• Save
ECMB12 Signia Project Presentation
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

ECMB12 Signia Project Presentation

on

  • 756 views

Helping A Gym to use Data Collected about its clients & staff to ...

Helping A Gym to use Data Collected about its clients & staff to
Improve Performance & Grow its Business

If you have any questions feel free to contact us via twitter @askSignia or email us info@signia.ca

Statistics

Views

Total Views
756
Views on SlideShare
756
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

ECMB12 Signia Project Presentation Presentation Transcript

  • 1. Signia  Analy*cs  Inc.   info@signia.ca  
  • 2. Engage Your Best Customers grow sales by making better decisions for your business Know your best customers Identify which products or services are vital check-in Recognize new opportunities and trends Grow sales by rewarding your customersreward scan best customer analytics
  • 3. Signia  Analy*cs  Inc.   info@signia.ca  
  • 4. THE  CHALLENGE   Imagina*on  &  Crea*vity   in  Data  Science   •  Use  our  data  (~2  yrs  of   data  from  fitness  gym)   •  Take  it  to  the  next  level     •  Do  not  repeat  what  we   have  already  done  
  • 5. EXAMPLE  OF  TYPES  OF  ANALYSIS  •  Segmenta*on  of  Customers   –  Determine  if  there  are  segments  (or  groups)  of  customers   who  behave  similarly  or  different.   –  What  criteria  can  determine  if  a  customer  belongs  to  a   certain  segment.    For  example,  is  a  par*cular  customer  a   fan/evangelist  or  just  a  regular  customer.  •  Time-­‐series  analysis:  Analyze  paWerns  in  the  data  on  a   weekly  v.s.  monthly  basis    •  Average  Life-­‐cycle  of  client  •  Life-­‐*me  Value  of  a  Customer  (may  need  to  make  some   assump*ons  on  the  value  of  different  services)  •  Predic*ve  Analysis:  Hypothesis  tes*ng  (or  other   methods)  to  determine  how  a  customer  might  behave   based  on  the  first  few  data  points.  
  • 6. JUDGING  CRITERIA  •  Clear  descrip*on  of  business  ques*on  you’re   trying  to  answer  for  business  owner/manager  •  Descrip*on  of  solu*on  and  sta*s*cal  methods   used  to  analyze  the  ques*on  •  How  well  do  you  account  for  variances  in  the  data  •  Clearly  document  and  explain  any  assump*ons.  •  Presenta*on  •  Imagina*on  &  Crea*vity  •  BONUS:  What  new  data,  if  made  available,  could   help  to  answer  addi*onal  business  ques*ons.  
  • 7. TIMELINE  •  Kick-­‐off  &  Project  Proposal  •  Q&A  –  mid-­‐november  •  Project  Due  •  Presenta*on  
  • 8. Signia  Analy*cs  Inc.   info@signia.ca