HEMODYNAMIC ASSESSMENT: CARDIAC CATHETERIZATION LABORATORY William Hellenbrand MD Director, Pediatric Cardiology Morgan St...
CARDIAC CATHETERIZATION <ul><li>Cardiac output </li></ul><ul><li>Shunt & Resistance </li></ul><ul><li>Oxygen transport </l...
FICK PRINCIPLE <ul><li>The amount of flow through an organ or any circuit may be determined if  </li></ul><ul><ul><ul><li>...
FICK PRINCIPLE
OXYGEN IN BLOOD <ul><li>When oxygen is exposed to blood it exists in 2 forms </li></ul><ul><ul><li>Bound to hemoglobin </l...
OXYGEN IN BLOOD <ul><li>When oxygen is exposed to blood it exists in 2 forms(cont) </li></ul><ul><ul><ul><li>In solution i...
OXYGEN IN BLOOD <ul><li>Oxygen capacity  = Hgb(gm/100ml)*1.36 ml O2/gm   = ml O2/100ml (Vol%) </li></ul><ul><li>Oxygen sat...
OXYGEN CONSUMPTION <ul><li>VO 2  = V I F IO2  -  V E F EO2  </li></ul><ul><li>If RER is 1 then V I  = V E  and all you nee...
Oxygen Consumption
CARDIAC OUTPUT SYSTEMIC BLOOD FLOW <ul><li>Qs =  VO 2   </li></ul><ul><ul><ul><li>CaoO 2  -  CmvO 2 </li></ul></ul></ul><u...
SHUNT CALCULATIONS <ul><li>Qs  =  VO 2   </li></ul><ul><ul><ul><li>CaoO 2  -  CmvO 2 </li></ul></ul></ul><ul><li>Qp  =  VO...
<ul><li>SIMPLE SHUNT </li></ul><ul><ul><li>Q l-r  = Qp  - Qs </li></ul></ul><ul><ul><li>Q r-l   = Qs  - Qp </li></ul></ul>...
 
 
 
 
 
 
 
 
 
 
 
 
RESISTANCE TO FLOW <ul><li>Poiseuille equation </li></ul><ul><ul><ul><ul><ul><li>Q =  ∆Pπr 4  1  =   8nl R  </li></ul></ul...
RESISTANCE <ul><li>SVR  =  AO (MEAN)  - RA (MEAN) </li></ul><ul><ul><ul><ul><ul><li>Qs </li></ul></ul></ul></ul></ul><ul><...
SYSTEMIC OXYGEN TRANSPORT (SOT) SOT  =  Q  X   OXYGEN CONTENT SOT = Q  X   [(1.36  X  Hgb  X  O 2  SAT) + (.003  X  PO 2 )...
SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q  X   [(1.36  X  Hgb  X  O 2  SAT) + (.003  X  PO 2 )] Anemic Hypoxia:   Hgb SOT  ...
SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q  X   [(1.36  X  Hgb  X  O 2  SAT) + (.003  X  PO 2 )] Hypoxic Hypoxia:   0 2  SAT...
SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q  X   [(1.36  X  Hgb  X  O 2  SAT) + (.003  X  PO 2 )] Stagnant Hypoxia:   Q SOT  ...
VSD M=6 M=8 80/6 80/40 M=60 80/50 M=65 70 70 85 80 80 95
VSD Room Air <ul><li>Hgb = 10.0 Vol% </li></ul><ul><li>V0 2  = 150 ml/min/m2 </li></ul><ul><li>Saturations </li></ul><ul><...
VSD Room Air <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents =  </li></ul><ul><ul><li>Ao =13.6*.95=12.9 </li>...
VSD fI0 2  = 1.0 <ul><li>Hgb = 10.0 Vol% </li></ul><ul><li>V0 2  = 150 ml/min/m2 </li></ul><ul><li>Saturations </li></ul><...
VSD   fI0 2  = 1.0(PO2 not included) <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents =  </li></ul><ul><ul><li...
VSD   fI0 2  = 1.0(PO2 included) <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents =  </li></ul><ul><ul><li>Ao ...
VSD <ul><li>P0 2  not included </li></ul><ul><li>Qp = 150/0.7 </li></ul><ul><ul><li>= 21.4 l/min/m 2 </li></ul></ul><ul><l...
VALVE AREA CALCULATION
VALVE AREA CALCULATION
VALVE AREA CALCULATION
OXYGEN DISSOCIATION CURVE
OXYGEN DISSOCIATION CURVE
OXYGEN DISSOCIATION CURVE
PRESSURE-VOLUME LOOPS
P-V LOOPS
P-V LOOPS Pump Failure
P-V LOOPS Pump Failure
P-V LOOPS
Upcoming SlideShare
Loading in...5
×

Slides

230

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
230
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Slides

  1. 1. HEMODYNAMIC ASSESSMENT: CARDIAC CATHETERIZATION LABORATORY William Hellenbrand MD Director, Pediatric Cardiology Morgan Stanley Children’s Hospital of New York - Presbyterian Columbia University Medical Center Komansky Center for Children’s Health Cornell University Medical Center
  2. 2. CARDIAC CATHETERIZATION <ul><li>Cardiac output </li></ul><ul><li>Shunt & Resistance </li></ul><ul><li>Oxygen transport </li></ul><ul><li>Pressure-Volume loops </li></ul>
  3. 3. FICK PRINCIPLE <ul><li>The amount of flow through an organ or any circuit may be determined if </li></ul><ul><ul><ul><li>1 - that organ consumes or secrets a given substance </li></ul></ul></ul><ul><ul><ul><li>2 - the concentration of that substance can be measured as it enters and leaves the organ </li></ul></ul></ul><ul><ul><ul><li>3 - The total amount of the substance consumed or secreted can be measured per unit time </li></ul></ul></ul><ul><li> ∆ S/∆t </li></ul><ul><li>C 2 S – C 1 S </li></ul>
  4. 4. FICK PRINCIPLE
  5. 5. OXYGEN IN BLOOD <ul><li>When oxygen is exposed to blood it exists in 2 forms </li></ul><ul><ul><li>Bound to hemoglobin </li></ul></ul><ul><ul><ul><li>Each gram of Hgb is capable of binding 1.36 ml O 2 . </li></ul></ul></ul><ul><ul><ul><li>Therefore if the Hgb is 15 gm/100ml then the maximal amount of oxygen(Capacity) that can be taken up by Hgb is 20.4 ml/100ml(Vol%) </li></ul></ul></ul>
  6. 6. OXYGEN IN BLOOD <ul><li>When oxygen is exposed to blood it exists in 2 forms(cont) </li></ul><ul><ul><ul><li>In solution in plasma – </li></ul></ul></ul><ul><ul><ul><li>At body temperature of 37 0 , there is .00003 ml of O 2 per one ml of plasma at a partial pressure of oxygen of 1 mm Hg(1 torr) </li></ul></ul></ul><ul><ul><ul><li>Thus the solubility coefficient of oxygen in plasma is 0.00003 ml/ml/mm Hg </li></ul></ul></ul><ul><ul><ul><li>Therefore the amount of dissolved oxygen in plasma is equal to .003(PO 2 ) </li></ul></ul></ul>
  7. 7. OXYGEN IN BLOOD <ul><li>Oxygen capacity = Hgb(gm/100ml)*1.36 ml O2/gm = ml O2/100ml (Vol%) </li></ul><ul><li>Oxygen saturation = proportion of O2 actually combined with hemoglobin to the total capacity </li></ul><ul><li>Oxygen content = Capacity*Saturation + .003*PO2 </li></ul><ul><li> = ml/100ml (Vol%) </li></ul>
  8. 8. OXYGEN CONSUMPTION <ul><li>VO 2 = V I F IO2 - V E F EO2 </li></ul><ul><li>If RER is 1 then V I = V E and all you need to measure is V E F EO2 </li></ul><ul><li>RER = VCO 2 / VO 2 </li></ul><ul><ul><li>RER is close to 1 with carbohydrate metabolism </li></ul></ul><ul><ul><li>RER may be as low as 0.7 with mostly fat metabolism </li></ul></ul><ul><ul><li>Standard nomograms assume RER of 0.9 </li></ul></ul>
  9. 9. Oxygen Consumption
  10. 10. CARDIAC OUTPUT SYSTEMIC BLOOD FLOW <ul><li>Qs = VO 2 </li></ul><ul><ul><ul><li>CaoO 2 - CmvO 2 </li></ul></ul></ul><ul><li>Qp = VO 2 </li></ul><ul><ul><ul><li>CpvO 2 - CpaO 2 </li></ul></ul></ul>If there is no shunt Qp = Qs
  11. 11. SHUNT CALCULATIONS <ul><li>Qs = VO 2 </li></ul><ul><ul><ul><li>CaoO 2 - CmvO 2 </li></ul></ul></ul><ul><li>Qp = VO 2 </li></ul><ul><ul><ul><li>CpvO 2 - CpaO 2 </li></ul></ul></ul><ul><li>Qep = VO 2 </li></ul><ul><ul><ul><li>CpvO 2 - CmvO 2 </li></ul></ul></ul>
  12. 12. <ul><li>SIMPLE SHUNT </li></ul><ul><ul><li>Q l-r = Qp - Qs </li></ul></ul><ul><ul><li>Q r-l = Qs - Qp </li></ul></ul><ul><li>BIDIRECTIONAL SHUNT </li></ul><ul><ul><li>Q l-r = Qp - Qep </li></ul></ul><ul><ul><li>Q r-l = Qs - Qep </li></ul></ul>SHUNT CALCULATIONS
  13. 25. RESISTANCE TO FLOW <ul><li>Poiseuille equation </li></ul><ul><ul><ul><ul><ul><li>Q = ∆Pπr 4 1 = 8nl R </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><li>∆ P = pressure drop </li></ul></ul></ul></ul><ul><ul><ul><ul><li>r = radius Q = ∆P </li></ul></ul></ul></ul><ul><ul><ul><ul><li>n = viscosity R </li></ul></ul></ul></ul><ul><ul><ul><ul><li>l = length of tube </li></ul></ul></ul></ul>πr 4 8nl R = ∆P Q
  14. 26. RESISTANCE <ul><li>SVR = AO (MEAN) - RA (MEAN) </li></ul><ul><ul><ul><ul><ul><li>Qs </li></ul></ul></ul></ul></ul><ul><li>PVR = PA (MEAN) - LA (MEAN) </li></ul><ul><ul><ul><ul><ul><li>Qp </li></ul></ul></ul></ul></ul>
  15. 27. SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q X OXYGEN CONTENT SOT = Q X [(1.36 X Hgb X O 2 SAT) + (.003 X PO 2 )]
  16. 28. SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q X [(1.36 X Hgb X O 2 SAT) + (.003 X PO 2 )] Anemic Hypoxia:  Hgb SOT  Acute compensation  Q SOT  Chronic compensation  Hgb SOT 
  17. 29. SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q X [(1.36 X Hgb X O 2 SAT) + (.003 X PO 2 )] Hypoxic Hypoxia:  0 2 SAT SOT  Acute compensation  Q SOT  Chronic compensation  Hgb,  Q SOT 
  18. 30. SYSTEMIC OXYGEN TRANSPORT (SOT) SOT = Q X [(1.36 X Hgb X O 2 SAT) + (.003 X PO 2 )] Stagnant Hypoxia:  Q SOT  (Low Cardiac Output) Compensation  Hgb,  02 SAT SOT 
  19. 31. VSD M=6 M=8 80/6 80/40 M=60 80/50 M=65 70 70 85 80 80 95
  20. 32. VSD Room Air <ul><li>Hgb = 10.0 Vol% </li></ul><ul><li>V0 2 = 150 ml/min/m2 </li></ul><ul><li>Saturations </li></ul><ul><ul><li>Svc = 70 </li></ul></ul><ul><ul><li>Ra = 70 </li></ul></ul><ul><ul><li>Rv = 85 </li></ul></ul><ul><ul><li>Pa = 80 </li></ul></ul><ul><ul><li>Ao = 95 </li></ul></ul><ul><li>Pressures </li></ul><ul><ul><li>Ra = 6(mean) </li></ul></ul><ul><ul><li>Rv = 80/6 </li></ul></ul><ul><ul><li>Pa = 80/40 60(mean) </li></ul></ul><ul><ul><li>La = 8(mean) </li></ul></ul><ul><ul><li>Ao = 80/50 65(mean) </li></ul></ul>
  21. 33. VSD Room Air <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents = </li></ul><ul><ul><li>Ao =13.6*.95=12.9 </li></ul></ul><ul><ul><li>Mv = 13.6*.70=9.5 </li></ul></ul><ul><ul><li>Pa = 13.6*.80=10.9 </li></ul></ul><ul><ul><li>Pv = 13.6*.95=12.9 </li></ul></ul><ul><li>S(a-v)0 2 difference = 3.4 </li></ul><ul><li>P(a-v)0 2 difference = 2.0 </li></ul><ul><li>Qp = 150/2.0 </li></ul><ul><ul><li>= 7.5 l/min/m 2 </li></ul></ul><ul><li>Qs = 150/3.4 </li></ul><ul><ul><li>= 4.4 l/min/m 2 </li></ul></ul><ul><li>Ql-r = 7.5-4.4=3.1 </li></ul><ul><li>Qp/Qs = 7.5/4.4=1.7 </li></ul><ul><li>PVR =(60-8)/7.5 =6.9 </li></ul><ul><li>SVR =(65-6)/4.4=13.4 </li></ul>
  22. 34. VSD fI0 2 = 1.0 <ul><li>Hgb = 10.0 Vol% </li></ul><ul><li>V0 2 = 150 ml/min/m2 </li></ul><ul><li>Saturations </li></ul><ul><ul><li>Svc = 75 (45) </li></ul></ul><ul><ul><li>Ra = 80 </li></ul></ul><ul><ul><li>Rv = 94 </li></ul></ul><ul><ul><li>Pa = 95 (85) </li></ul></ul><ul><ul><li>Ao = 100 (600) </li></ul></ul><ul><li>Pressures </li></ul><ul><ul><li>Ra = 6(mean) </li></ul></ul><ul><ul><li>Rv = 80/6 </li></ul></ul><ul><ul><li>Pa = 80/40 60(mean) </li></ul></ul><ul><ul><li>La = 8(mean) </li></ul></ul><ul><ul><li>Ao = 80/50 65(mean) </li></ul></ul>
  23. 35. VSD fI0 2 = 1.0(PO2 not included) <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents = </li></ul><ul><ul><li>Ao =13.6*1.0=13.6 </li></ul></ul><ul><ul><li>Mv = 13.6*.75=10.2 </li></ul></ul><ul><ul><li>Pa = 13.6*.95=12.9 </li></ul></ul><ul><ul><li>Pv = 13.6*1.0=13.6 </li></ul></ul><ul><li>S(a-v)0 2 difference = 3.4 </li></ul><ul><li>P(a-v)0 2 difference = 0.7 </li></ul><ul><li>Qp = 150/0.7 </li></ul><ul><ul><li>= 21.4 l/min/m 2 </li></ul></ul><ul><li>Qs = 150/3.4 </li></ul><ul><ul><li>= 4.4 l/min/m 2 </li></ul></ul><ul><li>Ql-r = 21.4-4.4=17.0 </li></ul><ul><li>Qp/Qs =21.4/4.4=>4/1 </li></ul><ul><li>PVR =(60-8)/21.4 =2.4 </li></ul><ul><li>SVR =(65-6)/4.4=13.4 </li></ul>
  24. 36. VSD fI0 2 = 1.0(PO2 included) <ul><li>Capacity = 1.36*10 = 13.6 </li></ul><ul><li>Contents = </li></ul><ul><ul><li>Ao =13.6*1.0+1.8=15.4 </li></ul></ul><ul><ul><li>Mv = 13.6*.75+.15=10.4 </li></ul></ul><ul><ul><li>Pa = 13.6*.95+.25=13.2 </li></ul></ul><ul><ul><li>Pv = 13.6*1.0+1.8=15.4 </li></ul></ul><ul><li>S(a-v)0 2 difference = 5.0 </li></ul><ul><li>P(a-v)0 2 difference = 2.2 </li></ul><ul><li>Qp = 150/2.2 </li></ul><ul><ul><li>= 6.8 l/min/m 2 </li></ul></ul><ul><li>Qs = 150/5.0 </li></ul><ul><ul><li>= 3.0 l/min/m 2 </li></ul></ul><ul><li>Ql-r = 6.8-3.0=3.8 </li></ul><ul><li>Qp/Qs = 6.8/3.0=2.3 </li></ul><ul><li>PVR =(60-8)/6.8 =7.6 </li></ul><ul><li>SVR =(65-6)/3.0=20.0 </li></ul>
  25. 37. VSD <ul><li>P0 2 not included </li></ul><ul><li>Qp = 150/0.7 </li></ul><ul><ul><li>= 21.4 l/min/m 2 </li></ul></ul><ul><li>Qs = 150/3.4 </li></ul><ul><ul><li>= 4.4 l/min/m 2 </li></ul></ul><ul><li>Ql-r = 21.4-4.4=17.0 </li></ul><ul><li>Qp/Qs =21.4/4.4=>4/1 </li></ul><ul><li>PVR =(60-8)/21.4 =2.4 </li></ul><ul><li>SVR =(65-6)/4.4=13.4 </li></ul><ul><li>P0 2 included </li></ul><ul><li>Qp = 150/2.2 </li></ul><ul><ul><li>= 6.8 l/min/m 2 </li></ul></ul><ul><li>Qs = 150/5.0 </li></ul><ul><ul><li>= 3.0 l/min/m 2 </li></ul></ul><ul><li>Ql-r = 6.8-3.0=3.8 </li></ul><ul><li>Qp/Qs = 6.8/3.0=2.3 </li></ul><ul><li>PVR =(60-8)/6.8 =7.6 </li></ul><ul><li>SVR =(65-6)/3.0=20.0 </li></ul>
  26. 38. VALVE AREA CALCULATION
  27. 39. VALVE AREA CALCULATION
  28. 40. VALVE AREA CALCULATION
  29. 41. OXYGEN DISSOCIATION CURVE
  30. 42. OXYGEN DISSOCIATION CURVE
  31. 43. OXYGEN DISSOCIATION CURVE
  32. 44. PRESSURE-VOLUME LOOPS
  33. 45. P-V LOOPS
  34. 46. P-V LOOPS Pump Failure
  35. 47. P-V LOOPS Pump Failure
  36. 48. P-V LOOPS
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×