Your SlideShare is downloading. ×
ECMB12 Signia Project Presentation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

ECMB12 Signia Project Presentation

379

Published on

Helping A Gym to use Data Collected about its clients & staff to …

Helping A Gym to use Data Collected about its clients & staff to
Improve Performance & Grow its Business

If you have any questions feel free to contact us via twitter @askSignia or email us info@signia.ca

Published in: Self Improvement
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
379
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Signia  Analy*cs  Inc.   info@signia.ca  
  • 2. Engage Your Best Customers grow sales by making better decisions for your business Know your best customers Identify which products or services are vital check-in Recognize new opportunities and trends Grow sales by rewarding your customersreward scan best customer analytics
  • 3. Signia  Analy*cs  Inc.   info@signia.ca  
  • 4. THE  CHALLENGE   Imagina*on  &  Crea*vity   in  Data  Science   •  Use  our  data  (~2  yrs  of   data  from  fitness  gym)   •  Take  it  to  the  next  level     •  Do  not  repeat  what  we   have  already  done  
  • 5. EXAMPLE  OF  TYPES  OF  ANALYSIS  •  Segmenta*on  of  Customers   –  Determine  if  there  are  segments  (or  groups)  of  customers   who  behave  similarly  or  different.   –  What  criteria  can  determine  if  a  customer  belongs  to  a   certain  segment.    For  example,  is  a  par*cular  customer  a   fan/evangelist  or  just  a  regular  customer.  •  Time-­‐series  analysis:  Analyze  paWerns  in  the  data  on  a   weekly  v.s.  monthly  basis    •  Average  Life-­‐cycle  of  client  •  Life-­‐*me  Value  of  a  Customer  (may  need  to  make  some   assump*ons  on  the  value  of  different  services)  •  Predic*ve  Analysis:  Hypothesis  tes*ng  (or  other   methods)  to  determine  how  a  customer  might  behave   based  on  the  first  few  data  points.  
  • 6. JUDGING  CRITERIA  •  Clear  descrip*on  of  business  ques*on  you’re   trying  to  answer  for  business  owner/manager  •  Descrip*on  of  solu*on  and  sta*s*cal  methods   used  to  analyze  the  ques*on  •  How  well  do  you  account  for  variances  in  the  data  •  Clearly  document  and  explain  any  assump*ons.  •  Presenta*on  •  Imagina*on  &  Crea*vity  •  BONUS:  What  new  data,  if  made  available,  could   help  to  answer  addi*onal  business  ques*ons.  
  • 7. TIMELINE  •  Kick-­‐off  &  Project  Proposal  •  Q&A  –  mid-­‐november  •  Project  Due  •  Presenta*on  
  • 8. Signia  Analy*cs  Inc.   info@signia.ca  

×