IT in the News: Group 7    RFID Technology  Sean Maloney, Joel Peterson,   Andy Pierce, Ashley Ross,       and Mike Wheeler
RFID OverviewRFID = Radio frequencyidentificationWireless, radiotransmission of serialnumbers and other dataData is read b...
Passive vs. Active TagsPassive tags:               Active tags:   Powered only by the        Use internal batteries    r...
Cost IssuesCan be cost prohibitive because theyinitially cost about $1 per active RFID tag.The cost has now dropped to 20 ...
Real-time DataHaving data availablein real-time hasrevolutionized thesupply chain andcommunicatesinformation muchmorequick...
Real-time DataNow, when a supplierships a pallet of goodsout to a buyer, the tagson the cases and palletare scanned and th...
Real-time DataOnce the buyerreceives the goodsthey scan them whichautomatically addsthose good to theirinventory and notif...
Supply Chain Push vs. PullIt used to be that companies wouldmanufacture goods based on salesforecasts and push the goods o...
RFID HistoryThe first passive RFIDsystem was discovered bythe Germans during WorldWar II when they learnedhow to alter rad...
RFID HistoryIn the 1980s the RFIDsystem becamecommercialized withautomated toll readersOther advances lead toUHF radio wav...
RFID HistoryEven as use and interest was improving,there were still major price hurdles toovercome.Realizing that they wou...
RFID HistoryAuto-ID Center professors David Brock and SanjaySarma changed RFID into a networking technologywhen they disco...
RFID HistoryIn 2004, EPCglobalcreated a second-generation standardwhich allowed for moreusage by majormanufacturers and re...
Reasons Manufacturers Use RFIDRFID allows companies toaccurately track materialand product in the supplychainRFID can help...
Manufacturers & Producers      Utilizing RFID
iGPSPlastic pallet pooling company based in Orlando, FLCurrently uses Gen 2 UHF (915mhz) tags in all of itsplastic pallets...
Swire BottlingSwire Bottling, a Coca Cola bottlinggroup, uses RFID to track syrup tanksand carbon dioxide cylinders in Hon...
Trasluz Casual WearTrasluz, a Europeanclothing manufacturerand retailer, adoptedRFID in 2010Trasluz uses RFIDthrough the e...
GoodpackIBC container rental company corporately located inSingaporeIBC’s (Intermediate Bulk Containers) are metalcontaine...
Retailers that Request &      Require RFID TagsRFID Forecast $9.7 billion by 2013 15 percent compound annual growth rate P...
American ApparelImmediate sales floor items replenishment requiredEmbarked on RFID pilot in 2007Rolled out RFID at item le...
Wilson Sporting GoodsRFID Compliance requirement -   Enlisted services of Zebra Corporation -   EPC Gen 2-standard labelin...
METRO GROUP Among the retail industrys pioneering users ofRFID Employed RFID technology in logistics andwarehouse manageme...
Tesco  Third-largest global retailer measured by revenues  Second largest measured by profits  Stores in 14 countries  Pas...
Wal*Mart  Aggressive RFID efforts  Confirmed commitment to RFID in supply chain  Issued warnings to suppliers of $2-3 fine...
Current Happenings & New         TechnologiesConsumers Payment by mobile phone Pet tracking Implants/bracelets Detect coun...
Current Happenings & New         TechnologiesMiniaturization Current Record Holder:    Hitachi 0.05mm x 0.05mm Major Chall...
Current Happenings & New         TechnologiesStandardization International Organization for      Standardization (ISO) Fre...
Current Happenings & New         TechnologiesSecurity Concerns  Eavesdropping/Skimming  Tag Cloning  Shielding  EPC Global...
The Internet of Things  During 2008, the number of devices connected to  the internet exceeded the number of humans on  ea...
Cost ChallengesCosts of tags must be reduced to the point of being negligibleTechnologies are being developed that will en...
Range LimitationsCurrent operational ranges for passive RFID tags islimited to a few metersLimiting factor is wavelength –...
Size ReductionSmart Dust technology promises tags 64 timessmaller than the current Hitachi micro-tagEven smaller nano andm...
SensorsDespite improved ranges, sensors will have to bedeployed. Mesh networks are linked sensors thatread RFID signals an...
SensorsWhile mesh networkswill be critical to RFIDsuccess, the realbreakthrough is in thepalm of our hands.The ubiquitous ...
Applications & ImplicationsSupply chain usage will drive new technology   Tagging of individual items   Ability to manag...
Upcoming SlideShare
Loading in …5
×

It in the news group 7 mfr audio added

406 views
349 views

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
406
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Radio frequency identification, more simply referred to as RFID, is a technology that uses wireless, radio transmission of serial number and other data to identify an object. RFID involves two basic components: a chip and a reader/scanner. The RFID chip (which is also referred to as a tag) is attached to an individual item or case or pallet of the same items. The data stored on these chips is read by a scanner which interprets what is contained within the pallet or unit. This information is stored in computer systems and updated as needed in inventory.RFID is helpful in supply chain management because it reduces the need for human data entry, thus cutting down on human error. RFID tags vary in the amount of storage each chip can carry – most RFID tags hold about 2KB of data.
  • RFID tags can be passive or active. Passive tags are powered only by the reader. That is, information is only sent when requested via a scan. These passive tags are more affordable than active tags so they make financial sense to use on lower ticket items on many cases. While passive tags have a shorter read range than active tags, they are still practical for many items since they can be read up to 20 feet away. Passive tags can either be disposed of after use or have the data rewritten so they can be recycled for future goods. Active tags have their own internal batteries. This power source means that the information can be constantly sent out to readers. These active tags cost are more costly but allow for greater distances between the tag and the reader. The SunPass system on Florida roadways and other toll reader systems are examples of active RFID tags. These transponders have a battery in them which powers the information that is sent to the toll reader to know which car’s credit account should be charged.
  • As you can imagine, RFID can be enormously useful in tracking inventory and doing B2B sales. So why isn’t every company using this technology? The answer is cost. Even though the cost has come down to roughly 70 cents per active chip, it is still cost prohibitive for many companies or for low cost items. Passive tags are less expensive but still not a perfect match for some items. As demand for this technology improves, the cost should continue to fall. The ultimate goal is a RFID tag that costs a mere five cents. While it is often more trouble than it is worth to remove and reuse an RFID chip that was attached to a cardboard box, tags on pallets can be more easily removed and recycled.
  • The best characteristic of the RFID tag and reader system is the fact that items can be inventoried in record time and the data is available in real-time. In the supply chain, items can be scanned and recorded as soon as they enter the supply chain and recorded in each move they make in their supply chain journey. Again, with less human interaction the chances of errors is greatly reduced so the information is much more accurate and timely.
  • When a supplier uses RFID technology they scan the pallet of goods as it is preparing to ship out to the buyer. The RFID scan logs into the computer what is being shipped and when it is leaving the warehouse. This information is entered into the inventory management software and the suppliers inventory is reduced by the correct amount. Simultaneously, the buyer receives a report letting them know that the shipment of goods has left the supplier so they know when to expect it.
  • Once the shipments of goods arrives to the buyer’s facility, they scan the RFID tag again to record the shipment as received and increase their inventory by the proper amount. The supplier receives a report indicating that the shipment has successfully arrived to the buyer’s facility.
  • The RFID technology has radically improved the supply chain management process by automating inventory control. In the past, companied were forced to make sales forecasts and use these forecasts for their purchasing and manufacturing schedules. This would push goods into the supply chain in the hopes that sales would meet the forecasted demand. If demand exceeded supply then they would lose sales. Likewise, if supply exceeded demand then they would have excess. Now, using RFID to automate the purchasing process, goods can by pulled through the supply chain based on real-time demand. Inventory is replenished and reordered based on the actual demand.
  • The first passive RFID system was actually discovered by the Germans during World War II when pilots learned how to alter their radar signals to identify themselves to their fellow countrymen. Active RFID tags were discovered several decades later and patented by Mario Cardullo in 1973. One of the first wide uses of active RFID tags was by the US Government for tracking nuclear materials.
  • As previously mentioned, one of the most common examples of RFID tags that the everyday consumer should be familiar with is the automated toll reader systems. Livestock and other animals are frequently tagged via microchip or external tag (ie: ear tag). These livestock tags became prevalent in the 1980s and 1990s and utilize UHF radio waves. Microchips, like the one pictured here, are as small as a grain of rice and once inserted under the animal’s skin are painless and uncomfortable.
  • Even as use and interest was improving, there were still major price hurdles to overcome. Realizing that they would not get any cheaper unless more systems were purchased, several businesses came together in 1999 to establish the Auto-ID Center at MIT. This center was created to find the technology to produce low-cost RFID systems and help roll them out to a larger market.
  • Two professors at the Auto-ID Center, David Brock and Sanjay Sarma, made a major breakthrough in the way RFID systems are used today when they changed it into a networking technology. Brock and Sarma discovered a way to link tagged objects to the Internet, which meant that manufacturers could now use the technology to alert a buyer when an item had left their warehouse and was on its way to their warehouse.The Auto-ID Center developed Class 1 and Class 0 air interface protocols and the Electronic Product Code, or EPC, numbering scheme. Their technology was licensed to the Uniform Code Council in 2003 who partnered with EAN International to launch the EPCglobal Network as a way to commercialize the EPC technology.Despite their success in redefining the technology, in 2003 the Auto-ID Center closed and RFID research duties were passed on to Auto-ID Labs, an independent network of seven academic research facilities located across the globe. The EPCglobal Board of Governors served as one of their primary advisors.
  • Just as was originally intended, the research lead to improved and more affordable technology and, in 2004, a new standard had been set which would make the RFID technology more widely used by manufacturers and retailers worldwide. Around the same time, Wal-mart, the largest retailer in the world, announced that by 2005 all of their suppliers must use RFID tags on cases and pallets of goods they purchase from their suppliers. As more and more retailers begin using the technology the cost of these RFID tags and readers will naturally fall.
  • The most exciting applications in the RFID field revolve around the applications that affect the consumers who represent 2/3s of the American economy. Payments by mobile phone promise to utilize RFID technology to forego existing credit cards in favor of payment apps and hardware installed on everyone’s mobile phone. Consumers are already familiar with applications such as implants to positively identify pets and an active RFID tag to pay tolls when passing through toll stations. RFID bracelets have been successfully launched in hospitals and large marathon events to log key information. Implants for human use though have been met with stiff resistance from privacy concerns in most cases. A newly developed technology revolves around protecting valuable items by uniquely identifying each item. This can serve as a theft deterrent and can also track product and warranty information throughout the life of the product. 0:50
  • Miniaturization is another facet of the technology closely tied to creating additional applications. The current record holder is Hitachi who successfully designed and created a passive RFID tag measuring only 0.05 mm by 0.05 mm. While that size is impressive, the technology faces a key hurdle in that tags that small only have read ranges of a few millimeters. The antenna necessary to facilitate longer ranges must be much longer. Smaller tags are also much easier to lose and can be prohibitively expensive compared to larger passive RFID tags. 0:30
  • The two main players in standardizing are ISO and EPC Global. ISO is best known in this field for developing standardized frequency spectrums for reader and chip manufacturers to follow. This has been very difficult to implement because RFID is used worldwide across numerous manufactures that use proprietary technology. Additionally, the radio wave spectrum is very valuable in most developed countries leading to stringent laws regarding its use, which are very diverse. Regions such as Europe, Asia and the US have different spectrums available so simply shifting everyone to the same standardized frequency spectrum isn’t currently an option. The picture on the bottom right of the slide illustrates the diverse frequency bands currently in use throughout the world. As a result, American standard equipment is often incompatible with many other trading partners, most notably Europe. EPC Global has formed a database to track RFID EPC codes similar to how internet IP addresses are matched to website addresses. This creates a central repository for manufacturers to register their EPC codes and provides a database for middleware software to reference when scanning in new items. 1:05
  • A primary RFID security concern is the illicit tracking of RFID tags. This vulnerability comes in two forms: eavesdropping and skimming. Eavesdropping is the collecting information of legitimate transactions by being in proximity to the reader and RFID tag. Skimming is creating an illicit reader to query tags for their information. The answer to these vulnerabilities is robust cryptography to encode the transmissions between tag and reader. This technology is still in its infancy but consists of rolling code where a tag identifier changes after each scan and challenge-response authentications where the tag interacts with the reader. The development of these technologies can also limit the threat of tag cloning, or creating a tag that mimics the response of legitimate tags. Another way to limit the threat of skimming is the use of shielding around tags when not in use. This option has led to the creation of RFID shielded wallets in anticipation of more consumers using RFID enabled cards. However, the effectiveness of these shielding techniques is dependent on the material used and the frequency of the scan being used. Finally, The EPC Global Network centralizes information, but that structure opens itself up to being overloaded in a hacker’s denial of service attack. Without this central database, many sophisticated systems would be unable to operate. 1:05
  • In 2008, the number of devices connected to the internet exceeded the number of humans for the first time. Eight years from now, it is estimated that there will be over six times as many devices connected as there are people on the earth. This will facilitate the “Internet of Things”. Not only will computers and smart phones be connected, but RFID tags will allow objects like cars, produce, money, pets and even people to be linked passively and continuously through a global network of sensors. Everything imaginable can be connected, monitored and managed remotely via an internet connection.While there are some technological hurdles – which pale in comparison to security and civil liberty concerns – a world in where we can find our keys, do an inventory count or order groceries without getting up from our desk, or even consciously doing anything, is conceivable.
  • Before RFID tags can be ubiquitous, cost must be reduced. Currently, RFID tag costs are off-set by savings in inventory management and loss prevention. Also, adding a cost of five cents to a pallet is easy to spread over the cost of each product. Even one cent added to the cost of a gallon of milk, multiplied by the millions of gallons of milk consumed, is too high of a cost just so the refrigerator can re-order. For RFID tagging of every product or object to become a reality, the tags will have to cost nothing more than the current cost of printing the label. Printing technologies being developed will enable RFID tags to be imbedded in ink and fabric so that the cost is the same as manufacturing the tag in the back of your shirt.
  • Operational ranges of RFID tags and sensors today is only a few meters. Currently, tags must be manually scanned or actively pass a sensor to get within the range. Either the tags have to be easier to read or the number of sensors must be exponentially increased, but sensors are the most expensive part of the chain. Cost reduction will not only be accomplished by reducing the number of sensors, but making them more efficient. The limiting factor is wavelength. Tags of today operate on High Frequency wavelengths. If Microwave wavelengths could be used, that range could be extended to well over 500 meters per tag. With Microwave, one sensor could read all the tags in a 785,000 sq. ft. warehouse.
  • RFID tags in the supply chain of durable goods are small enough. Size is not the limiting factor when considering tagging soda cans. However, for RFID tags to fulfill their potential in other areas, they must get smaller. Research today is focused on “smart dust”, 64 times smaller than the current Hitachi record holder. Even smaller molecular technology is under development that can be attached to food products, giving real time data on environmental and product conditions.While it’s easy to see the value and benefits of these unobtrusive tags, security concerns begin to emerge as people could be “tagged” without their knowledge. Police could blow this smart dust into a crowd of protestors and they could then be monitored without their knowledge or consent. The smaller tags become, the more applications they have – good and bad.
  • Sensors and their high cost relative to tags are another hurdle. Despite vastly improved ranges, the number of sensors required to truly blanket the earth is almost unimaginable. Adding to the complexity is that each sensor must transmit to a receiver that uploads data to the internet. To solve this, mesh networks are in development. These mesh networks are made up of inter-connected sensors that read RFID tags and act as repeaters to pass data through each other to gateways that receive the data and upload to the internet. All RFID data would have to be universal and the bandwidth required to handle all this traffic is mind blowing. Cisco has already begun development of an internet protocol that will have the capacity of 100 IP addresses for every atom on the face of the earth.
  • The mesh networks will allow the “Internet of Things”, but the real breakthrough is already in use. Sensors embedded in our smart phones will receive and transmit data on our command – or without any command. Social media is already exploring applications. Not only can you “check in” where you are, but who you’re with, what you’re holding and what’s around you and transmit that data over cellular wavelengths. We’ll carry our own personal sensor – and transmitter – with us wherever we go.
  • Savings in the supply chain will drive R&D into these future uses of RFID. Taking the human element out of inventory control alone will save huge sums of money and drive more innovation. But every breakthrough brings new concerns. If everything is tagged, and sensors are everywhere, how do we protect our privacy? There are few answers at this point, but eventually, simply not wanting to be tracked will not be enough. We will have to actively guard our privacy and information.
  • It in the news group 7 mfr audio added

    1. 1. IT in the News: Group 7 RFID Technology Sean Maloney, Joel Peterson, Andy Pierce, Ashley Ross, and Mike Wheeler
    2. 2. RFID OverviewRFID = Radio frequencyidentificationWireless, radiotransmission of serialnumbers and other dataData is read by radioantennas which thentransmit the data to acomputerReduces need for humaninput of data and alsocuts down on humanerrorTypical RFID tags canstore 2KB of data
    3. 3. Passive vs. Active TagsPassive tags: Active tags: Powered only by the  Use internal batteries reader for power They are less  Information is sent to a expensive so work for reader low-ticket items  Good for more costly Tags can be read up items or items that to 20 feet away need to be read from Can be disposed or greater distances (ie: rewritten SunPass or other toll reader)
    4. 4. Cost IssuesCan be cost prohibitive because theyinitially cost about $1 per active RFID tag.The cost has now dropped to 20 – 40cents per unit but still is cost prohibitive forsome.The ultimate goal is a tag that costsaround five cents.Tags on boxes are typically thrown awayafter one use but tags on pallets can berecycled and reused.
    5. 5. Real-time DataHaving data availablein real-time hasrevolutionized thesupply chain andcommunicatesinformation muchmorequickly, efficiently andwith fewer errors.
    6. 6. Real-time DataNow, when a supplierships a pallet of goodsout to a buyer, the tagson the cases and palletare scanned and theinformation isimmediately sent to thebuyer to notify them thatthey have left thesupplier’s warehouse andwill be arriving in acertain time period. Thesystem will take thosegoods out of thesupplier’s inventory.
    7. 7. Real-time DataOnce the buyerreceives the goodsthey scan them whichautomatically addsthose good to theirinventory and notifiesthe supplier that thegoods have beenreceived.
    8. 8. Supply Chain Push vs. PullIt used to be that companies wouldmanufacture goods based on salesforecasts and push the goods out into thesupply chain. If demand exceeded supplythen they would lose sales. Likewise, ifsupply exceeded demand then they wouldhave excess. Now, goods can by pulledthrough the supply chain based on thereal-time demand for those goods.Inventory is replenished and reorderedbased on the actual demand.
    9. 9. RFID HistoryThe first passive RFIDsystem was discovered bythe Germans during WorldWar II when they learnedhow to alter radar signals toidentify themselves to theircountrymenThe first active RFID tagwas patented in 1973 byMario CardulloThe US Government beganusing RFID tags in the1970s to track nuclearmaterials
    10. 10. RFID HistoryIn the 1980s the RFIDsystem becamecommercialized withautomated toll readersOther advances lead toUHF radio waves and lowfrequency 125 kHz systemsto track cows and otherlivestockLater higher frequencysystems were developedwhich meant that the RFIDtags could be read fromfurther away and havefaster data transfer
    11. 11. RFID HistoryEven as use and interest was improving,there were still major price hurdles toovercome.Realizing that they would not get anycheaper unless more systems werepurchased, several businesses cametogether in 1999 to establish the Auto-IDCenter at MIT. This center was created tofind the technology to produce low-costRFID systems and help roll them out to alarger market.
    12. 12. RFID HistoryAuto-ID Center professors David Brock and SanjaySarma changed RFID into a networking technologywhen they discovered a way to link tagged objects tothe Internet – this meant that manufacturers could usethe technology to communicate the status ofproduction and shipment.The Auto-ID Center developed Class 1 and Class 0 airinterface protocols and the EPC (Electronic ProductCode) numbering scheme. Their technology waslicensed to the Uniform Code Council in 2003 whopartnered with EAN International to launch theEPCglobal Network as a way to commercialize theEPC technology.In 2003 the Auto-ID Center closed and RFID researchduties were passed on to Auto-ID Labs.
    13. 13. RFID HistoryIn 2004, EPCglobalcreated a second-generation standardwhich allowed for moreusage by majormanufacturers and retailsacross the US and theworld.In 2003 Wal-Martannounced that by 2005all suppliers would berequired to use RFID tagson cases and pallets ofpurchased goods
    14. 14. Reasons Manufacturers Use RFIDRFID allows companies toaccurately track materialand product in the supplychainRFID can help identifyleak pointsReal time data collectionAbility to easily shareinformation withcustomers
    15. 15. Manufacturers & Producers Utilizing RFID
    16. 16. iGPSPlastic pallet pooling company based in Orlando, FLCurrently uses Gen 2 UHF (915mhz) tags in all of itsplastic palletsPresence of RFID tags in pallets makes inventorytracking simpleiGPS customers can utilize the RFID tags embedded iniGPS pallets for their own trackingWhile some customers use the RFID feature, not allhave the capital to invest in RFID software
    17. 17. Swire BottlingSwire Bottling, a Coca Cola bottlinggroup, uses RFID to track syrup tanksand carbon dioxide cylinders in HongKongPrior to 2010 Swire would lose hundredsof assets per year at restaurant and retaillocationsIntroduction of RFID tags to assetsdropped the number of lost assets tonear zeroAdding the $.25 tag to each assetreduced cylinder and tank replacementcosts by $31,000 US / year for thedivision
    18. 18. Trasluz Casual WearTrasluz, a Europeanclothing manufacturerand retailer, adoptedRFID in 2010Trasluz uses RFIDthrough the entire supplychain, from production toretail sale Every store item is RFID tagged, allowing for real time inventory tracking Smart racks count the number of items on each shelf; Smart mats at exits prevent theft
    19. 19. GoodpackIBC container rental company corporately located inSingaporeIBC’s (Intermediate Bulk Containers) are metalcontainers used for holding liquids such as rubber, foodor chemicals Goodpack uses RFID to identify the last recorded location of each container at Goodpack depots and customer warehouses. Customers are provided RFID scanners to ensure each every container is scanned upon arrival & departure
    20. 20. Retailers that Request & Require RFID TagsRFID Forecast $9.7 billion by 2013 15 percent compound annual growth rate Passive tag ranges only 1-2m 10% of retailers undergoing RFID initiatives 20% of retailers to begin rollout by 2010
    21. 21. American ApparelImmediate sales floor items replenishment requiredEmbarked on RFID pilot in 2007Rolled out RFID at item level in April 2008Enabled American Apparel to track items when * tagged at manufacturer * received in its retail stores * stored in the stock rooms at the stores * placed onto the sales floor and sold at the POS
    22. 22. Wilson Sporting GoodsRFID Compliance requirement - Enlisted services of Zebra Corporation - EPC Gen 2-standard labeling systemZebra R110Xi printer/encoders - Smart labels are hand-applied to cases and pallets - Routed past a fixed-position RFID reader that captures shipment information
    23. 23. METRO GROUP Among the retail industrys pioneering users ofRFID Employed RFID technology in logistics andwarehouse management since 2004 Tracks incoming goods processes for 400 locations More than 750,000 pallets are recorded each yearusing this technology at their central goods depot
    24. 24. Tesco Third-largest global retailer measured by revenues Second largest measured by profits Stores in 14 countries Passive RFID tag on roll cages Cages are identified when delivered to retail outlets RFID tag by OATSystems is able to identify what cageis destined for which store
    25. 25. Wal*Mart Aggressive RFID efforts Confirmed commitment to RFID in supply chain Issued warnings to suppliers of $2-3 fines per palletthat did not contain an RFID tag. Wal*Marts 600 top suppliers use RFID technology tosome degree Implementing RFID chips on individual items toincrease inventory control
    26. 26. Current Happenings & New TechnologiesConsumers Payment by mobile phone Pet tracking Implants/bracelets Detect counterfeits / protecting valuables
    27. 27. Current Happenings & New TechnologiesMiniaturization Current Record Holder: Hitachi 0.05mm x 0.05mm Major Challenges
    28. 28. Current Happenings & New TechnologiesStandardization International Organization for Standardization (ISO) Frequency Spectrum Issues EPC Global
    29. 29. Current Happenings & New TechnologiesSecurity Concerns Eavesdropping/Skimming Tag Cloning Shielding EPC Global Network Denial of Serviceattack
    30. 30. The Internet of Things During 2008, the number of devices connected to the internet exceeded the number of humans on earth By 2020, there will be 50 billion “things” connected to the internet Those “things”will not be justcomputersand smart phones. With applications of RFID, every “thing” will be connected, monitored and managed.
    31. 31. Cost ChallengesCosts of tags must be reduced to the point of being negligibleTechnologies are being developed that will enable RFID tagsto be printed using current ink jet or lithograph printingtechnologyFuture RFID tags will be no more expensive than current tagson clothes
    32. 32. Range LimitationsCurrent operational ranges for passive RFID tags islimited to a few metersLimiting factor is wavelength – moving from HF (today)to UHF to Microwave could take range to 500m/tagCurrently inventory mustbe manually scanned oractively pass a sensor,extended ranges will allowone sensor to keep track ofan entire warehouse – in realtime
    33. 33. Size ReductionSmart Dust technology promises tags 64 timessmaller than the current Hitachi micro-tagEven smaller nano andmolecular RFID will allowtracking and monitoringof food through thesupply chain – feedingdata on environmentaland product conditions
    34. 34. SensorsDespite improved ranges, sensors will have to bedeployed. Mesh networks are linked sensors thatread RFID signals and broadcast the data via theinternet.Sensors in themesh can also actas repeaters tooffer essentiallylimitless range
    35. 35. SensorsWhile mesh networkswill be critical to RFIDsuccess, the realbreakthrough is in thepalm of our hands.The ubiquitous smartphone will get smarter
    36. 36. Applications & ImplicationsSupply chain usage will drive new technology Tagging of individual items Ability to manage inventory in real time Automation – i.e. check out, theft prevention Limited only by imaginationSocial implications much deeper Social media revolution – passively “check in”, but pass on info besides location; not just where you are, but who and what you’re there with Credit cards that know when you’re in a store and what’s there you might want Police broadcasting Smart Dust onto a crowd of protesters

    ×