Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Non-­‐we9ng	
  surfaces:	
  
	
  Robustness	
  and	
  applica@...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Milestones	
  of	
  superhydrophobicity	
  
•  1940’s-­‐1950’s...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
A droplet takes up the dirt
while rolling downWater droplets r...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Loss	
  of	
  non-­‐we9ng:	
  caused	
  by	
  damage	
  
Remem...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Loss	
  of	
  non-­‐we9ng:	
  caused	
  by	
  we9ng	
  
transi...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Damage	
  to	
  non-­‐we9ng	
  surfaces	
  (1)	
  
Two	
  type...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Damage	
  to	
  non-­‐we9ng	
  surfaces	
  (2)	
  
•  Most	
  ...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Hierarchical	
  roughness	
  
=	
  topography	
  at	
  two	
  ...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Hierarchical	
  roughness:	
  example	
  1	
  
•  PET	
  fabri...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Hierarchical	
  roughness:	
  example	
  2	
  
Despite	
  an	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Hierarchical	
  roughness:	
  example	
  2	
  
Nanotechnology	...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Hydrophobic	
  bulk	
  material	
  
polishing	
  with	
  sandp...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Weather	
  durability	
  (1)	
  
Conven@onal	
  (A–D)	
  and	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Weather	
  durability	
  (2)	
  
Colloids	
  and	
  Surfaces	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Laundering	
  Durability	
  of	
  
Superhydrophobic	
  CoJon	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Laundering	
  Durability	
  of	
  
Superhydrophobic	
  CoJon	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Transparent,	
  Thermally	
  Stable	
  and	
  Mechanically	
  ...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
SuperHYDROphobic	
  	
  	
  	
  
superOLEOphobic	
  or	
  sup...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Self-­‐healing	
  superhydrophobicity	
  (1):	
  
a	
  propert...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Self-­‐healing	
  superhydrophobicity	
  (2)	
  
Angew.	
  Che...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Self-­‐healing	
  superhydrophobicity	
  and	
  
superoleophob...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Superhydrophobicity	
  =	
  
	
  Water	
  repellency	
  
Super...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Staying	
  dry	
  
Cicada	
  wings	
  
Ras	
  et	
  al.	
  JAC...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Superhydrophobic	
  Tracks	
  for	
  Low-­‐Fric@on,	
  Guided	...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
An@-­‐Icing	
  Superhydrophobic	
  Coa@ngs	
  
Langmuir	
  200...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Delayed	
  Freezing	
  on	
  Water	
  Repellent	
  Materials	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
An@-­‐fogging	
  
Adv.	
  Mater.	
  2007,	
  19,	
  2213–2217	...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Harvesting of water
by a desert beetle
10	
  µm	
  
Superhydro...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Floata@on	
  on	
  water	
  using	
  surface	
  
tension	
  fo...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Floata@on	
  on	
  water	
  using	
  surface	
  
tension	
  fo...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Meniscus-­‐climbing	
  
Nature	
  (2005)	
  437,	
  733	
  
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Water	
  strider	
  look-­‐alikes:	
  water-­‐
walking	
  devi...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Content
Superhydrophobic	
  and	
  Superoleophobic	
  Nanocell...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
TiO2-­‐coated	
  nanocellulose	
  aerogel	
  
KeJunen	
  (née	...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Op@cally	
  controlled	
  water	
  absorp@on	
  within	
  TiO2...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Humidity	
  sensing	
  using	
  TiO2	
  nanotube	
  aerogels	
...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Plastron:	
  a	
  thin	
  layer	
  of	
  trapped	
  air	
  at	...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Slip	
  and	
  drag	
  reduc@on:	
  
lower	
  fric@on	
  of	
 ...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Superhydrophobic	
  Copper	
  Tubes	
  with	
  Possible	
  Flo...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Underwater	
  breathing:	
  plastron	
  func@ons	
  as	
  
ext...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Gas	
  extrac@on	
  from	
  water	
  
APPLIED	
  PHYSICS	
  LE...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Conclusion	
  
•  Robustness	
  of	
  superhydrophobic	
  surf...
Dr.	
  Robin	
  Ras,	
  Aalto	
  University,	
  Finland	
  
Acknowledgements	
  
Aalto	
  Univ.	
  (Finland)	
  
•  O.	
  ...
Upcoming SlideShare
Loading in …5
×

Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

1,603 views
1,468 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,603
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
126
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Sirris Smart Coating workshop - Easy-to-clean and Self cleaning Coatings - 19 May 2011 - Non-wetting surfaces: robustness and applications - Robin Ras, Aalto University Finland

  1. 1. Dr.  Robin  Ras,  Aalto  University,  Finland   Non-­‐we9ng  surfaces:    Robustness  and  applica@ons   Dr.  Robin  Ras   Molecular  Materials    Dept.  Applied  Physics   Aalto  University  (formerly  Helsinki  Univ.  Technology)   Helsinki,  Finland     hJp://Ly.tkk.fi/molmat/   robin.ras@aalto.fi  
  2. 2. Dr.  Robin  Ras,  Aalto  University,  Finland   Milestones  of  superhydrophobicity   •  1940’s-­‐1950’s   –  Theory   •  Wenzel   •  Cassie-­‐Baxter   •  1977  (BarthloJ,  Univ.  Bonn)   –  plant  systema@cs   –  assessing  the  value  of  certain  surface  structures  for  taxonomic  differen@a@on   •  1997  (BarthloJ  &  Neinhuis)   –  first  comprehensive  experimental  study  on  self-­‐cleaning  of  plant  surfaces   –  results  pointed  to  a  structural  basis  of  effec@ve  self-­‐cleaning     “Superhydrophob*”   based  on  Web  of  Knowledge  -­‐  May  2011   0   100   200   300   400   500   600   700   #  publica@ons  
  3. 3. Dr.  Robin  Ras,  Aalto  University,  Finland   A droplet takes up the dirt while rolling downWater droplets roll down the leaf of the Lotus flower Glue rolls down the leaf of the Lotus flowerhJp://www.youtube.com/watch?v=XXHSM8ePuZw   Lotus  leaf:  archetype  of  a  self-­‐cleaning  surface  
  4. 4. Dr.  Robin  Ras,  Aalto  University,  Finland   Loss  of  non-­‐we9ng:  caused  by  damage   Remember  the  two  requirements  for  the   Cassie  state  of  superhydrophobicity:   1.  Topography  at  nano/micronscale   2.  Hydrophobic  surface  chemistry   Cassie  state:     •  low  contact  angle  hysteresis  (Δθ)   •  low  sliding  angle     Δθ  =  θadv  −  θrec   Damage  to  1.  or  2.  leads  to  significantly   reduced  θrec  and  thus  increased  hysteresis   The  maximum  lateral  force  Flat  that  a   distorted  pinned  droplet  can  build  up   depends  on  θadv  and  θrec     Flat  =  cos  θrec  −  cos  θadv  ≅  Δθ  sinθ  (for  small  θ)         Droplet  pinning   Low  fric@on   Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  
  5. 5. Dr.  Robin  Ras,  Aalto  University,  Finland   Loss  of  non-­‐we9ng:  caused  by  we9ng   transi@ons   •  The  Cassie  state  of  we9ng  is  in  general  most  desired.     •  Droplet  is  in  contact  mostly  with  air   •  However,  transi@ons  from  Cassie  to  Wenzel  state  of   we9ng  are  possible.   •  e.g.  hydrosta@c  pressure,  dissolu@on  of  the  trapped   air,  a  drop  falling  from  a  certain  height   •  This  also  leads  to  loss  of  non-­‐we9ng,  even  though  the   contact  angle  can  s@ll  be  high   •  The  reverse  Wenzel-­‐to-­‐Cassie  transi@on  is  difficult,   though  possible  in  some  cases.   Not  only  damage  to  the  surface,  but  also  we9ng  transi@ons  can  lead  to   pinning  of  droplets     Important  for  underwater  applica@ons  (long-­‐@me  contact  with  water)   e.g.  Ship  hull   •  prevent  bio-­‐fouling  (algae,  mussels,  …)   •  drag  reduc@on   Wenzel   Cassie   transi@on  
  6. 6. Dr.  Robin  Ras,  Aalto  University,  Finland   Damage  to  non-­‐we9ng  surfaces  (1)   Two  types  of  damage   •  loss  of  roughness  (increases  the  area  of  contact  between  water   and  the  surface)   –  Mechanical  abrasion   •  intrinsic  hydrophobicity  of  the  surface  is  reduced   –  Damage  to  a  hydrophobic  surface  layer   •  Mechanical  abrasion   •  Ultraviolet  radia@on   •  …   –  Contamina@on  (organic/bio)    As  a  consequence,  the  Cassie  state  may  become  unstable  or  contact    angle  hysteresis  may  increase  due  to  hydrophilic  defects.   Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  
  7. 7. Dr.  Robin  Ras,  Aalto  University,  Finland   Damage  to  non-­‐we9ng  surfaces  (2)   •  Most  superhydrophobic  surfaces  work  well  in  controlled  laboratory  condi@ons   •  But  fail  in  real-­‐life  applica@ons.   The  requirements  for  durability  depend  on  the  area  of  applica@on.     Different  kinds  of  durability   •  Robustness  in  weather  condi@ons  (e.g.  windows  of  traffic  cameras,  coa@ng  of   weather  sta@ons)   –  Fouling-­‐resistant   –  UV-­‐resistant   •  Robustness  against  skin  contact  (e.g.  touch  screens)   –  Mechanically  durable   –  Resistant  against  finger  grease   •  Food  packaging  /  kitchen  utensils   –  Resistant  against  oil-­‐contamina@on   –  (Mechanically  durable)   •  …  
  8. 8. Dr.  Robin  Ras,  Aalto  University,  Finland   Hierarchical  roughness   =  topography  at  two  or  more  length  scales   Only  microroughness  is  present.  Abrasion   causes  the  bumps  to  wear  off,  making  the   Cassie  state  no  longer  stable.   One  length  scale   Two  length  scales   Microbumps  with  a  nanoroughness  on   them.  Most  of  the  nanoroughness  is   unaffected  by  wear  and  the  Cassie  state   remains  stable.  
  9. 9. Dr.  Robin  Ras,  Aalto  University,  Finland   Hierarchical  roughness:  example  1   •  PET  fabric  coated  with  nanofilaments  before  and  awer  a  wear  test  that  simulates  skin   contact.   •  majority  of  the  filaments  are  protected  by  the  3D  microstructure  of  the  fabric   •  Since  the  residual  layer  awer  abrasion  is  also  s@ll  hydrophobic,  the  overall   superhydrophobic  proper@es  of  the  tex@le  are  retained.   •  Contact  angle  hysteresis  has  increased  slightly   Adv.  Funct.  Mater.  2008,  18,  3662–3669  
  10. 10. Dr.  Robin  Ras,  Aalto  University,  Finland   Hierarchical  roughness:  example  2   Despite  an  increase  in  contact  angle  hysteresis,  the  surface   remained  superhydrophobic,  showing  that  the  microscale  pyramids   protected  the  nanoscale  features  on  the  walls  of  the  pyramids   Nanotechnology  21  (2010)  155705   Micropyramids  with  nanoscale  roughness   Abrasion  with  Technicloth  paper   Sand  abrasion  (6  min)  θ=168°   Δθ=2°   θ=167°   Δθ=13°   θ=161°   Δθ=70°   Hydrophilic    pinning  site   θrec(Si02)=0°  
  11. 11. Dr.  Robin  Ras,  Aalto  University,  Finland   Hierarchical  roughness:  example  2   Nanotechnology  21  (2010)  155705   Micropyramids  with  nanoscale  roughness   Abrasion  with  Technicloth  paper   Sand  abrasion  (6  min)  θ=168°   Δθ=2°   θ=167°   Δθ=13°   θ=161°   Δθ=70°   Hydrophilic    pinning  site   •  Hydrophilic  bulk  materials  lead  to  pinning  sites  when  worn  off   •  Solu@on:  hydrophobic  bulk  material   Verho,  Ras  et  al.,  Adv.  Mater.  2011,  23,  673–678  
  12. 12. Dr.  Robin  Ras,  Aalto  University,  Finland   Hydrophobic  bulk  material   polishing  with  sandpaper  increased  the  contact  angle  hysteresis  only  from  4°  to   10°  even  though  scanning  electron  microscopy  showed  that  the  surface  had   suffered  considerable  damage.   Applied  Physics  Express  (2009)  125003   An  organoclay-­‐polymer  nanocomposite  before  and  awer  abrading  with  sand  paper   hJp://www.youtube.com/watch?v=HxVnFlKiFRw  
  13. 13. Dr.  Robin  Ras,  Aalto  University,  Finland   Weather  durability  (1)   Conven@onal  (A–D)  and  Lotus-­‐Effect®  (E–F)   façade  paint  specimens  awer  six  years  of   exposure  under  deciduous  trees.   Bioinsp.  Biomim.  2  (2007)  S126–S134  
  14. 14. Dr.  Robin  Ras,  Aalto  University,  Finland   Weather  durability  (2)   Colloids  and  Surfaces  A:  Physicochem.  Eng.  Aspects  302  (2007)  234–240   12  months  exposure   Untreated  glass   Superhydrophobic  glass   Organic  contamina@on   Silicone  nanofilaments   Awer  12  months   exposure  to  weather   elements  
  15. 15. Dr.  Robin  Ras,  Aalto  University,  Finland   Laundering  Durability  of   Superhydrophobic  CoJon  Fabric   Adv.  Mater.  2010,  22,  5473–5477   1H,1H,2H,2H-­‐nonafluorohexyl-­‐1-­‐acrylate   grawed  onto  a  coJon  fabric.   Grawing  =  polymeriza@on  onto  a  solid  surface  
  16. 16. Dr.  Robin  Ras,  Aalto  University,  Finland   Laundering  Durability  of   Superhydrophobic  CoJon  Fabric   Adv.  Mater.  2010,  22,  5473–5477   Fluorinated  groups  are  covalently  bonded  to  the  coJon  fabric      superhydrophobicity  s@ll  retained  its  superhydrophobicity  awer  50  accelerated      laundering  cycles  (=  equivalent  to  250  commercial  or  domes@c  launderings).      binding  between  the  coJon  fiber  and  the  fluorinated  graw  chains  is  strong  enough    to  withstand  the  shear  force  of  the  water  and  the  stainless  steel  balls.  
  17. 17. Dr.  Robin  Ras,  Aalto  University,  Finland   Transparent,  Thermally  Stable  and  Mechanically  Robust   Superhydrophobic  Surfaces  Made  from  Porous  Silica   Capsules   The  coa@ng  retains  its  superhydrophobicity   under  adhesion  tape  peeling  and  sand  abrasion   Adv.  Mater.  (2011)  DOI:  10.1002/adma.201100410  
  18. 18. Dr.  Robin  Ras,  Aalto  University,  Finland   SuperHYDROphobic         superOLEOphobic  or  superOMNIphobic  ?   Young  equa@on  γsg  –  γsl  =  γlg  cos  θ   •  The  interfacial  energy  for   water   •     γlg=72.8  mN/m  (high)   •  The  interfacial  energy  for  oils   and  organic  maJer  much  lower   •  hexadecane  γlg=27.5  mN/m   •  decane  γlg=23.8  mN/m   •  octane  γlg=21.6  mN/m   •  Difficult  to  increase  contact   angle,   •  Remember:  The  lowest  known  are  for  fluorinated   chemical  groups   •   γsg  =  6.7  mN/m  for  -­‐CF3,  a  bit  higher  for  –CF2-­‐   Superoleophobic  surfaces:   The  contact  angle  >  150°  for  oils   Three  requirements:   • Low  surface  energy   • Roughness   • Re-­‐entrant  curvature   e.g.  Science  2007,  318,  1618.  
  19. 19. Dr.  Robin  Ras,  Aalto  University,  Finland   Self-­‐healing  superhydrophobicity  (1):   a  property  from  nature   Chem.  Commun.,  2011,  47,  2324–2326  
  20. 20. Dr.  Robin  Ras,  Aalto  University,  Finland   Self-­‐healing  superhydrophobicity  (2)   Angew.  Chem.  Int.  Ed.  2010,  49,  6129-­‐6133  
  21. 21. Dr.  Robin  Ras,  Aalto  University,  Finland   Self-­‐healing  superhydrophobicity  and   superoleophobicity  (3)   Chem.  Commun.,  2011,  47,  2324–2326  
  22. 22. Dr.  Robin  Ras,  Aalto  University,  Finland   Superhydrophobicity  =    Water  repellency   Superhydrophobic  applica@ons   •  Self-­‐cleaning   •  No  water  absorp@on  (tex@le  remains  dry)   –  Energy  efficient   •  An@-­‐icing   •  An@-­‐fogging   •  Dew  collec@on   •  Floata@on   –  Locomo@on   •  Drag  reduc@on   •  Thermal  insula@on   •  Gas  extrac@on  from  water   Superhydrophobicity    in  nature   • Plant  leaves   • Insect  wings   • Insect  eyes   • Desert  beetle   • Water  strider     • Breathing  by  underwater  insects   plastron  
  23. 23. Dr.  Robin  Ras,  Aalto  University,  Finland   Staying  dry   Cicada  wings   Ras  et  al.  JACS  (2008)  130,  11253   Clothing   Adv.  Funct.  Mater.  2008,  18,  3662–3669   Silicone  nanofilaments  
  24. 24. Dr.  Robin  Ras,  Aalto  University,  Finland   Superhydrophobic  Tracks  for  Low-­‐Fric@on,  Guided   Transport  of  Water  Droplets   •  A  water  droplet  does  not  penetrate  through  a   hole/groove  in  a  superhydrophobic  surface   •  Track  edge  keeps  the  drop  inline  with  the  track   Mertaniemi,  Ras  et  al.  Advanced  Materials  (2011)  in  press.        DOI:10.1002/adma.201100461   gravita@on   Electrosta@c  force   Superhydrophobic  knife  
  25. 25. Dr.  Robin  Ras,  Aalto  University,  Finland   An@-­‐Icing  Superhydrophobic  Coa@ngs   Langmuir  2009,  25(21),  12444–12448   Langmuir  2011,  27(1),  25–29   hJp://www.youtube.com/watch?v=mxQy73rL3a8   Note:  also  robustness  is  a  problem  here,  as   the  growing  ice  crystals  may  damage  the   nano/micronscale  topography  
  26. 26. Dr.  Robin  Ras,  Aalto  University,  Finland   Delayed  Freezing  on  Water  Repellent  Materials   Ini@al  water  temperature  25°C   Copper  plate  at  -­‐7°C   Figure  1.  Comparison  between  two  water  drops  (Ω  =  1200  μL)  deposited  on   microtextured  superhydrophobic  (black)  copper  (lew)  and  flat  (orange)  copper   (right),  both  at  a  temperature  T  =  -­‐7  C.  First  row:  the  drops  were  just  deposited;   their  colors  reflect  the  substrates.  Second  row:  the  drop  on  flat  copper  has   frozen.  Third  row:  both  drops  are  frozen.  There  is  no  difference  in  contact  angle   between  the  drops,  because  a  thin  ring  (of  radius  R  =  10  mm)  has  been  etched  in   both  plates,  providing  pinning  for  the  contact  line  and  allowing  us  to  compare   the  freezing  of  drops  of  same  volume  and  same  surface  area.   Langmuir  2009,  25(13),  7214–7216   Roughened  fluorinated   copper   =superhydrophobic   Smooth  fluorinated     copper   Normal  copper   The  drop  on  a  superhydrophobic  surface  contacts  more  air  than  solid     Insula@ng  proper@es  
  27. 27. Dr.  Robin  Ras,  Aalto  University,  Finland   An@-­‐fogging   Adv.  Mater.  2007,  19,  2213–2217   Prevents  moisture  from  nuclea@ng  
  28. 28. Dr.  Robin  Ras,  Aalto  University,  Finland   Harvesting of water by a desert beetle 10  µm   Superhydrophobic Hydrophilic peaks  Applica@on:  Fog  harves@ng   Tent  fabrics  and  roof  @les  to  collect  moisture  in  arid  areas.   Nature  (2001)  414,  33  
  29. 29. Dr.  Robin  Ras,  Aalto  University,  Finland   Floata@on  on  water  using  surface   tension  forces   Advances  in  Insect  Physiology  (2008)  34,  117  
  30. 30. Dr.  Robin  Ras,  Aalto  University,  Finland   Floata@on  on  water  using  surface   tension  forces   Hydrophilic  claws  to  grab  the  water  surface   Dimple:  stretching  of  the  water  surface   Advances  in  Insect  Physiology  (2008)  34,  117  
  31. 31. Dr.  Robin  Ras,  Aalto  University,  Finland   Meniscus-­‐climbing   Nature  (2005)  437,  733  
  32. 32. Dr.  Robin  Ras,  Aalto  University,  Finland   Water  strider  look-­‐alikes:  water-­‐ walking  devices   Exp  Fluids  (2007)  43:769–778   IEEE  TRANSACTIONS  ON  ROBOTICS,  VOL.  23,  NO.  3,  JUNE  2007   hJp://www.youtube.com/watch?v=756Tk9y0aNg   hJp://nanolab.me.cmu.edu/projects/waterstrider/  
  33. 33. Dr.  Robin  Ras,  Aalto  University,  Finland   Content Superhydrophobic  and  Superoleophobic  Nanocellulose  Aerogel  Membranes   as  Bioinspired  Cargo  Carriers  on  Water  and  Oil   Chemical  vapor  deposi@on  of   perfluorinated  trichlorosilane   •  Low-­‐surface-­‐energy  coa@ng   •  Roughness  from  nano-­‐  to  microscale   •  Overhangs   Jin,  KeJunen,  Laiho,  Pynnönen,  Paltakari,  Marmur,  Ikkala,  Ras,  Langmuir  (2011)  1930.   Nanocellulose  aerogel  
  34. 34. Dr.  Robin  Ras,  Aalto  University,  Finland   TiO2-­‐coated  nanocellulose  aerogel   KeJunen  (née  Pääkkö),  Silvennoinen,  Houbenov,  Nykänen,  Ruokolainen,  Sainio,  Pore,  Kemell,  Ankerfors,  Lindström,  Ritala,  Ras,  Ikkala,                                Adv.  Funct.  Mater.    (2011)  510.   Nanocellulose aerogel (highly porous solvent-free network) TiO2-coated nanocellulose aerogel (coated by chemical vapor deposition CVD or atomic layer deposition ALD) Precursor: TiO2 thickness ca. 7 nm on nanocellulose fibril ALD  or  CVD   Korhonen,  Hiekkataipale,  Malm,  Karppinen,  Ikkala,  Ras,  ACS  Nano  (2011)  1967.  
  35. 35. Dr.  Robin  Ras,  Aalto  University,  Finland   Op@cally  controlled  water  absorp@on  within  TiO2-­‐coated  cellulose  aerogel   No illumination Ultraviolet illumination λ = 350 nm After ultraviolet illumination Rejects water Absorbent Rejects water High contact angle on surface Water expelled from the pores High contact angle on surface Water expelled from the pores Zero contact angle on surface Water absorbed in the pores: 16 x water vs the aerogel weight Recovering slowly KeJunen  (née  Pääkkö),  Silvennoinen,  Houbenov,  Nykänen,  Ruokolainen,  Sainio,  Pore,  Kemell,  Ankerfors,  Lindström,  Ritala,  Ras,  Ikkala,                                Adv.  Funct.  Mater.    (2011)  510.  
  36. 36. Dr.  Robin  Ras,  Aalto  University,  Finland   Humidity  sensing  using  TiO2  nanotube  aerogels   Korhonen,  Hiekkataipale,  Malm,  Karppinen,  Ikkala,  Ras,  ACS  Nano  (2011)  1967.   Nanotube  films  act  as  fast  resis@ve  humidity   sensors.    
  37. 37. Dr.  Robin  Ras,  Aalto  University,  Finland   Plastron:  a  thin  layer  of  trapped  air  at  the  surface  of  an   immersed  superhydrophobic  surface   SoL  MaMer,  2010,  6,  714       Angew.  Chem.  Int.  Ed.  2007,  46,  1710  –1712   Mirror-­‐like  silvery  appearance   Reflec@vity  96%  Bioinsp.  Biomim.  2  (2007)  S126–S134  
  38. 38. Dr.  Robin  Ras,  Aalto  University,  Finland   Slip  and  drag  reduc@on:   lower  fric@on  of  flowing  water   To  analyze  con@nuum  liquid  flows,  a  so-­‐called   “no-­‐slip”  boundary  condiUon  is  typically  made.   This  condiUon  implies  that  the  flow  velocity  of   a  given  fluid  at  a  solid  wall  is  zero.   True  for  most  surfaces,  not  for  superhydrophobic  surfaces  
  39. 39. Dr.  Robin  Ras,  Aalto  University,  Finland   Superhydrophobic  Copper  Tubes  with  Possible  Flow   Enhancement  and  Drag  Reduc@on  
  40. 40. Dr.  Robin  Ras,  Aalto  University,  Finland   Underwater  breathing:  plastron  func@ons  as   external  lung   O2   CO2   J.  Fluid  Mech.  (2008),  vol.  608,  pp.  275–296.  
  41. 41. Dr.  Robin  Ras,  Aalto  University,  Finland   Gas  extrac@on  from  water   APPLIED  PHYSICS  LETTERS  89,  104106  (2006)   A  sphere  of  3m  diameter  would  provide  enough  oxygen  for  a  human  to  survive    
  42. 42. Dr.  Robin  Ras,  Aalto  University,  Finland   Conclusion   •  Robustness  of  superhydrophobic  surfaces  was  long  @me  ignored   •  Last  two  years  progress  made  towards  robust  superhydrophobic  surfaces   •  Some  promising  routes,  but  more  work  needed   •  We  can  learn  a  lot  from  nature  (=biomime@cs)   •  Wide  range  of  applica@ons  beyond  self-­‐cleaning  for  non-­‐we9ng  surfaces  
  43. 43. Dr.  Robin  Ras,  Aalto  University,  Finland   Acknowledgements   Aalto  Univ.  (Finland)   •  O.  Ikkala,  H.  Mertaniemi,  T.  Verho,  H.  Jin,  M.  KeJunen  (née   Pääkkö),  J.  Korhonen,  P.  Hiekkataipale,  A.  Laiho.,  M.   Karppinen,  J.  Malm,  S.  Franssila,  V.  Jokinen,  L.  Sainiemi.   Technion  (Israel)   •  A.  Marmur   Nokia  Research  Center  -­‐  Cambridge  (UK)   •  P.  Andrew  and  C.  Bower     Funding   •  Nokia  Research  Center,  UPM  Kymmene,  TEKES,  Acad.  Finland.   Dr.  Robin  Ras   Aalto  University,  Helsinki,  Finland   robin.ras@aalto.fi   hJp://Ly.tkk.fi/molmat/  

×