Your SlideShare is downloading. ×
0
R&D on materials and electrochemical storage
                 for the transportation sector
  Electrification of mobility ...
The Electric Vehicle

    Driving forces for the Electric Vehicle

Sustainability
       Oil consumption
       CO2 emissi...
The Electric Vehicle

     The big family of Electric Vehicles

Stop-start hybrids
        Electric motor used to start IC...
The Electric Vehicle

     Why such variety?

No appropriate energy storage technology
       Current storage technologies...
The Electric Vehicle

     Drivers’ requirements: a pool

Quantitative

        Range           > 500 km
        Power    ...
Energy Storage

     Comparison

IC engine vehicle

        Consumption         43.5 kWh/100 km         5 L/100 km
       ...
Energy Storage

     Comparison

IC engine vehicle

        Lifetime             > 10 years
        Refueling            5...
Energy Storage

     A depressing result

Energy stored in 34 kg of diesel is equivalent to
         1250 kg Li-ion
      ...
Energy Storage

     A possible solution…

Metal – air batteries
        Zinc-air                     1090 Wh/kg         3...
Energy Storage

     … with drawbacks

Metal – air
        Electrical rechargeability not demonstrated
        Cycle life ...
Materials R&D

      Improvements through Materials Research

Li-ion Battery
        Fast charging (<10 minutes)
        E...
Li-ion battery

     Li-ion battery

Increasing Energy Density
        > 200 Wh/kg

Fast recharging
        < 10 min

Exte...
Li-ion battery

     Fast recharging

LiFePO4 nanoparticles
       MIT tests charge / discharge in seconds
       A123 com...
Li-ion battery

     Li-ion battery

Extending cycle life
       Nanosized materials → lower dimensional stress → better c...
Electrochemical capacitors

     Electrochemical capacitors

Increasing energy density
        Controlled Pore size distri...
Metal-air batteries

     Metal-air batteries
Electrical recharge
        Electrolyte stable in highly reducing conditions...
Conclusions

     The long and winding road… (The Beatles)

Big challenges
        Remarkable improvement of battery perfo...
Thank you




            19
Upcoming SlideShare
Loading in...5
×

Electrification of Mobility_Jesús Palma

924

Published on

El 20 de noviembre se celebró en EOI la jornada "Electrificación del transporte y red eléctrica / Electrification of mobility and the electrical network":

Esta es la ponencia de uno de los reconocidos expertos europeos que analizaron en esta jornada el impacto de la electrificación del transporte en la red eléctrica, tanto en sistemas de distribución centralizada como en los emergentes sistemas distribuidos e inteligentes.

www.eoi.es

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
924
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
34
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Electrification of Mobility_Jesús Palma"

  1. 1. R&D on materials and electrochemical storage for the transportation sector Electrification of mobility and the electrical network EOI - Madrid Jesus Palma November 20th, 2009 1
  2. 2. The Electric Vehicle Driving forces for the Electric Vehicle Sustainability Oil consumption CO2 emissions Pollution Gas contaminants Noise Number 800 million vehicles in 2009 1500 million in 2030 3000 million in 2050 A. Ceña, J. Santamarta – Energías Renovables, feb. 2009 2
  3. 3. The Electric Vehicle The big family of Electric Vehicles Stop-start hybrids Electric motor used to start IC engine Light hybrids Electric motor supplies additional power to IC engine Pure hybrids Control system selects combination of motor & engine Plug-in hybrids with externally rechargeable battery Pure electric No IC engine J. Santamarta – Energías Renovables, Oct. 2009, 82-87 3
  4. 4. The Electric Vehicle Why such variety? No appropriate energy storage technology Current storage technologies meet some HEV requirements No technology for EV requirements 1000 6 IC Engine 4 Specific Energy (Wh/kg) 100 h Fuel Cells EV goal 2 Li-ion 100 6 Ni-MH 4 Lead-acid 2 10 h HEV goal 10 6 Capacitors Range 4 2 1h 0.1 h 36 s 3.6 s 1 0 1 2 3 4 10 10 10 10 10 Acceleration Specific Power (W/kg) 4
  5. 5. The Electric Vehicle Drivers’ requirements: a pool Quantitative Range > 500 km Power > 50 kW (big torque) Lifetime > 10 years Charging time < 10 minutes Qualitative Safety Reliability Comfort 5
  6. 6. Energy Storage Comparison IC engine vehicle Consumption 43.5 kWh/100 km 5 L/100 km Diesel 12.7 kWh/kg 8.7 kWh/L Range 1000 km for 50 L tank Electric vehicle Spec. Energy Weight Consumption avg. 20 kWh/100 km Li-ion 160 Wh/kg 125 kg/100 km Ni-Me hydride 90 Wh/kg 222 kg/100 km Lead-acid 35 Wh/kg 570 kg/100 km Supercapacitor 10 Wh/kg 2000 kg/100 km 6
  7. 7. Energy Storage Comparison IC engine vehicle Lifetime > 10 years Refueling 5 min. Electric vehicle Cycle life Recharging Li-ion 2000 cycles min. - hours Ni-Me hydride 1500 hours Lead-acid 500 hours Supercapacitor 500000 sec. 7
  8. 8. Energy Storage A depressing result Energy stored in 34 kg of diesel is equivalent to 1250 kg Li-ion 2220 kg Ni-metal hydride 12337 kg Pb-acid 43180 kg SuperCaps 45000 40000 35000 30000 Weight (kg) 25000 20000 15000 10000 5000 0 Diesel Li-ion Ni-MeH Pb-acid SC 8
  9. 9. Energy Storage A possible solution… Metal – air batteries Zinc-air 1090 Wh/kg 360 Wh/kg 55 kg (100 km) Aluminum-air 4500 Wh/kg 1500 Wh/kg 13 kg (100 km) Lithium-air 5200 Wh/kg 1700 Wh/kg 12 kg (100 km) Energy storage comparison 34 kg diesel ≡ 550 kg Zn-air ≡ 133 kg Al-air ≡ 118 kg Li-air 600 500 400 Weight (kg) 300 200 100 0 Diesel Li-air Al-air Zn-air 9
  10. 10. Energy Storage … with drawbacks Metal – air Electrical rechargeability not demonstrated Cycle life unknown Low power density Safety problems in contact with air & moisture (Li) So 10
  11. 11. Materials R&D Improvements through Materials Research Li-ion Battery Fast charging (<10 minutes) Extend cycle life (>5000 cycles) Increase energy density (>200 Wh/kg) Supercapacitor Improve energy density (>50 Wh/kg) Metal-air batteries Make electrical rechargeability feasible (reversibility) Improve power density (>0.5 kWh/kg) Fast charging Extend cycle life 11
  12. 12. Li-ion battery Li-ion battery Increasing Energy Density > 200 Wh/kg Fast recharging < 10 min Extendinf cycle life > 5000 cycles Improving safety Risk of explosion in short circuit / overvoltage J. Tollefson. Nature 456 (2008) 436-440 13
  13. 13. Li-ion battery Fast recharging LiFePO4 nanoparticles MIT tests charge / discharge in seconds A123 commercial electrodes charged in < 15 min. B. Kang & G. Ceder. Nature 458 (2009) 190-193 http://www.a123systems.com/a123/technology/power 14
  14. 14. Li-ion battery Li-ion battery Extending cycle life Nanosized materials → lower dimensional stress → better cycling P. Poizot et al. Nature 407 (2000) 496-499 Improving safety Barrier materials that form protective film at T>130 ºC STOBA by ITRI, Taiwan Boron fluorides as electron drains for overvoltage cycles (> 500) K. Amine and Z. Chen, ANL, ref. NYT August 24, 2009 15
  15. 15. Electrochemical capacitors Electrochemical capacitors Increasing energy density Controlled Pore size distribution: Carbide-Derived Carbons J. Chmiola et al. Science 313 (2006) 1760-1763 / Skeleton Technologies (Estonia) Hybrid concepts: EDL / Pseudocapacitance ESMA (Russia) / JCR Micro / HESCAP Project Improving safety Aqueous electrolytes (hybrids) HESCAP Project (CEIT, IMDEA Energy…) 16
  16. 16. Metal-air batteries Metal-air batteries Electrical recharge Electrolyte stable in highly reducing conditions Air electrode stable in highly oxidant environment Develop catalysts for the oxygen reaction Power density Introduce helpers to air electrode discharge Avoid oxygen and water migration to metal electrode Develop catalysts for the oxygen reaction Avoid passivation of metal electrode 17
  17. 17. Conclusions The long and winding road… (The Beatles) Big challenges Remarkable improvement of battery performance maintaining high safety standards and controlled costs But great opportunities Environmental benefits Huge market High social demand 18
  18. 18. Thank you 19
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×