
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Solidstate electrolytes exhibit good safety and stability, and are promising to replace current organic liquid electrolytes in rechargeable battery applications. In this talk, we will present our efforts at developing scalable first principles techniques to design novel solidstate electrolytes. Using the recently discovered Li10GeP2S12 lithium super ionic conductor as an example, we will discuss how various properties of interest in a solidstate electrolyte can be predicted using first principles calculations. We will show how the application of these first principles techniques has suggested two chemical modifications, Li10SiP2S12 and Li10SnP2S12, that retains the excellent Li+ conductivity of Li10GeP2S12 at a significantly reduced cost. These modifications have recently been synthesized, and the measured Li+ conductivities are in excellent agreement with our first principles predictions. We will conclude with a demonstration of how relatively expensive first principles calculations can be intelligently scaled and combined with topological analysis to be a useful screening tool for novel solidstate electrolytes.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment