Use of biopesticides

29,308 views
28,897 views

Published on

1 Comment
13 Likes
Statistics
Notes
  • very impressive and amazing presentation. i real Appreciate you.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
29,308
On SlideShare
0
From Embeds
0
Number of Embeds
17
Actions
Shares
0
Downloads
1,590
Comments
1
Likes
13
Embeds 0
No embeds

No notes for slide

Use of biopesticides

  1. 1. Use of Biopesticides for the Control of Insect Pests Dr. R.C.Sihag Professor Department of Zoology & Aquaculture, CCS Haryana Agricultural University, Hisar-125004, India
  2. 2. Table:1 History of Development of Pesticides PLANTS ONWARDS U. S. A.. BIO-PESTICIDES AND TRANSGENIC 1981 U. S. A. CHITIN INHIBITORS 1980-81 JAPAN SYNTHETIC PYRETHROIDS 1975-80 SWEEDEN TRIALS AGAINST DDT BEGINS 1970- 71 SPRING APPEARS U. S. A. RACHEL CARSON'S BOOK SILENT 1962 OP COMPOUNDS EUROPE, U. S. A. CYCLODIENES, CARBAMATES AND 1942-60 FRANCE, U. K. BHC- TOXIC PROPERTIES DISCOVERED 1941-42 DDT-TOXIC PROPERTIES DISCOVERED SWITZERLAND 1939-40 MODERN ERA FRANCE BOURDEAUX MIXTURE 1883 U.S.A. PARIS GREEN 1867 CAUCASUS PYRETHRINS 1800 EUROPE TOBACCO & SOAPS 1090 CHINA ARSENICALS 900 LOCATION CHEMICAL YEAR
  3. 3. Biopesticides <ul><li>Constitute the pest control agents of biological origin </li></ul><ul><li>Microbials: bacteria, fungi, viruses, protozoa </li></ul><ul><li>Pheromones/semiochemicals: message-bearing substances produced by plants and animals (interfere with mating or disrupt pest insect behaviour) </li></ul><ul><li>Invertebrate Biological Control Agents (macro organisms): parasitoids, predators and parasites </li></ul><ul><li>Botanical pesticides </li></ul><ul><li>Transgenic crops </li></ul>
  4. 4. Table:2 Agrochemicals Vs. Biologicals (Source : agriculture Today. Nov. 2005) Factors Agrochemicals Agri-biologicals Cost effectiveness Cheap but increased spraying cost Costlier but reduced number of applications Persistence and residual effect High Low, mostly Bio-degradable and self perpetuating Knockdown effect Immediate Delayed Handling and Bulkiness Easy but danger and Hazardous Bulky : Carrier based Easy : Liquid formulation Pest resurgence More Less Resistance More prone Less prone Effect on Beneficial flora At times destruction of friendly pest Less harmful on beneficial pests Target specificity Mostly broad spectrum Mostly host specific <ul><ul><li>Waiting time </li></ul></ul>Very high Almost nil Nature of control Curative Preventive Shelf life More Less
  5. 6. Microbial insecticides <ul><li>Consist of a microorganism as the active ingredient (e.g., bacterium, fungus, virus or protozoan) </li></ul><ul><li>About 3000 reported to cause diseases in insects </li></ul><ul><li>Viruses isolated from 1000 species of insects </li></ul><ul><li>More than 100 bacteria identified as pathogens </li></ul><ul><li>Over 800 fungal species belonging to 100 genera recognized </li></ul><ul><li>More than 100 protozoans identified as pathogens </li></ul>
  6. 8. Virus <ul><li>Set of one or more nucleic acid template molecules, normally encased in a protective coat or coats of protein or lipoprotein that is able to organize its own replication only within suitable host cells </li></ul>
  7. 9. Table:3 Characteristics of Viruses found in insects NPV Polyhedral Bacilliform Ds DNA Baculoviridae GV Cigar- shaped capsules - None Helical ss RNA Rabhdoviridae Cytoplasmic polyhedrosis Polyhedral Isometric Ds DNA Reoviridae Entomopox viruses Spheroid Ovoid or brick shaped Ds DNA Poxviridae - None Ovoid ssDNA Polydnaviridae - None Isometric ss RNA Picornaviridae - None Isometric ss DNA Parvoviridae - None Isometric ss RNA Nodaviridae Iridscent None Isometric ss DNA Iridoviridae - None Isometric ss RNA Calciviridae - None Allantoid Ds DNA Ascoviridae Subgroups and common names Inclusion body shape Virus particle Nucleic acid Virus
  8. 10. Baculoviruses <ul><li>Rod-shaped, double stranded DNA genomes of 88-153 kbp </li></ul><ul><li>Causes infection by mouth </li></ul><ul><li>Replicate rapidly & causes extensive cell and tissue destruction in host cell </li></ul><ul><li>Mostly found in nucleus of host cells </li></ul><ul><li>Virions are contained within proteinaceous particles called occlusion bodies </li></ul><ul><li>Can be mass produced by single cottage industries </li></ul><ul><li>Highly host specific and have been isolated only from invertebrates </li></ul><ul><li>Primarily pathogens of insects of order Lepidoptera but can also infect Hymenoptera, Diptera, Coleoptera and Trichoptera </li></ul>
  9. 11. <ul><li>Apprx. 60 percent of 1200 known insect viruses belongs to family baculoviridae </li></ul><ul><li>Baculovirus infection described in 700 species of invertebrates </li></ul>Species Order 1 Sphanoptera 1 Thysanoptera 1 Trichoptera 2 Neuroptera 5 Coleoptera 27 Diptera 31 Hymenoptera 455 Lepidoptera
  10. 12. Baculovirus NPV Many virions within occlusion body called polyhedra, occurs in nucleus GV One or two virions within occlusion body called granules, occurs in nuclear- cytoplasmic milieu after rupture of nuclear membrane SNPV Single packaging of nucleocapsid in virion MNPV multiple packaging of nucleocapsid in virion
  11. 13. Mode of Action
  12. 14. Table:4 Efficacy of Baculoviruses against insect pests Dhaliwal et al ., 2007 Effective control Spodoptera frugiperda 2.5 X 10 11 OB’s SfNPV Hu et al ., 2003 Effective control Helicoverpa armigera - SNPV Dhaliwal et al ., 2007 80.00 Anticarsia gemmatalis 50 LE/ha AgNPV Snegapriya and Manjula, 2008 90.60 Helicoverpa armigera 1 X 10 8 OB’s HaNPV Arora et al ., 2003 95.00 Spodoptera litura 375 LE/ha SINPV Dhaliwal et al ., 2007 90- 96 Helicoverpa zea 100-250 LE/ha HzNPV Reference Mortality (%) Pest Dose Virus
  13. 15. Genetic Improvement <ul><li>To combine pathogenecity of virus with insecticidal action of a toxin, hormone or enzyme </li></ul><ul><li>To improve production, modifying host range & enhancing utility </li></ul><ul><li>To reduce the time from infection with recombinant virus to death of infect such that feeding damage is below economic threshold </li></ul>
  14. 16. Recombinant DNA Technology Viral Genomic DNA Plasmid Cultured insect cells b A B a Foreign gene b a b Viral DNA Transfer vector Homologous recombination Allelic replacement Screening by Plaque assay selection of recombinant virus
  15. 17. Examples <ul><li>Buthus eupeus insect toxin- 1 (BeIt) is an insect specific paralytic neurotoxin isolated from scorpion Buthus eupeus, was inserted into AcMNPV ( Autographa californica multiple nuclear polyhedrosis virus) genome under control of polyhedrin gene promoter </li></ul><ul><li>Juvenile hormone esterase (JHE) gene from tobacco hornworm, Heliothis virescens genome into AcMNPV genome. In late instar lepidopterous larvae, juvenile hormone is inactivated by an increase in JHE level, this reduction in JH titers initiates metamorphosis to the pupal stage and to a cessation of feeding </li></ul>Kaushik, 2008
  16. 18. Field Stability and Persistence <ul><li>Highly susceptible to damage by desiccation and by exposure to sunlight or UV radiations </li></ul><ul><li>Additives like Charcoal, egg albumin, molasses, optical brighteners and sugar </li></ul><ul><li>Addition of crude sugar (15%) to HaNPV spray fluid increased persistence of virus both under natural sunlight and shade </li></ul><ul><li>Brighteners reduces the LC 50 of gypsy moth Lymantia dispar NPV by 800- 1300 fold </li></ul><ul><li>Evening spray </li></ul>
  17. 19. Baculoviruses are safe <ul><li>Only found in insects (mainly lepidopterean species) </li></ul><ul><li>Narrow host range, high selectivity </li></ul><ul><li>No production of metabolites or toxins </li></ul><ul><li>Baculoviruses are safe and cause no hazards to human health </li></ul>
  18. 20. Protozoans <ul><li>More than 1000 species pathogenic to insects </li></ul><ul><li>Chronic nature of infection so limited efficiency </li></ul><ul><li>Few are Highly virulent or fast acting so more appropriate for long term control programmes with high economic injury level </li></ul><ul><li>Sarcomastigophora, Apicomplexa, Microspora and Ciliophora </li></ul>
  19. 21. Table: 5 Protozoans considered for control of insect pests Vairimorpha necatrix N. spp. N. whitei N. pyrausta N. heliothidis N. fumifueranae N. algerae Nosema acridophagous, N. cuneatum, N. locustae Microsporidians Parasite Agrotis ipsilon, Helicoverpa zea Helicoverpa armigera, Spodoptera litura Tribolium castaneum Ostrinia nubialis Helicoverpa zea Spruce budworm Anopheles albimanus, Culex tritaeniorhynchus Grasshoppers Host
  20. 22. Contd…. Aedes aegypti Ascogregarina culicis, A. geniculati Schistocera gregaria Gregarina garnhani Tenebrio molitor G. polymorpha Aseptate gregarines Tribolium castaneum Farinocystis tribolii Trogoderma granarium Mattesia trogodermae Neogregarines Septate gregarines Host Parasite
  21. 24. Mode of Action <ul><li>Similar to that of viruses </li></ul><ul><li>N. spp. normally invade fat body and pericardium </li></ul><ul><li>Pathogenecity expression: Increased mortality rates, reduced fecundity, delayed development, decreased activity and reduced food consumption </li></ul><ul><li>Cytopathological effects: Nuclear and cellular hypertrophy, extensive alteration of cytoplasmic organelles like ER, Mitochondria, ribosome bodies, protein granules and vacuoles </li></ul>
  22. 25. Metarhizium anisopliae Beauveria bassiana infection of Clover Worm Beauveria bassiana infection of worm within woody substrate Fungi
  23. 26. Table:6 Entomopathogens used for the control of pests Whitefly Paecilomyces fumosoroseus PFR- 97, Pae- Sin Whitefly, aphids, thrips Beauveria bassiana Mycotrol WH and Botanigard Locusts, grasshoppers Beauveria bassiana Mycotrol GH Cotton pests Beauveria bassiana Naturalis- L European corn borer Beauveria bassiana Cornguard Coffee berry borer Beauveria bassiana Conidia Locusts, grasshoppers Metarhizium anisopliae Green Muscle Cane grubs Metarhizium anisopliae Bio-Cane Sugarcane spittle bug Metarhizium anisopliae Cobicant Termites Metarhizium anisopliae Bio-Blast Cockroaches Metarhizium anisopliae Bio-Path Locusts Metarhizium anisopliae Biogreen Termites Metarhizium anisopliae Meta guard, Whitefly, thrips and aphids Verticillium lecanii Mycotol, Vertalec Target Fungus Product
  24. 27. <ul><ul><li>Entomopathogenic fungi -in Insect Control </li></ul></ul>Tea Mites Rice bugs Helicoverpa Beauveria infected Helicoverpa Paecilomyces infected tea mites Metarhizium infected rice bugs The Pests which are difficult to control by Pesticides can be controlled by Biopesticides
  25. 29. Mode of action of Entomopathogenic fungi
  26. 30. Table: 7 Selected metabolites of important Entomopathogenic fungi Hirsutellin A, hirsutellin B, phomalatone Hirustella thompsonii Cyclosporin, efrapeptins (5 types) Tolypocladium spp. Dipcolonic acid, hydroxycarboxylic acid, vertilecannins, bassianolide Verticillium lecanii Beauvericin, beauverolies, pyridine-2,6-dicarboxylic acid Paecilomyces fumosoroseus Oosporein Beauveria brogniartii Bassianin, beauvericin, bassianolide, tenellin Beauveria bassiana Destruxins (>27 types), cytochalasin Metarhizium anisopliae Metabolite Pathogen
  27. 31. <ul><li>Destruxins : cyclic peptides, biological activity includes disruption of calcium balance in cells and inhibition of vacuolar ATPases </li></ul><ul><li>Beauvericin: hexadepsipeptide produced by Beauveria bassiana, Paecilomyces fumosoroseus and Fusarium spp. It shows antibiotic activity against several species of bacteria and moderate insecticidal activity </li></ul><ul><li>Bassianolide: Lethal at high doses but induce atonical symptoms at low doses in silkworm </li></ul><ul><li>Bassianin and Tenellin: non-peptide toxins inhibits erythrocyte membrane ATPases </li></ul><ul><li>Hirsutellin: Antigenic, thermostable protein. Hirsutellin A is highly toxic to larvae of wax moth and mosquitoes </li></ul><ul><li>Efrapeptins: produced by Tolypocladium spp., i nsecticidal and miticidal activity, limited antimicrobial activity </li></ul>
  28. 32. Factors influencing fungal efficacy <ul><li>The Pathogen </li></ul><ul><li>The Insect host </li></ul><ul><li>The Environment </li></ul>
  29. 33. The Pathogen <ul><li>Virulent strain must be compatible with the host </li></ul><ul><li>Spore density must be high </li></ul><ul><li>Virulent strain must have low LD 50 & LT 50 </li></ul><ul><li>Ecologically fit strains </li></ul><ul><li>persists well in field </li></ul><ul><li>more tolerant to UV radiation </li></ul><ul><li>resist desiccation, microbial attack </li></ul><ul><li>have sufficient endogenous reserves to survive adverse conditions </li></ul>
  30. 34. Insect host <ul><li>Stress </li></ul><ul><li>Starved Plutella xylostella larvae more susceptible than fed larvae to Paecilomyces fumosoroseus (Altre and Vandenberg, 2001) </li></ul><ul><li>Developmental stage </li></ul><ul><li>Insect density </li></ul><ul><li>Insect behaviour (foraging & grooming) </li></ul><ul><li>Conidia of M. anisopliae are spread among individual termites by grooming </li></ul><ul><li>Foraging coccinellids transfer conidia from sporulating cadavers to healthy aphids inducing significant mortalities in aphid population </li></ul>
  31. 35. Environment <ul><li>Solar radiations </li></ul><ul><li>Temperature </li></ul><ul><li>Relative humidity </li></ul><ul><li>Rainfall </li></ul><ul><li>Host plant </li></ul>
  32. 36. Table:8 Efficacy of Fungi against pests Manjula and krishnamurthy, 2005 53.40 Spodoptera litura 1 X 10 9 Manjula and krishnamurthy, 2005 70.00 Helicoverpa armigera 1 X 10 9 Snegapriya and Manjula, 2008 82.10 Helicoverpa armigera 1 X 10 8 Nomurea rileyi Gulati et al ., 2008 50.00 Pieris brassicae 1 X 10 9 Gulati et al ., 2008 100.00 Spodoptera litura 2 X 10 12 Gulati et al ., 2008 100.00 Helicoverpa armigera 2 X 10 12 Dhaliwal et al ., 2007 63- 98 Nilaparvata lugens 4 X 10 12 to 5 X 10 12 Beauveria bassiana Meikle et al ., 2006 75.00 Varroa destructor 1 X 10 7 Metarhizium anisopliae Meikle et al ., 2006 100.00 Varroa destructor 1 X 10 7 53.33 Holotrichia consanguinea 5 X 10 9 Jat and Choudhary, 2006 56.67 Holotrichia consanguinea 1 X 10 10 54.50 Otiorhynchus ovatus 1 X 10 8 60.35 Anthonomus signatus 1 X 10 8 Sabbahi et al ., 2008 77.47 Lygus lineeolaris 1 X 10 8 Beauveria bassiana Reference Mortality (%) Pests (Crop) Concentration (conidia/ ml) Fungus
  33. 37. Crystal Sporulated culture Bacillus thuringiensis (Bt) Bacteria
  34. 38. Insecticidal toxin of Bacillus thuringiensis <ul><li>B. thuringiensis is an aerobic spore-forming bacterium which produces a toxin (Bt toxin or Cry) that kills certain insects </li></ul><ul><li>The Bt toxin or Cry is produced when the bacteria sporulates and is present in the parasporal crystal </li></ul><ul><li>Several different strains and subspecies of B. thuringiensis exist and produce different toxins that kill specific insects </li></ul><ul><li>They have no toxicity to human & there is no withholding period on produce sprayed with Bt </li></ul>
  35. 40. Table:9 Some properties of the insecticidal toxins from various strains of B. thuringiensis CryIV (Cry4Ba) Diptera 68 kDa israelensis CryIV (Cry4Aa) Diptera 125-145 kDa morrisoni PG14 CryIII (Cry3Aa) Coleoptera 66-73 kDa tenebrionis (sd) CryII (Cry2Ab) Lepidoptera, Diptera 71 kDa kurstaki HD-1 CryII (Cry1Da) Lepidoptera, Diptera 135 kDa aizawai IC 1 CryI (Cry1Ca) Lepidoptera 130-140 kDa aizawai 7.29 CryI (Cry1Ba) Lepidoptera 130-140 kDa entomocidus 6.01 CryI (Cry1Ab) Lepidoptera 130-140 kDa kurstaki KTP, HD1 CryI (Cry1Aa) Lepidoptera 130-140 kDa berliner Cry # Target Insects Protein size Strain/subsp.
  36. 41. Cry protein: mode of action <ul><li>The Cry protein is made as an inactive protoxin </li></ul><ul><li>Conversion of the protoxin (e.g., 130 kDa) into the active toxin (e.g., 68 kDa) requires the combination of a slightly alkaline pH (7.5-8) and the action of a specific protease(s) found in the insect gut </li></ul><ul><li>The active toxin binds to protein receptors on the insect gut epithelial cell membrane </li></ul><ul><li>The toxin forms an ion channel between the cell cytoplasm and the external environment, leading to loss of cellular ATP and insect death </li></ul>
  37. 44. Table:10 Bt based commercially available pesticides Bt var. thuringenesis Bt var. sandiego Bt var. kurstaki Bt var. israelensis Bt var. galleriae Bt var. aizurai Bt strain Flies, Lepidopterous larvae Muscabac, Thuricide Beetles and weevils Diterra, M- one plus Lepidopterous larvae Bt, Biobit, Dipel, Delfin, Javelin Larvae of mosqitoes and balckflies Bactimos, Bactis, Thurimos, Vectobac Wax moth larvae in honey combs Certan Diamondback moth Florback, Centari Uses Trade name
  38. 46. Mechanism of Resistance <ul><li>Lower level of toxin activation </li></ul><ul><li>Bt resistant strain of Plodia interpunctella displayed slower processing and activation of Cry 1 protoxins </li></ul><ul><li>Heliothis virescens exhibited slow activation as well as faster degradation of toxin by midgut extracts </li></ul><ul><li>Reduced binding to midgut membrane </li></ul><ul><li>P. interpunctella was found to highly resistant to Cry 1Aa, Cry 1Ab and Cry 1Ac but not to Cry 1B, Cry 1C and Cry 1D. </li></ul>
  39. 47. How to prevent it? <ul><li>Production of hybrid Bt toxins </li></ul><ul><li>Stacking of Bt toxin genes </li></ul><ul><li>Use of Bt toxins in combination with other insecticidal proteins such as chitinase and Cyt1A </li></ul><ul><li>In plants, the planting of crop buffer zones with non-genetically engineered Bt plants to maintain an insect susceptible population </li></ul>
  40. 48. Bt and Human Health Risks <ul><li>The toxicology pathway </li></ul><ul><li>– Hazard is ubiquitous </li></ul><ul><li>– Exposure (contact) is not unusual </li></ul><ul><li>– Doses are low (below threshold for response ) </li></ul><ul><li>Results of mammalian, human studies </li></ul><ul><li>– No effects at doses > 5,000 mg/kg Cry proteins </li></ul><ul><li>Contrast with other insecticides </li></ul><ul><li>– Response follows the dose </li></ul>
  41. 50. Registered Microbial Active Ingredients <ul><li>Agrobacterium radiobacter </li></ul><ul><li>Bacillus thuringiensis subsp. </li></ul><ul><li>kurstaki </li></ul><ul><li>Bacillus thuringiensis subsp. </li></ul><ul><li>Israelensis </li></ul><ul><li>Bacillus thuringiensis subsp. </li></ul><ul><li>tenebrionis </li></ul><ul><li>Colletotrichum gloeosporioides </li></ul><ul><li>f.sp. malvae </li></ul><ul><li>Cydia pomonella Granulovirus </li></ul><ul><li>Chondrostereum purpureum </li></ul><ul><li>Strain HQ1 </li></ul><ul><li>Gypsy Moth </li></ul><ul><li>Nucleopolyhedrovirus (NPV) </li></ul><ul><li>Red-Headed Sawfly NPV </li></ul><ul><li>HaNPV </li></ul><ul><li>Pseudozyma flocculosa </li></ul><ul><li>Streptomyces griseoviridis </li></ul><ul><li>Strain K61 </li></ul><ul><li>Ophiostoma piliferum (pending) </li></ul><ul><li>Beauveria bassiana </li></ul><ul><li>Metarhizium anisoplia </li></ul><ul><li>Verticillium lecanii </li></ul><ul><li>Nomurea rileyi </li></ul>
  42. 51. Safety testing of microbials <ul><li>Necessary to know what are the hazards </li></ul><ul><li>infection of man, livestock, useful animals and plants </li></ul><ul><li>Poisoning, allergy, carcinogenesis by toxins </li></ul><ul><li>Routes of hazards </li></ul><ul><li>oral (by food) </li></ul><ul><li>Respiration </li></ul><ul><li>Parenterel in wounds </li></ul><ul><li>Dermal (through skin) </li></ul><ul><li>Might occur during production, packaging and storage of pathogens, application to crops, operations during post- harvest crop storage, consumption of treated crop & by environmental pollution </li></ul>
  43. 52. <ul><li>3- tier testing </li></ul><ul><li>Tier I : Includes acute oral, inhalation, intraperitoneal, dermal and ocular application plus allergenicity tests and mutagenecity screens </li></ul><ul><li>Tier II: Quantification of the effects and expanded mutagenecity tests </li></ul><ul><li>Tier III: Tetratogenecity and long term tests </li></ul><ul><li>Microbials are non-toxic to man and vertebrates because digestion of proteins is at low ph. Stomach enzyme pepsin (ph=2) degrades the endotoxin into atoxic compound </li></ul>
  44. 53. Table:11 Summary of desirable characteristics required by microbial pesticides Poor Poor Yes Yes Easy to produce Yes Yes Yes Yes Safe to non target organisms Poor Poor Poor Poor Environmental stability Poor Good Poor Good Storage Characteristics Yes Yes Yes Yes Easy to apply Poor Poor Poor Good Time to kill Protozoa Viruses Fungi Bacteria Characteristic
  45. 54. Botanicals Allium cepa Chrysanthemum sp. Annona squamosa Tagetes erecta Ricinus communis Ipomoea fistulosa
  46. 55. <ul><li>Pesticides derived from plants </li></ul><ul><li>Generally act in one of two ways: </li></ul><ul><li>contact poison </li></ul><ul><li>stomach poison </li></ul><ul><li>About 2,50,000 plant species evaluated </li></ul><ul><li>2121 useful in pest management </li></ul><ul><li>1005 exhibited insecticidal activity </li></ul><ul><li>384 antifeedants </li></ul><ul><li>297 repellents </li></ul><ul><li>27 attractants </li></ul><ul><li>31 growth inhibiting properties </li></ul>Purohit and Vyas, 2004
  47. 56. Table:12 Characteristics of major traditional botanicals Ryania Sabadilla Rotenone Pyrethrins Botanical insecticide Wood stems of Ryania speciosa Seeds of tropical lily Schoenocaulon officinale and european Veratrum album Roots of Derris, Lonchocarpus, other tropical legumes Flowers of pyrethrum daisy, Tanacetum (Chrysanthemum) cinerariaefolium Source plant (s) In fields &fruit crops against caterpilllars &thrips. Often combine with rotenone & pyrethrins in commercial mixtures for garden use Oral LD 50 near 1000 Dermal near 4000 Activate Ca++ ion release channels and causes paralysis in muscles of insects and vertebrates In vegetables and fruits against bugs and citrus thrips. Breaks down rapidly Oral LD 50 near 4000 Interferes with Na & k ion movement in nerve axons. Irritates skin and mucous membranes, potent inducer of sneezing In gardens& orchards against many insects especially beetles. Persists effectively for 4-5 days or more. Use as a fish poison Oral LD 50 =25-3000 Dermal>1000 Disrupts energy metabolism in mitochondria On pests and humans to control fleas, ticks , lice Breaks down rapidly Mammalian oral LD 50 >1000, some allergic reactions can occur Interferes with Na & k ion movement in nerve axons Uses Toxicity Mode of action
  48. 57. Source: Weinzierl (2000) Mostly in pet shampoos, dip & sprays to kill fleas & ticks. Very short persistence on treated plants Limonene oral LD 50 >5000Dermal>3500 Causes spontaneous stimulation of sensory nerves, biochemical mode of action Citrus oils Limonene/ Linalool Use medicinally in humans. On many crops & landscape plants especially against soft bodied& secondary pests. Very short persistence on treated plants Oral LD 50 > 13000 Biochemical nature of feeding deterrence, repellance, growth regulation effects are not well described Leaves, bark, seeds of neem ( Azadirachta indica ) & chinaberry ( Melia azedarach ) Neem Mostly in greenhouses & gardens. Nicotine fumigations target aphids, thrips &mites Oral LD 50 = 3-188 Dermal near 50 Very toxic to humans Mimics acetylcholine & overstimulates receptor cells to cause convulsions & paralysis Tobacco, Nicotiana sp., Duboisia, Anabasis, Asclepis, Equistem, Lycopodium Nicotine
  49. 58. Mode of action of Botanicals <ul><li>Ovipositional deterrent </li></ul><ul><li>affects the egg laying and egg hatching </li></ul><ul><li>may be due to strong odour of product or presence of substance which causes malfunctioning of ovariole in females. eg. Pongamia pinnata , Annona squamosa </li></ul><ul><li>Ovicidal </li></ul><ul><li>kill eggs and disrupts embryonic development so prevents hatching of eggs. Eg. Annona squamosa, Parthenium sp. </li></ul><ul><li>Attractants eg. </li></ul><ul><li>Repellents eg. Fennel ( Foeniculum vulgare ), Eucalyptus globulus, Moringa oleifera, Allium cepa, Mentha </li></ul><ul><li>Feeding deterrents/ Antifeedants </li></ul><ul><li>Gustatory substances which causes the pest to stop feeding and starve to death or causes cessation of feeding. Eg. Melia azedarach, Neem, Garlic, Datura </li></ul>
  50. 59. Contd…. <ul><li>Antigonadal agents </li></ul><ul><li>Vapours of oil of Acorus calamus reported to inhibit the development of ovaries of a no. of stored grain pests </li></ul><ul><li>In male insects it showed sperm malformation and agglutination </li></ul><ul><li>Insect growth regulators eg. Lantana sp., Pongamia pinnata </li></ul><ul><li>Physiological effects </li></ul><ul><li>slow necrosis of mid gut epithelial cells </li></ul><ul><li>reduction in size and no. of cells </li></ul><ul><li>Malformation of circular and longitudinal muscles or welling of organelles when taken as stomach poison </li></ul><ul><li>Neurotoxin </li></ul>
  51. 60. Which type of plants should we use? <ul><li>The plant should be a perennial </li></ul><ul><li>It should have a wide distribution & be present in large numbers in nature otherwise it should be possible to grow it by agricultural practices. </li></ul><ul><li>The plant parts used should be removable: leaves, flowers or fruit </li></ul><ul><li>Harvesting should not mean destruction of the plant </li></ul><ul><li>Plants should require small space, reduced management, little water and fertilization </li></ul><ul><li>Plant should not otherwise have a high economic value </li></ul><ul><li>The active ingredient should be effective at low rates </li></ul>
  52. 61. Table:13 Important plants with pesticidal activity Jatrophin, curcusone, jatrophol Leaves, seed, seed cake, oil Jatropha curcas Jatropha Murraxonin, murrayanone Leaves and bark Murraya koenigii Murraya Ipomomin, isoergin, ergine, ipalbdinium Leaves, flowers and whole plant Ipomoea fistulosa Ipomoea Trans- decalin, clerodin Leaves Clerodenderon indicum Clerodenderon Moringyne Leaves, flowers Moringa olefifera Moringa Camphene, limonene, linalool, α - terpienol Leaf and oil Eucalyptus globulus Eucalyptus Pongamol, Pongapin, pongone, karanjanin Leaves, fruits, seeds, oil roots and flowers Pongamia glabra Pongam Annonin, squamocin Leaves and bark Annona squamosa Custard apple Active principle Plant parts used Scientific name Common name
  53. 62. Oleic acid, cepocode- D, α and β tocopherols Bulb Allium cepa Onion Juvocimene- I, II, ocimin Leaves, stems, whole plants, oil Ocimum sanctum, O. basilicium Ocimum Menthole, limonene, menthone Leaves, flowers, whole plant, oil Mentha spicata Mint Calatropin, calatoxin Leaves, roots Calotropis gigantea Calotopis Aloesin, aloin Leaves, rhizomes Aloe vera Indian Aloe Lantonolic acid, lantic acid Leaves, whole plant Lantana camera Lantana Calamol, α asarone, β asarone Rhizomes Acorus calamus Sweet flag Nicotine, nornicotine, anabasine Leaves, whole plant Nicotiana tabacum Tobacco Atropine, hyoscyamine Leaves, fruits, dried seeds, roots Datura strmonium Datura Active principle Plant parts used Scientific name Common name
  54. 63. Source: Dodia et al. (2008) Ricin, ricinnie Leaves and oil Ricinus communis Castor Ailanthone Leaves Ailanthus excelsa Ardusa Juliprosopine, prosopidione, juliflorinine Leaves and seeds Prosopis julifora Khejiri Gingerols, arcurcumene Rhizomes Zingiber officinali Ginger Curcumol, curcumin Rhizomes Curcuma longa Turmeric Cymbopogon, Cymbopogonal Leaves and roots Cymbopogon marginatus Lemon grass Mycene, tagetone. allopatulein Leaves, flowers, roots Tegetes erecta Marigold Capsacin Leaves and fruits Capsicum annum Chilli Allicin, diallyl sulphide Leaves, flowers, whole plant, bulbs Allium sativum Garlic Active principle Plant parts used Scientific name Common name
  55. 64. Pest resistance to phytochemicals <ul><li>Neem tree itself is attacked by about 60 species of insects besides mites, nematodes and 16 phytopathogens like Aonidiella orientalis, Pulvinaria maxima etc </li></ul><ul><li>Some resistance to pyrethrins has been reported among a few agricultural pests, particularly those with resistance to organochlorines, orgaophosphates and carbamates </li></ul>
  56. 65. Table:14 Efficacy of botanicals against non insect pests Singh and Sumbali, 2007 Penicillium expansum rot on apples Antifungal activity Onion, Ginger, Tulsi, Lantana Tetarwal and Rai, 2007 Alternaria of Senna Antifungal activity Garlic, Neem, Onion, Datura, Tulsi, Mint Sharma and Gupta, 2003 Root rot & web blight of french bean Inhibits mycelial growth Ethanol extract of garlic bulb Chattopadhay et al ., 2005 Mustard white rust powdery mildew, Club rot of sarson Fungicidal activity Garlic bulb extract Krishnappa et al ., 2005 Paddy diseases Fungicidal activity Gehlot, 2005 Die back of chilli Inhibits mycelial growth Satish et al ., 2002 Aspergilllus flavus Inhibits mycelial growth Leaf extract of Datura Reference Against Disease/ organism Activity of material Plant material
  57. 66. Eguaras et al ., 2005 Varroa destructor Rotenone Monika et al ., 2009 Tetranychus urticae Acaricidal activity Pongamia pinnata seed extract Refaat et al. (2002 Tetranychus urticae repellent, toxic and ovipositional deterrent Ocimum basilicum, Lavandula officinalis Fuselli et al ., 2006 Paenibacillus larvae Antibacterial activity Essential oils of aguaribay, anden thyme. Pepeeine, camoline and pennyroyal Raju et al ., 2007 Soft rot of radish Antibacterial activity Garlic, Amaltas, Anola, Castor, Peepal, Marigold, Jatropha, Jamun, Thirumalaisang and Rathi, 2007 Black gram leaf crinkle virus Antibacterial activity Onion, Neem, Turmeric, Ginger Patel, 1999 Cowpea aphid born mosaic virus - Onion, Garlic, Tulsi, Lantana Patel, 1999 Cowpea aphid born mosaic virus - Jatropha extract Reference Against Disease/ organism Activity of material Plant material
  58. 68. Some medicinal plants <ul><li>Alangium salvifolium (L.f.) Wang. </li></ul><ul><li>Local name: Ooduga chettu </li></ul><ul><li>Medicinal uses: fruits are used as antiometic </li></ul><ul><li>Annona squamosa Linn. </li></ul><ul><li>Local name: Sethafalam </li></ul><ul><li>Medicinal uses: leaf paste is applied over joints to get relief from pain and 5 grams of seed powder along with milk taken against gastric colic </li></ul><ul><li>Azadirachta indica A.Juss. </li></ul><ul><li>Local name: Neem </li></ul><ul><li>Medicinal Uses: leaf smoke is used for the control of mosquitoes and leaf paste is used to cure skin diseases. </li></ul><ul><li>Ailanthus excelsa Roxb. </li></ul><ul><li>Local name: Pedda vepa </li></ul><ul><li>Medicinal uses: bark and leaf smoke is used for control of mosquitoes </li></ul>
  59. 69. <ul><li>Balanites aegyptiaca (L.) Del. </li></ul><ul><li>Local name: Gare </li></ul><ul><li>Medicinal uses: small twigs are kept in the ventilators to avoid the entry of microbes. Dried leaf smoke is used to control the houseflies inside the home. Fruit pulp is taken orally to control the loose motions. </li></ul><ul><li>Bambusa arundinacea (Retz.) Willd. </li></ul><ul><li>Local name: Veduru </li></ul><ul><li>Medicinal uses: stem stripes are used to bind the fractured bones . </li></ul><ul><li>Calotropis procera (Ait.) Aitf. </li></ul><ul><li>Local name: jelladu </li></ul><ul><li>Medicinal uses: leaves are pounded with caster oil and banded over knee joints to get relief from joint pain </li></ul><ul><li>Eucalyptus globulus </li></ul><ul><li>Local name: Safeda </li></ul><ul><li>Medicinal uses: Externally for athlete’s foot disease, dandruff, inhalation for asthma </li></ul><ul><li>Ginkgo biloba </li></ul><ul><li>Local name: ginkgo </li></ul><ul><li>Medicinal uses: Relieves asthma, treat cerebral disorders </li></ul><ul><li>Vitex negundo </li></ul><ul><li>Local name: Vavili </li></ul><ul><li>Medicinal uses: Malaria, poisonous bites, leukemia, reduce blood pressure </li></ul>
  60. 70. Advantages of Biopesticides <ul><li>Difficult for insects to develop resistance to these pesticides </li></ul><ul><li>Safe to natural enemies and higher organisms </li></ul><ul><li>Biodegradable : Rapid degradation of the active ingredient make it more acceptable. In cotton residues of Azadirachtin dissipated within 12 hr when applied @ 20 & 40 ppm concentrations (Indumathi, 2002) </li></ul><ul><li>Cheaper, renewable, can be handled safely </li></ul><ul><li>Often have other uses like household insect repellents or are plants with medicinal properties </li></ul><ul><li>Most are compatible with insecticides and microbial agents </li></ul><ul><li>There is great demand for residue free cotton garments, fruits, vegetables and beverages, large scale utilization of botanical pesticides will certainly help us in meeting international standards of quality and safety in these products </li></ul>
  61. 71. Disadvantages of Biopesticides <ul><li>Slow effect </li></ul><ul><li>Lack persistence and wide spectrum activity </li></ul><ul><li>Rapidly degraded by UV light so residual action is slow. Half lives of pyrethrins on tomato and bell pepper fruits were 2 hrs or less (Antonious, 2004) </li></ul><ul><li>Effective dose is higher i. e. 30 ml/10L especially in neem </li></ul><ul><li>Seasonal availability of plant products indicates the need for their storage </li></ul><ul><li>Not easily available everywhere </li></ul><ul><li>Poor water solubility and are generally not systemic in nature </li></ul><ul><li>All products applied followed by growers have not been scientifically verified </li></ul>
  62. 72. <ul><li>Inherently less harmful than conventional pesticides </li></ul><ul><li>Suppress, rather than eliminate, a pest population, so leaves the vulnerable population to natural enemies </li></ul><ul><li>Effective and often quickly biodegradable and present no residue problems </li></ul><ul><li>Mostly self perpetuating </li></ul><ul><li>Safe for non target organisms and human </li></ul>Conclusion
  63. 73. Future prospective <ul><li>Ecological studies on dynamics of diseases in insect populations are necessary </li></ul><ul><li>Efforts should be made to minimize the loss of infectivity of certain pathogens due to photoinactiavtion </li></ul><ul><li>Extension work needs to be geared up among the farming community to make them aware about the use and benefits of biopesticides </li></ul><ul><li>Biotechnological approaches could be useful for obtaining bioactive products on large scale </li></ul>
  64. 74. Thank you!

×