• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
ECMB12 Signia Project Presentation
 

ECMB12 Signia Project Presentation

on

  • 683 views

Helping A Gym to use Data Collected about its clients & staff to ...

Helping A Gym to use Data Collected about its clients & staff to
Improve Performance & Grow its Business

If you have any questions feel free to contact us via twitter @askSignia or email us info@signia.ca

Statistics

Views

Total Views
683
Views on SlideShare
683
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    ECMB12 Signia Project Presentation ECMB12 Signia Project Presentation Presentation Transcript

    • Signia  Analy*cs  Inc.   info@signia.ca  
    • Engage Your Best Customers grow sales by making better decisions for your business Know your best customers Identify which products or services are vital check-in Recognize new opportunities and trends Grow sales by rewarding your customersreward scan best customer analytics
    • Signia  Analy*cs  Inc.   info@signia.ca  
    • THE  CHALLENGE   Imagina*on  &  Crea*vity   in  Data  Science   •  Use  our  data  (~2  yrs  of   data  from  fitness  gym)   •  Take  it  to  the  next  level     •  Do  not  repeat  what  we   have  already  done  
    • EXAMPLE  OF  TYPES  OF  ANALYSIS  •  Segmenta*on  of  Customers   –  Determine  if  there  are  segments  (or  groups)  of  customers   who  behave  similarly  or  different.   –  What  criteria  can  determine  if  a  customer  belongs  to  a   certain  segment.    For  example,  is  a  par*cular  customer  a   fan/evangelist  or  just  a  regular  customer.  •  Time-­‐series  analysis:  Analyze  paWerns  in  the  data  on  a   weekly  v.s.  monthly  basis    •  Average  Life-­‐cycle  of  client  •  Life-­‐*me  Value  of  a  Customer  (may  need  to  make  some   assump*ons  on  the  value  of  different  services)  •  Predic*ve  Analysis:  Hypothesis  tes*ng  (or  other   methods)  to  determine  how  a  customer  might  behave   based  on  the  first  few  data  points.  
    • JUDGING  CRITERIA  •  Clear  descrip*on  of  business  ques*on  you’re   trying  to  answer  for  business  owner/manager  •  Descrip*on  of  solu*on  and  sta*s*cal  methods   used  to  analyze  the  ques*on  •  How  well  do  you  account  for  variances  in  the  data  •  Clearly  document  and  explain  any  assump*ons.  •  Presenta*on  •  Imagina*on  &  Crea*vity  •  BONUS:  What  new  data,  if  made  available,  could   help  to  answer  addi*onal  business  ques*ons.  
    • TIMELINE  •  Kick-­‐off  &  Project  Proposal  •  Q&A  –  mid-­‐november  •  Project  Due  •  Presenta*on  
    • Signia  Analy*cs  Inc.   info@signia.ca