A Case of Gitelman's Syndrome

  1. 1. - Prof. Dr. Maheshkumar ‘s Unit Dr. Israel
  2. 2. <ul><li>History: </li></ul><ul><li>Present complaints: </li></ul><ul><li>complains of weakness of both lower and upper limbs for past 3 days </li></ul><ul><li>HOPI: </li></ul><ul><li>A 40 / M , Sanjivi , apparently healthy individual developed sudden onset weakness of both lower limbs involving both proximal n distal muscle groups 3 days back </li></ul><ul><li>6hrs later , pt developed weakness of both upper limbs equally involving proximal and distal muscles </li></ul>
  3. 3. <ul><li>H/o difficulty to stand from bed, getting up from squatting positions </li></ul><ul><li>H/o difficulty to turn from side- side in bed </li></ul><ul><li>H/o buckling of knee joints </li></ul><ul><li>H/o difficulty to raise the hand and mixing food </li></ul><ul><li>No H/o any sensory disturbances </li></ul><ul><li>No h/o any bowel bladder disturbances </li></ul><ul><li>No h/o suggestive of any cranial nerve involvement </li></ul><ul><li>No h/o fever cough sore throat </li></ul><ul><li>No h/o vomiting loose stools </li></ul><ul><li>No h/o excessive sweating , </li></ul><ul><li>No h/o oliguria polyuria hematuria </li></ul><ul><li>No h/o seizure headache backpain </li></ul><ul><li>No h/o dysnoea palpitatios chest pain </li></ul><ul><li>No h/o any diuretic intake </li></ul><ul><li>No h/o recent vaccination , dog bite </li></ul><ul><li>Not a k/c/o HTN DM </li></ul>
  4. 4. <ul><li>o/e: </li></ul><ul><li>Pt conscious oriented afebrile fairly hydrated </li></ul><ul><li>No icterus cyanosis pallor pedal edema </li></ul><ul><li>P – 82 /min </li></ul><ul><li>BP – 100/70 mm hg </li></ul><ul><li>Single breath count : upto 26 </li></ul><ul><li>CVS - S1 S2 heard . No murmur </li></ul><ul><li>RS - NVBS . No added sounds </li></ul><ul><li>PA – soft nontender. Bowel sounds +nt </li></ul>
  5. 5. <ul><li>CNS: </li></ul><ul><li>HMF – NAD </li></ul><ul><li>No meningeal involvement </li></ul><ul><li>Cranial nerves – normal </li></ul><ul><li>Spino – motor examination: </li></ul><ul><li>Tone: decreased in all 4 limbs </li></ul><ul><li>Power : upper limbs 4/5 </li></ul><ul><li> lower limbs 2/5 </li></ul><ul><li>DTR: bicep + + </li></ul><ul><li>triceps + + </li></ul><ul><li>supinator + + </li></ul><ul><li>knee + + </li></ul><ul><li>ankle + + </li></ul><ul><li>Plantar B/L no response </li></ul><ul><li>Sensory – normal </li></ul><ul><li>Cerebellar – normal </li></ul><ul><li>Autonomic system - normal </li></ul>
  6. 6. <ul><li>Provisional Diagnosis: </li></ul><ul><li>Quadriparesis </li></ul><ul><li>? GBS ? Hypokalemic </li></ul><ul><li>Investigation: </li></ul><ul><li>Hb: 12.8 gm % </li></ul><ul><li>TC : 8200 </li></ul><ul><li>DC : P55, L37 , M8 </li></ul><ul><li>PCV : 38.2 % </li></ul><ul><li>MCV : 87.3 fl </li></ul><ul><li>MCH : 27.7 pg </li></ul><ul><li>RBC : 4.4 million </li></ul><ul><li>Platelet : 2 lac </li></ul>RBS : 323 mg% BUN:58 S. Cr : 1.1 Na+ : 138 K+: 3.1 PVT Reports Na + : 137 K+ : 2.17 HCO3- : 23.7 Cl- : 93.4 FBS : 109 mg/dl PLBS : 112 mg /dl
  7. 7. ECG
  8. 9. <ul><li>Nephrology Opinion: </li></ul><ul><li>suggested the following investigations: </li></ul><ul><li>ABG analysis </li></ul><ul><li>24 hrs urine electrolytes </li></ul><ul><li>USG abdomen </li></ul><ul><li>S. K+ levels monitoring </li></ul><ul><li>S. Ca+ and Mg + levels </li></ul>
  9. 10. <ul><li>ABG analysis : </li></ul><ul><li>pH : 7.56 </li></ul><ul><li>HCO3 : 30.1 mmol/l </li></ul><ul><li>PaCO2 :49.0 mm Hg </li></ul><ul><li>Pa02 : 80.6 mm Hg </li></ul><ul><li>SaO2 : 96 % </li></ul><ul><li>Na+ : 138 mmol </li></ul><ul><li>K+ : 2.69mmol </li></ul><ul><li>Cl - : 96 mmol </li></ul><ul><li>INTERPREATION: </li></ul><ul><li>metabolic alkalosis with respiratory compensation </li></ul>
  10. 11. <ul><li>24 hrs urine report : </li></ul><ul><li>Volume : 4.43 lit </li></ul><ul><li>Protein : 332 mg /d </li></ul><ul><li>Na +: 225meq /d ( high ) </li></ul><ul><li>K+ : 22.55 meq / d ( high ) </li></ul><ul><li>Cl- : 320 meq / d ( high ) </li></ul><ul><li>Ca+ : 56 mg /d ( low ) </li></ul><ul><li>Mg+ : 155.5 mg /d ( normal ) </li></ul><ul><li>SERUM LEVELS : </li></ul><ul><li>S. Ca +: 10.6 mg /dl ( high normal ) </li></ul><ul><li>12.2 mg/ dl (GSH central lab report ) </li></ul><ul><li>S. Mg+ : 1.9 mg/dl ( low normal ) </li></ul>
  11. 12. <ul><li>USG : </li></ul><ul><li>B/L medical renal disease </li></ul><ul><li>RK : 9.8 x 4.6 cm </li></ul><ul><li>LK : 10.4 x 5 </li></ul><ul><li>CMD preserved </li></ul><ul><li>Mildly increased cortical echoes in both kidneys </li></ul><ul><li>no evidence of calcinosis </li></ul><ul><li>LIVER , SPLEEN , PANCREAS : normal </li></ul>
  12. 13. <ul><li>Treatment given: </li></ul><ul><li>IV fluids ( RL ) </li></ul><ul><li>Inj. Cefotaxime </li></ul><ul><li>Inj Ranitidine </li></ul><ul><li>Inj KCl ( 10 meq/hr for 4 hrs ) </li></ul><ul><li>Syp. KCl </li></ul><ul><li>T. BCT </li></ul><ul><li>Diet adviced ( to include coconut water;citrus juices ) </li></ul><ul><li>Course In Hospital: </li></ul><ul><li>the next day the power in the limbs improved.pt was able to walk. </li></ul>
  13. 14. <ul><li>Nephrology opinion : </li></ul><ul><li>f/s/o GITELMANN’s Syndrome </li></ul>
  14. 15. Hypokalemia can only occur for four reasons: <ul><li>Decreased intake </li></ul><ul><li>Shift into cells </li></ul><ul><li>Extra-renal losses </li></ul><ul><li>Renal losses </li></ul>
  15. 16. Hypokalemia Urinary K + excretion < 15 mmol/d Assess acid-base status Metabolic acidosis Metabolic alkalosis Lower gastronitestinal K + loss Remote diuretic use Remote vomiting K + loss via sweat > 15 mmol/d Assess K + secretion TTKG > 4 TTKG < 2 Acid-base status Na + -wasting nephropathy Osmotic diuretic Diuretic Metabolic acidosis Diabetic ketoacidosis Proximal (type 2) RTA Distal (type 1) RTA Amphotericin B Metabolic alkalosis Hypertension ? Yes Mineralocorticoid excess Liddle’s syndrome No Vomiting Bartter’s syndrome Exclude diuretic abuse Hypomagnesemia
  16. 17. Causes of hypokalemia <ul><li>Decreased intake : kidney can conserve to 5-25 mEq K+ daily; normal intake 40-120 daily. </li></ul><ul><li>Shift into cells: </li></ul><ul><ul><li>Alkalosis </li></ul></ul><ul><ul><li>Insulin </li></ul></ul><ul><ul><li>Beta adrenergic stimuli </li></ul></ul><ul><ul><ul><li>Stress </li></ul></ul></ul><ul><ul><ul><li>Beta agonists- e.g.: albuterol, ritodrine </li></ul></ul></ul>
  17. 18. Increased potassium entry into cells: <ul><li>Hypokalemic periodic paralysis- typically oriental men with thyrotoxicosis; ? abnormal Ca++ channel; ? Increased Na/K atp ase activity. </li></ul><ul><li>Increased rbc uptake, e.g. after treatment with B12, folate. </li></ul>
  18. 19. Extra-renal losses of potassium:
  19. 20. Gastrointestinal losses of potassium <ul><li>Gastric juice contains 5 – 10 mEq K+/L. </li></ul><ul><li>Intestinal fluids contain 20 – 50 mEq/L </li></ul>
  20. 21. Hypokalemia from loss of gastric fluid. <ul><li>Loss of hydrogen ion increases plasma bicarbonate. </li></ul><ul><li>Coexisting volume depletion increases aldosterone secretion. </li></ul><ul><li>Increased delivery of bicarbonate to the distal nephron obligates a cation. In the setting of increased aldosterone levels, sodium is retained and potassium excreted. </li></ul><ul><li>Potassium loss is most prominent early. </li></ul><ul><li>Actual losses in gastric juice are relatively small. </li></ul>
  21. 22. <ul><li>Diarrheal losses are usually accompanied by metabolic acidosis </li></ul><ul><ul><li>Villous adenoma </li></ul></ul><ul><ul><li>Laxative abuse </li></ul></ul>
  22. 23. <ul><li>Sweat losses- 5 – 10 mEq/L </li></ul>
  23. 24. The kidney and potassium <ul><li>Nearly all potassium filtered at the glomerulus is reabsorbed in the proximal nephron. Urinary potassium is the result of distal potassium secretion. </li></ul><ul><li>To excrete potassium, the kidney requires an adequate number of nephrons, aldosterone, and a circulation adequate to provide adequate distal delivery of sodium for sodium/potassium exchange. </li></ul>
  24. 25. Renal losses of potassium <ul><li>Diuretics- activate the renin-angiotensin-aldosterone cascade. </li></ul><ul><li>Primary aldosteronism/increased steroids. </li></ul><ul><li>Presentation of a non-resorbable anion distally, obligating a cation, which will lead to increased potassium excretion in the presence of aldosterone. </li></ul><ul><ul><li>Bicarbonate </li></ul></ul><ul><ul><li>Penicillin derivatives </li></ul></ul><ul><ul><li>Betahydroxybutyrate </li></ul></ul>
  25. 26. Renal losses of potassium <ul><li>Renal tubular acidosis </li></ul><ul><ul><li>Proximal, especially with therapy </li></ul></ul><ul><ul><li>Some distal types </li></ul></ul><ul><ul><li>Type IV RTA patients are typically hyperkalemic </li></ul></ul><ul><li>Hypomagnesemia </li></ul><ul><li>Polyuria </li></ul>
  26. 27. What data do we want to diagnose the cause of hypokalemia in this pt? <ul><li>Urinary potassium: 24 hour values better than spot specimens. </li></ul><ul><li>Aldosterone and renin levels. </li></ul><ul><li>Blood pressure measurements. </li></ul><ul><li>A history. </li></ul>
  27. 28. Therefore: <ul><li>Potassium is being lost in the urine. </li></ul><ul><li>Primary aldosteronism is r/o by normal blood pressures. </li></ul><ul><li>ABG r/o renal tubular acidosis. </li></ul><ul><li>Diuretic abuse R/o history </li></ul>
  28. 29. Bartter’s and Gitelman’s syndromes <ul><li>Bartter’s syndrome is usually diagnosed in childhood, sometimes associated with growth and mental retardation. The defect is impaired NaCl reabsorption in the loop of Henle. Findings are similar to administration of a loop acting diuretic: </li></ul><ul><ul><li>Salt loss leading to volume depletion and activation of the renin-angiotensin system </li></ul></ul><ul><ul><li>Increased urinary calcium </li></ul></ul>
  29. 31. Bartter’s and Gitelman’s Syndromes <ul><li>3 or 4 types of Bartter’s have been identified: </li></ul><ul><ul><li>Defects in the luminal Na-K-Cl transporter </li></ul></ul><ul><ul><li>Defects in the luminal potassium channel </li></ul></ul><ul><ul><li>Defects in the basolateral chloride channel </li></ul></ul>
  30. 32. Gitelman’s syndrome <ul><li>Like Bartter’s an autosomal recessive disorder, but not usually diagnosed early in life. </li></ul><ul><li>Findings mimic administration of a thiazide diuretic: the defect is in the Na-Cl transporter. </li></ul><ul><li>Patients may complain of polyuria, cramps. </li></ul><ul><li>They do not have hypercalciuria, but typically have low serum magnesium levels. </li></ul>
  31. 33. Gitelman’s syndrome <ul><li>Diagnosis is made by history as well as lab findings. Lab findings are indistinguishable from thiazide use: </li></ul><ul><ul><li>Hypokalemia, hypomagnesemia, increased renin and aldosterone levels, decreased urinary calcium. </li></ul></ul><ul><ul><li>Genetic screening? </li></ul></ul>
  32. 34. ©2005 UpToDate ® • www.uptodate.com • Contact Us
  33. 35. <ul><li>1: Clin Nephrol. 2001 Mar;55(3):233-7. Related Articles, Links </li></ul><ul><ul><li>Mimicry of surreptitious diuretic ingestion and the ability to make a genetic diagnosis. Schepkens H , Hoeben H , Vanholder R , Lameire N . Department of Internal Medicine, University Hospital Gent, Belgium. katrien.vanrenterghem@rug.ac.be Gitelman's syndrome, also known as &quot;hypocalciuric variant of Bartter's syndrome&quot;, is a cause of chronic hypokalemia and hypomagnesemia in adults. A specific gene has been found responsible for this disorder, encoding the thiazide-sensitive NaCl coporter (TSC) in the distal convoluted tubule. We describe a psychiatric patient with chronic symptomatic hypokalemia and hypomagnesemia whose electrolyte disturbances were subsequently misdiagnosed as an acute alcohol and benzodiazepine withdrawal syndrome, as chronic diuretic abuse and as a classical Bartter's syndrome. Finally, genetic investigation revealed the presence of mutations in the SLC12A3 gene leading to the proper diagnosis of Gitelman's syndrome. We emphasize that Gitelman's syndrome should be suspected in every hypokalemic patient with biochemical resemblance of diuretic ingestion, especially when repeated toxic screens for diuretics are negative. The ability to make a molecular-genetic diagnosis can be of practical benefit in confusing clinical settings. </li></ul></ul>
  34. 36.                                                               
  35. 37. Gitelman’s syndrome: treatment <ul><li>Potassium </li></ul><ul><li>Magnesium </li></ul><ul><li>Aldactone or amiloride </li></ul><ul><li>ACEI’s </li></ul><ul><li>NSAIDS of no benefit </li></ul>
  36. 38. General comments about the treatment of hypokalemia <ul><li>Think about the cause of the hypokalemia you are treating? A cellular shift, e.g. hypokalemic periodic paralysis, will require a lot less potassium to correct than hypokalemia from potassium loss. </li></ul><ul><li>Orally or i.v.? Orally is safer; limit i.v. repletion to 20 mEq./hour except in very unusual circumstances- then monitor. </li></ul>
  37. 39. <ul><li>Anticipate: has K+ loss stopped or will it be ongoing? </li></ul><ul><li>Are you giving other drugs that will influence K+ levels? E.g. NSAIDs, ACEIs, ARBs. </li></ul><ul><li>Generally, use KCl vs. other preparations. </li></ul><ul><li>Followup with repeat levels- consider using the replacement protocols. </li></ul>

×