ANALYSIS OF HYDROLOGICAL EROSION RISK FOR THE ST. MARY BASIN, MONTANA, USA<br />Silvia Vittozzi<br />Master di 2° Livello ...
THE PURPOSE OF RESEARCH<br />IS TO ESTIMATE <br />THE MOST EXPOSED AREAS TO SOIL EROSION <br />IN THE UPPER ST. MARY BASIN...
WATERTON-GLACIER INTERNATIONAL PEACE PARK<br />Source: www.wikipedia.org<br />3<br />
Hydrology<br />Saskatchewan River watershed. Source:www.wikipedia.org<br />St. Mary River Km 200<br />Oldman River Km 362<...
THE SOIL<br />Isbasicforall life’s form.<br />Encloseselements: <br />biological<br />mineral<br />Is a naturalresource<br...
Soilerosionby water<br />RAINFALL  causesrills and sheeterosion<br />Fonte: Marco AcutisDiProVe, marco.acutis@unimi.it, ww...
SOIL LOSS CAUSED BY WATER<br />Depend on:<br />amount and intensity of rainfall and runoff.<br />land cover which reduce t...
DEM  resolution 10 m<br />Fonte : USGS<br />12/10/2009<br />8<br />
Mosaic of Natural-Color Aerial Photos, 2005These photos are in MrSID format and Montana State Plane coordinates, units met...
20 %<br />Subalpine fir Engelmann Spruce<br />15 % <br />Cliff/Talus Sparse Vegetation<br />16%<br />Dwarf-shrub/Herbaceou...
USLE<br />= UNIVERSAL SOIL LOSS EQUATION<br />Long terms (annual)<br />In a determinate area<br />In this case: Upper St. ...
USLE<br />Itwasconceived:<br />In USA <br />In 1978 <br />Wischmeier and Smith (USDA)<br />For the field. <br />Subsequent...
USLE<br />A = R * K * LS * C * P<br />A = potentialmeanannualsoil loss<br />R FACTOR = rainfallfactor<br />K FACTOR = soil...
12/10/2009<br />14<br />
12/10/2009<br />15<br />
THE USLE MAP<br />It show:<br />The Potentialerosion<br />The areaswhere rise RILL EROSION and SHEET EROSION <br />UNITA’ ...
Shape file ottenutodallaclassificazione del data set: Vegetation Map - Waterton-Glacier International Peace Park Vegetatio...
MEASURE UNITS<br />Conversion of USLE factor values to U.S. customary measure units. <br />Source: Wall et al, 2002.<br />...
DATA SOURCES ofrainfall data:<br />United States Mean Annual R-factor, <br />1971-2000 spatial grid<br /><ul><li>Unitàdimi...
Upcoming SlideShare
Loading in …5
×

Analysis Of Hydrological Erosion Risk

821 views
616 views

Published on

MSc thesis in GIS "ANALYSIS OF HYDROLOGICAL EROSION RISK FOR THE ST. MARY BASIN, MONTANA, USA"

Published in: Travel, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
821
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
22
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Analysis Of Hydrological Erosion Risk

  1. 1. ANALYSIS OF HYDROLOGICAL EROSION RISK FOR THE ST. MARY BASIN, MONTANA, USA<br />Silvia Vittozzi<br />Master di 2° Livello in <br />“GIS e telerilevamento per la pianificazione Geoambientale”<br />UNIVERSITA’ DEGLI STUDI DI ROMA “ROMA TRE”<br />30 Giugno, 2008<br />
  2. 2. THE PURPOSE OF RESEARCH<br />IS TO ESTIMATE <br />THE MOST EXPOSED AREAS TO SOIL EROSION <br />IN THE UPPER ST. MARY BASIN, MONTANA, USA<br />12/10/2009<br />2<br />
  3. 3. WATERTON-GLACIER INTERNATIONAL PEACE PARK<br />Source: www.wikipedia.org<br />3<br />
  4. 4. Hydrology<br />Saskatchewan River watershed. Source:www.wikipedia.org<br />St. Mary River Km 200<br />Oldman River Km 362<br />South Saskatchewan Km 1,392 kilometers<br />Upper Old Man River watershed; in the South of the map, the affluent St. Mary river. Source: www.uoguelph.ca<br />12/10/2009<br />4<br />
  5. 5. THE SOIL<br />Isbasicforall life’s form.<br />Encloseselements: <br />biological<br />mineral<br />Is a naturalresource<br />itneed long timetobecreated (geologicalages!)<br />Itneedtobeconserved<br />12/10/2009<br />5<br />
  6. 6. Soilerosionby water<br />RAINFALL causesrills and sheeterosion<br />Fonte: Marco AcutisDiProVe, marco.acutis@unimi.it, www.acutis.it<br />12/10/2009<br />6<br />
  7. 7. SOIL LOSS CAUSED BY WATER<br />Depend on:<br />amount and intensity of rainfall and runoff.<br />land cover which reduce the direct forces of rainfall<br />susceptibility to erosion (texture, composition,…)<br />topography of the landscape as described by slope length, steepness and shape.<br />Artificial conservation practices (terracing, canalizations) and land use.<br />THE GIS<br />IS A POWERFUL TOOL WHICH CAN MANAGE TOGETHER ALL THESE ELEMENTS <br />12/10/2009<br />7<br />
  8. 8. DEM resolution 10 m<br />Fonte : USGS<br />12/10/2009<br />8<br />
  9. 9. Mosaic of Natural-Color Aerial Photos, 2005These photos are in MrSID format and Montana State Plane coordinates, units meters, datum NAD83. Source: U.S. Farm Services Agency National Agricultural Imagery Program (NAIP).<br />12/10/2009<br />9<br />
  10. 10. 20 %<br />Subalpine fir Engelmann Spruce<br />15 % <br />Cliff/Talus Sparse Vegetation<br />16%<br />Dwarf-shrub/Herbaceous Complex Dry - Mesic<br />Source photos: USGS-NPS, 2007<br />12/10/2009<br />10<br />
  11. 11. USLE<br />= UNIVERSAL SOIL LOSS EQUATION<br />Long terms (annual)<br />In a determinate area<br />In this case: Upper St. Mary watersheed<br />A standard methodtomapthe potentialrisk and erodibilityofsoil<br />12/10/2009<br />11<br />
  12. 12. USLE<br />Itwasconceived:<br />In USA <br />In 1978 <br />Wischmeier and Smith (USDA)<br />For the field. <br />Subsequently was applied also at not only agricoltural areas<br />12/10/2009<br />12<br />
  13. 13. USLE<br />A = R * K * LS * C * P<br />A = potentialmeanannualsoil loss<br />R FACTOR = rainfallfactor<br />K FACTOR = soilerodibilityfactor<br />LS FACTOR = topographicfactor<br />C FACTOR = land cover factor<br />P FACTOR = conservationpractices (terracing)<br />12/10/2009<br />13<br />
  14. 14. 12/10/2009<br />14<br />
  15. 15. 12/10/2009<br />15<br />
  16. 16. THE USLE MAP<br />It show:<br />The Potentialerosion<br />The areaswhere rise RILL EROSION and SHEET EROSION <br />UNITA’ In English Units: tons /hectar/year<br />DATUM: NAD83<br />12/10/2009<br />16<br />
  17. 17. Shape file ottenutodallaclassificazione del data set: Vegetation Map - Waterton-Glacier International Peace Park Vegetation Mapping Project. USGS-NPS 1999 Glacier National Park- <br />12/10/2009<br />17<br />
  18. 18. MEASURE UNITS<br />Conversion of USLE factor values to U.S. customary measure units. <br />Source: Wall et al, 2002.<br />12/10/2009<br />18<br />
  19. 19. DATA SOURCES ofrainfall data:<br />United States Mean Annual R-factor, <br />1971-2000 spatial grid<br /><ul><li>Unitàdimisura : (100’s ft-tons in h-1 ac-1 yr-1) * 10
  20. 20. DATUM : WGS72
  21. 21. PRISM Group (Parameter-elevation Regressions on Independent Slopes Model) climate mapping </li></ul>12/10/2009<br />19<br />
  22. 22. DATA SOURCES soil<br />USDA State Soil Geographic (STATSGO) Data Base <br />for Montana<br /><ul><li>Coverage
  23. 23. NAD1927 </li></ul>12/10/2009<br />20<br />
  24. 24. LS FACTOR<br />LUNGHEZZA DEL VERSANTE (length)<br />È un indice espresso sulla base di una condizione standard di: <br />9 ° di pendenza e 22 m di lunghezza<br />= Distanza compresa tra il punto in cui si origina lo scorrimento ed il punto in cui si ha una deposizione di materiale trasportato, per una diminuzione della pendenza.<br />PENDENZA del versante (stepness)<br />è espressa in GRADI<br />Definition of slope length (Renard, et al. 1987)<br />12/10/2009<br />21<br />
  25. 25. Metodo Shulze (1995)<br />Formula per calcolare la lunghezza:<br />L =<br />where: <br />22.1 = misura standard dellalunghezza del versante<br />m = = esponenterelativo al rapportoerosionedaflusso e da rainfall<br />Where:<br />β = <br /> Where:<br />SD = slope in degree<br />ʎ = - 3.0S + 100 for S &lt; 25%<br />ʎ = 25 for S ≥ 25%<br /> where:<br /> S = slope gradient in percent<br />12/10/2009<br />22<br />
  26. 26. Metodo Shulze (1995)<br />ʎ = A <br />A = con (S ≥ 25,25,(5*(-3))+100)<br />β = B3<br />B3 = B1/B2<br />B1 = sin (SD div deg)<br />B2 = 0.0896(3*(pow(B1,0.8)) + 0.56)<br />m = M<br />M = B3/(1+B3)<br />L = pow(A/22.1,M) LENGTH<br />Formula per calcolare la lunghezza del versante: procedimento con rastercalculator:<br />12/10/2009<br />23<br />
  27. 27. Metodo Shulze (1995)<br />St = 10.8 sin (SD div deg) + 0.03 for S &lt; 9%<br />St = 16.8 sin (SD div deg) – 0.50 for S ≥ 9%<br />St = 3.0 [sin(SD div deg)]0.8 + 0.56 for slope lengths &lt; 5m<br />Con raster calculator:<br />S2 = con (SD &lt; 9,(10.8*B1) + 0.03,(16.8*B1) – 0.5)<br />S3 = con (L &lt; 5,(3*(pow(B1,0.8)) + 0.56,S2) STEEPNESS<br /> <br />Dopodichèsicalcolal’indice del fattoretopograficomoltiplicando la lunghezza per la pendenza del versante:<br />LS = S3 * L SL FACTOR<br />Formula per calcolare la pendenza del versante secondo queste condizioni:<br />12/10/2009<br />24<br />
  28. 28. DATA SOURCES Landuse<br />USGS-NPS 1999 Glacier National Park Vegetation Map - Waterton-Glacier International Peace Park Vegetation Mapping Project. Shape file, NAD 83 .<br />12/10/2009<br />25<br />
  29. 29. CANOPY<br /><ul><li> = Copertura vegetativa che non è in contatto col suolo
  30. 30. Altezza di caduta</li></ul>Percentuale di suolo ricoperto dalla canopy<br />12/10/2009<br />26<br />
  31. 31. 12/10/2009<br />27<br />
  32. 32. C-factor for permanent pasture and woodland <br />Source: Wischmeier and Smith, 1978.<br />12/10/2009<br />28<br />
  33. 33. C Factor <br />per territoriallostatonaturale e foreste<br />Source: Wischmeier and Smith, 1978.<br />12/10/2009<br />29<br />

×