2012 11-15-high-value-manufacturing-sirris-verlee

473 views
280 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
473
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

2012 11-15-high-value-manufacturing-sirris-verlee

  1. 1. le centre collectif de l’industrie technologique belge
  2. 2. High Value ManufacturingDensity/porosity control of sintered 316L stainless steel parts shaped by additive manufacturing 15-11-2012 le centre collectif de l’industrie technologique belge
  3. 3. Table of contents • Porous metallic parts • 3D-printing Prometal process • Sintering cycle • Characterization • Property ranges of 316L powders • Examples © sirris 2007 | www.sirris.be | info@sirris.be 3
  4. 4. Porous metallic parts• Shaping by powder metallurgy  lots of parameters • Porosity range from a few % to 90%• Application list: • Filtration • Distributing/dispersing/damping • Airing/cooling • Lightening • Catalysts supports • Prosthesis• But simple geometries (Pressing, MIM) 4
  5. 5. Porous metallic parts• Additive manufacturing  no limit in shape + integrated functionalities • SLM  1 step  no control of porosity • 3D-printing  indirect route: shaping + sintering  possibility to control porous characteristics R10:1000x500x280mm RXD: 60x40x15mm 5
  6. 6. 3D- Printing Prometal Process 3. Sintering Complete Partial 1. Curing 2. Debinding - presintering(green part) (brown part) (3’. Infiltration) 6
  7. 7. Sintering cycle• From a powder tap to full dense material • Passing by porous state • Opened to 92% density, then closed• Evolution functions of: • Initial state • Packing density • Particle size distribution • Particle shape • Sintering conditions • Temperature • Time • (Atmosphere)•  Stop at different stage to keep or eliminate porosity following target application 7
  8. 8. Characterization• Density – porosity (opened and closed)  Archimedes (3 weightings)• Permeability k  Darcy (flux Q through thickness L and surface A under DP) Q.L.µ k= A.∆P• Pore size (bubble point and Hg porosimetry)  Washburn − 4.γ . cos θ d= P © sirris 2007 | www.sirris.be | info@sirris.be 8
  9. 9. Property ranges for 316L powders 100 40 22µm• Effect of sintering T° 95 31µm 20-53µm 35 (90min at T°) for 4 45-90µm 90 30 Opened porosity (%) Relative density (%) spherical powders 85 25 80 20 75 15 70 10 65 5 60 0 1180 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 Temperature (°C) 0,9Porous part Dense part 0,89 0,88 1315°• Effect of sintering time 0,87 C Density (-) 0,86 1335° at 3 T° for 31µm 0,85 C 1345° powder 0,84 0,83 C 0,82 0,81 0 50 100 150 200 250 300 350 Time at sintering temperature (min.) 9
  10. 10. Property ranges for 316L powders 35 1,00E-12 • Pore size and permeability 22µm functions of opened porosity for 4 spherical 31µm 30 20-53µm powdersMean pore size (µm) 45-90µm 1,00E-13 25 Permeability (m²) 20 1,00E-14 15 • Link between parameters: • Powder size sets pore size 10 1,00E-15 • Thermal cycle sets final density/porosity 5 •  all defines permeability 0 1,00E-16 Main challenge: shrinkage 0 5 10 15 20 25 30 35 40 • control! Opened porosity (%) Pore mean size Permeability 10
  11. 11. Property ranges for 316L powders 45-90µm powder Gas atomised particles Water atomised particles Sintered 90min at 1395°C65% density – 35% opened porosity 47% density – 53% opened porosityMean pore size 35µm Mean pore size 30µmPermeability 10-12m² Permeability 10-12m² © sirris 2007 | www.sirris.be | info@sirris.be 11
  12. 12. Examples Ø 70mm Pores 30µm Perméa. 10-12 m² L 270mm Ø 50mm Pores 17µm Pores 30µm Perméa. 5.10-13 m² L 30mm Perméa. 10-12 m² Ø 300mm L 90mm Pores 35µm Pores 35µm Perméa. 10-12 m² Perméa. 10-12 m² 12
  13. 13. Thank you for your attention ! Bruno.Verlee@sirris.be 13

×