UNIVERSITY OF HORTICULTURAL              SCIENCES, BAGALKOTKittur Rani Channamma College of Horticulture, Arabhavi.
Introduction         Importance of bioagents                   Role of bioagents in coleus                             Rol...
 Bioagents are preparations containing microorganisms in sufficient   numbers which enhance crop growth, reduce diseases ...
 Rising costs of chemical inputs and a host environmental concerns   have caused farmers to consider alternative agri-ind...
Biofertilizers• Biofertilizer is a substance which contains living   microorganisms, when applied to seed, plant surfaces,...
General classification of Biofertilizers   Murugan, 2002
BIOFERTILIZER ORGANISMS        RHIZOBIUM         AZOTOBACTER          PSB       BLUE GREEN ALGAE       AZOSPIRILLUM       ...
CommercialBIO-FERTILIZERS in     market
Biopesticides• Biologically active microbial agents applied to control insect-pests   by non-toxic mechanisms• Stimulate p...
 Viruses, Bacteria, Fungi and Nematodes are                 sources of  potential biopesticides Viruses - NPV, Granulosi...
Biopesticides and Target pests         Biopesticides                         Target pestBacillus thurigiensis strains LBT-...
Biofungicides Biofungicides are microorganisms and naturally occurring  substances that control diseases of crops that ar...
 Cost effective and eco-friendly Renewable sources to supplement chemical fertilizer Play vital role in maintaining lon...
   Non-availability of crop/zone specific strains of    microorganisms   Genetic instability of the strains   Inconsist...
B.N : Plectranthus forskohliiFamily: LamiaceaeActive principle: Forskohlin (0.1-0.5%)Origin: Indian-subcontinentMedicinal ...
Table 1: Effect of bioinoculants and neem cake on growth characteristics of Coleus         forskohlii at the nursery stage...
Table 2: Effect of bioinoculants and neem cake on growth characteristics of Coleus         forskohlii at harvesting in fie...
Table 3: Effect of bioinoculants and neem cake on nutrient uptake by Coleus         forskohlii under field conditions.    ...
Table 4: Influence of inoculation with different arbuscular fungi on various characters of          Coleus forskohlii.    ...
Table 5: Influence of inoculation with different arbuscular fungi on root and shoot P- content,         and root forskohli...
Table 6: Influence of inoculation with different arbuscular fungi on mycorrhizal root         colonization and spore numbe...
Fig 1: Effect of Pseudomonas monteilii (PM) (strain CRC1) and Glomus fasciculatum       (GF) alone and co-inoculated (PM +...
Fig 2: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone       and co-inoculated (PM + GF) on yield...
Fig 3: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-       inoculated (PM + GF) on fors...
Fig 4: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-       inoculated (PM + GF) on perc...
Table 7: Effect of AM fungi on growth characters in coleus forskohlii.                                                 Dha...
Table 8: Effect of AM- fungi on tuber yield and forskohlin content in Coleus forskohlii.                                  ...
Table 9: Effect of bio-inoculants on growth parameters of Coleus forskohlii                                               ...
Table 10: Effect of bio-inoculants on P and K uptake, Forskohlin content of Coleus forskohlii.                            ...
Fig 5: Effect of bio-inoculants on mean shoot dry yield.                                                      Singh et al....
Fig 6: Effect of bio-inoculants on mean root dry yield.                                                    Singh et al., 2...
Fig 7: Effect of bio-inoculants on Per cent disease index (PDI).                                                       Sin...
Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents.                                       ...
Table 11 :Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents.                             ...
Table 12 : Population of Orphanostigma abruptalis and yield of wet tubers in coleus, as influenced            by bio-contr...
Management of collar rot complex in Coleus forskohlii using bioagents, organicamendments and chemicals.                   ...
Table 13: Management of collar rot complex of Coleus forskohlii using bioagents, organic          amendments and chemicals...
Table 14: Effect of antagonists on the growth of Macrophomina phaseolina in the dual          culture technique in coleus....
Table 15: Efficacy of bioagents against dry root rot of coleus under pot culture          conditions                      ...
Table 16: Effect of biocontrol agents on inhibition of mycelial growth of       Rhizoctonia bataticola infecting Coleus fo...
Table 17: Biomanagement of nematode fungal disease complex in coleus under          controlled conditions.                ...
Table 18: On farm trial on Biomanagement of nematode fungal disease complex in         medicinal coleus                   ...
Effect of integrated bio-management strategies on root tuber yield in medicinal coleus           infested with M. incognit...
Table 19 : Effect of integrated bio-management strategies on root tuber yield inmedicinal coleus infested with M. incognit...
B.N : Withania somniferaFamily: SolanaceaeActive principle: Withanine & Somniferine                     (0.13-0.31 %)Medic...
Table 20: Effect of rhizobacterial inoculation on the shoot length, primary and lateral branches          development of a...
Table 21: Effect of rhizobacterial inoculation on the root growth of ashwagandha          (var.Jawahar 20).               ...
Table 22: Effect of rhizobacterial inoculation on dry matter production of ashwagandha          (var.Jawahar 20).         ...
Table 23: Effect of rhizobacterial inoculation on total alkaloid content of          ashwagandha (var.Jawahar 20) roots.  ...
Table 24: Effect of rhizobacterial inoculation on Withaferin-A content of          ashwagandha (var. Jawahar 20) roots by ...
Table 25: Influence of organic and biological amendments on root knot         index in Withania somnifera L.              ...
Table 26: Effect of different organic and biological amendments on the root & Shoot          dry weight (kg) of Withania s...
Conclusion• Biological approach could be practiced to obtain maximum  yield, quality and to manage pest & diseases• Differ...
Seminar-1 on Role of bio-agents on coleus and ashwagandha
Seminar-1 on Role of bio-agents on coleus and ashwagandha
Seminar-1 on Role of bio-agents on coleus and ashwagandha
Seminar-1 on Role of bio-agents on coleus and ashwagandha
Upcoming SlideShare
Loading in...5
×

Seminar-1 on Role of bio-agents on coleus and ashwagandha

1,313

Published on

Role of Bio-agents in production of Medicinal Coleus and Ashwagandha

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,313
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
41
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • General classification of Biofertilizers
  • (Sharma, 2007)
  • Biopesticides and target pests Nicolas, 2006
  • (Roger, 2010)
  • ADVANTAGES Of BIOAGENTS:
  • Means followed by the same letter in each column do not differ significantly at P= 0.05 by DMRT. Values are an average of 20 plants taken at 150 DAP.
  • Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on growth characteristics ofC. forskohlii.
  • Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on yield of C. forskohlii
  • Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on forskolin content (percent)in root tubers of C. forskohlii.
  • Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on percent disease index(PDI) and percent wilt incidence (PWI) of C. forskohlii.
  • Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata & Trichoderma harzianum
  • GA: Glomus aggregatum; GF: Glomus fasciculatum; GI: Glomus intradices; GM: Glomus mosseae; PF6: Pseudomonas fluorescens: 120 F: 120 mL suspension of Fusarium chlamydosporum; 240 F: 120 mL suspension of Fusarium chlamydosporum
  • Fig:3 Effect of bio-inoculants on Mean shoot dry yield.
  • Fig:4 Effect of bio-inoculants on Mean root dry yield.
  • Fig:2 Effect of bio-inoculants on Percent Disease Index (PDI).
  • DAP:Days after planting; Each release/spray at monthly interval starting from 30 days after planting; Figures in parentheses are square root transformed values in a column, means followed by same letter are not significantly different by DMRT (P=0.05).
  • Figures in parentheses are arc sine (angular) transformed values.
  • * Figures in parentheses are arc sine transformed values.
  • * Figures in the parenthesis indicate angular transformed values
  • * Pooled analysis of two pot culture experiments
  • * Pooled analysis of three field experiments
  • Figures in a column followed by different letters are significantly different at P=0.05 level by DMRT; Figures in the parentheses are percent decrease over control; Pooled 2 years data.
  • Mean in each column followed by same letters do not differ significantly (P= 0.05) accordingl to Duncan’s multiple range test.
  • Seminar-1 on Role of bio-agents on coleus and ashwagandha

    1. 1. UNIVERSITY OF HORTICULTURAL SCIENCES, BAGALKOTKittur Rani Channamma College of Horticulture, Arabhavi.
    2. 2. Introduction Importance of bioagents Role of bioagents in coleus Role of bioagents in ashwagandha Conclusion
    3. 3.  Bioagents are preparations containing microorganisms in sufficient numbers which enhance crop growth, reduce diseases and pests infestation Bioagents have the ability to replicate rapidly, require minimal resources to survive and can infect at very small doses Biological approach will be particularly useful under organic conditions, especially for medicinal plants, which are mainly used for treating various human ailments, where the use of chemicals is restricted because of health and residue considerations (Paul, 2003)
    4. 4.  Rising costs of chemical inputs and a host environmental concerns have caused farmers to consider alternative agri-industrial managements to reduce costs, protect human health, and conserve the resource base High intensity of chemical pesticide use has become serious cause of concern in recent years so, lot of importance has been given to organically produced medicinal herbs Bioagents are eco-friendly, cost-effective and co-existence with tissues of host without causing any harm (Kritcher, 1993)
    5. 5. Biofertilizers• Biofertilizer is a substance which contains living microorganisms, when applied to seed, plant surfaces, or soil, colonizes the rhizosphere and promotes growth by increasing the supply or availability of nutrients to the host plant• These add nutrients through natural processes of N- fixation, solubilizing phosphorous and stimulating plant growth through the synthesis of growth promoting substances
    6. 6. General classification of Biofertilizers Murugan, 2002
    7. 7. BIOFERTILIZER ORGANISMS RHIZOBIUM AZOTOBACTER PSB BLUE GREEN ALGAE AZOSPIRILLUM VA-MYCORRHIZA
    8. 8. CommercialBIO-FERTILIZERS in market
    9. 9. Biopesticides• Biologically active microbial agents applied to control insect-pests by non-toxic mechanisms• Stimulate plant host defenses and other physiological processes make plants more resistant to biotic and abiotic stresses• Prepared by growing and concentrating naturally occurring organisms or their metabolites including bacteria, fungi, nematodes, etc.
    10. 10.  Viruses, Bacteria, Fungi and Nematodes are sources of potential biopesticides Viruses - NPV, Granulosis viruses (GV) Bacteria- Bacillus, Pseudomonas, Streptomyces and Salmonella  22 varieties of Bacillus thuringiensis are used as biopesticides Fungi - Beauveria, Metarhizum, Verticillium, Hirsutella etc. Nematodes - Paecilomyces lilacinus & Romanomermis culicivorax (WHO, 2009)
    11. 11. Biopesticides and Target pests Biopesticides Target pestBacillus thurigiensis strains LBT-1, Lepidoptera, MitesLBT-13, LBT-21, LBT-24Beauveria bassiana strain LBB-1 Coleoptera (weevils), ants, thripsVerticillium lecanii strain Y-57 Bemisia tabaci ,Myzus persicaeMetarhizium anisopliae Lepidoptera and Coleopterastrain LBM-11Trichogramma spp. LepidopteraCorynebacterium paurometabolum NematodesPheidole megacephala Sweet potato weevil (Nicolas, 2006)
    12. 12. Biofungicides Biofungicides are microorganisms and naturally occurring substances that control diseases of crops that are approved for organic production Biofungicides / biologicals Diseases Bacillus pumilus Several foliar diseases Pseudomonas syringe Post-harvest diseases Pythium, Rhizoctonia, Fusarium, Bacillus subtilis Powdery mildew, other foliar diseases Trichoderma harzianum Root diseases Fusarium, Rhizoctonia,Pythium, Streptomyces lydicus Phytophthora Gliocladium virens Damping off (Roger, 2010)
    13. 13.  Cost effective and eco-friendly Renewable sources to supplement chemical fertilizer Play vital role in maintaining long term soil fertility and sustainability Proliferates beneficial microbes in the soil Suppress certain plant diseases, soil-borne diseases and parasites
    14. 14.  Non-availability of crop/zone specific strains of microorganisms Genetic instability of the strains Inconsistent performance in the field during abiotic stresses Lesser speed of action Lack of adequate knowledge among the farmers
    15. 15. B.N : Plectranthus forskohliiFamily: LamiaceaeActive principle: Forskohlin (0.1-0.5%)Origin: Indian-subcontinentMedicinal Uses : Glaucoma, Asthma, Congestive heart failures & Certain type of cancersEconomic parts: Tuberous rootsYield: 3.5 - 4.0 t/ha (Dry tuber)
    16. 16. Table 1: Effect of bioinoculants and neem cake on growth characteristics of Coleus forskohlii at the nursery stage (55 day old cuttings) prior to transplanting. Singh et al., 2012, Bangalore Dry shoot Dry root Shoot length Root length Plant spread Treatments weight weight (cm) (cm) (cm) (g/plant) (g/plant)TV (1.2x106 CFU mL-1) 17.6bc 10.8ab 13.2a 0.81a 0.044bcBS (1.8x108 CFU mL-1) 15.8ab 11.6b 15.0a 0.75a 0.017aAZ (2.3x107 CFU mL-1) 19.6bc 12.0b 16.4ab 1.31b 0.059cGF (1.2x106 CFU mL-1) 20.6c 13.4b 20.8c 1.05b 0.069cPF (2.5x108 CFU mL-1) 19.0bc 12.4b 18.6b 0.98ab 0.063cNC 20.4bc 12.4b 20.2c 1.19b 0.078cControl 13.8a 9.20a 14.4a 0.77a 0.013aLSD (P<0.05) 3.33 2.27 2.89 0.27 0.022TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomusfasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake (Soil, sand, vermicompost & neemcake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantlydifferent at P=0.05 by ANOVA (LSD) test.
    17. 17. Table 2: Effect of bioinoculants and neem cake on growth characteristics of Coleus forskohlii at harvesting in field conditions. Singh et al., 2012, Bangalore Forskohlin Plant height Plant spread No. of Dry shoot Dry root Treatments yield (cm) (cm) branches yield (t/ha) yield (t/ha) (Kg/ha)TV (1.2x106 CFU mL-1) 41.7ab 43.7ab 20.3a 1.34a 0.18a 1.1aBS (1.8x108 CFU mL-1) 40.0ab 46.7b 19.3a 1.36a 0.17a 1.02aAZ (2.3x107 CFU mL-1) 40.2ab 41.3ab 18.3a 1.49a 0.22a 1.32abGF (1.2x106 CFU mL-1) 49.6c 49.3b 28.3b 2.58b 0.41c 2.71cPF (2.5x108 CFU mL-1) 43.6b 47.1b 28.0b 2.01a 0.32bc 2.15bcNC 48.2c 46.3b 27.7b 2.64b 0.42c 2.67cControl 38.0a 37.1a 17.0a 1.33a 0.14a 0.83aLSD (P<0.05) 4.1 7.0 6.8 0.8 0.1 0.84TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomusfasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake- (Soil, sand, vermicompost & neemcake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantlydifferent at P=0.05 by ANOVA (LSD) test.
    18. 18. Table 3: Effect of bioinoculants and neem cake on nutrient uptake by Coleus forskohlii under field conditions. Singh et al., 2012, Bangalore Shoot uptake (Kg/ha) Root uptake (Kg/ha) Total uptake (Kg/ha) Treatment N P K N P K N P KTV (1.2x106 CFU mL-1) 18.62a 4.89ab 22.31a 0.89a 0.39a 2.44a 19.51a 5.28a 24.75aBS (1.8x108 CFU mL-1) 19.35ab 4.62a 21.96a 1.04a 0.44ab 2.7a 20.39ab 5.06a 24.66aAZ (2.3x107 CFU mL-1) 26.97ab 4.82ab 24.62a 1.00a 0.55ab 3.16ab 27.97b 5.37a 27.78abGF (1.2x106 CFU mL-1) 28.03b 7.49b 35.68b 1.99b 0.94b 6.05b 30.02b 8.43b 41.73bPF (2.5x108 CFU mL-1) 27.78b 5.10ab 30.06a 1.41ab 0.73b 4.76b 29.19b 5.83ab 34.82bNC 32.78b 7.94b 36.11b 2.35b 0.83b 5.90b 35.13b 8.77b 42.01bcontrol 18.6a 4.62a 21.86a 0.80a 0.36a 2.27a 19.40a 4.98a 24.13aLSD (P<0.05) 8.4 2.8 9.1 0.7 0.3 2 8.2 2.8 9.2TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomusfasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake-(Soil, sand, vermicompost &neem cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters aresignificantly different at P=0.05 by ANOVA (LSD) test.
    19. 19. Table 4: Influence of inoculation with different arbuscular fungi on various characters of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore Plant height No. of length of fresh Dry weight (g/plant) Treatments (cm) branches/plant root (cm) Root ShootUninoculated control 13.33f 81.87e 10.3d 80e 15.85dAcaulospora laevis 13.67ef 87.87cd 12.5cd 99cd 18.85cGigaspora margarita 14.22de 82.87e 12.3cd 99cd 18.90cGlomus bagyaragii 16.72a 109.20a 18.2a 121a 27.16aG. etunicatum 14.37de 82.30e 10.6d 94d 18.85cG. fasciculatum 15.37dc 94.00bc 14.9bc 102bc 19.63cG. intraradices 14.52cde 87.00cd 13.4cd 99cd 19.15cG. leptotichum 14.00def 82.05e 11.3d 94d 18.85cG. macrocarpum 14.58cde 84.73d 11.0d 95cd 18.38cG. monosporum 14.60cde 86.03d 10.9d 95cd 16.65dG. mosseae 14.73cd 95.86b 14.5bc 102bc 19.60cScutellospora 15.70b 99.43b 16.5ab 107b 23.36bcalosporaMeans followed by the same letter in each column do not differ significantly at P= 0.05 by DMRT.Values are an average of 20 plants taken at 150 DAP.
    20. 20. Table 5: Influence of inoculation with different arbuscular fungi on root and shoot P- content, and root forskohlin concentration and content of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore P content (mg/plant) Forskohlin Forskohlin content Treatments Shoot Root concentration (%) (mg/plant)Uninoculated control 19.61e 3.20e 0.57g 45.6hAcaulospora laevis 41.31cd 4.27cde 0.74ef 73.58fGigaspora margarita 43.44cd 4.71bcd 0.75ef 74.58fGlomus bagyaragii 76.49a 7.65a 0.93a 112.5aG. etunicatum 37.41d 3.98de 0.80c 75.51fG. fasciculatum 48.12c 5.27bc 0.79cd 80.89eG. intraradices 48.42c 4.94bcd 0.86b 85.13dG. leptotichum 28.07e 4.04de 0.73f 68.62gG. macrocarpum 41.44cd 4.46bcd 0.76def 72.19fG. monosporum 26.45e 4.45bcd 0.77cde 72.45fG. mosseae 49.99c 4.85bcd 0.88b 89.41cScutellospora calospora 59.93b 5.48b 0.92a 98.43b
    21. 21. Table 6: Influence of inoculation with different arbuscular fungi on mycorrhizal root colonization and spore numbers in the root zone of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore Number of spore (CFU) /50 g Treatments Root colonization (%) soilUninoculated control 3.64f 9.67gAcaulospora laevis 74.80cd 72.33cGigaspora margarita 71.82e 66.00dGlomus bagyaragii 98.72a 158.00aG. etunicatum 63.56e 33.33fG. fasciculatum 77.97c 131.33bcG. intraradices 73.75cd 124.0cG. leptotichum 63.24e 36.33efG. macrocarpum 63.61e 36.3efG. monosporum 68.95de 43.33eG. mosseae 76.81c 123.00cScutellospora calospora 85.61b 139.67b
    22. 22. Fig 1: Effect of Pseudomonas monteilii (PM) (strain CRC1) and Glomus fasciculatum (GF) alone and co-inoculated (PM + GF) on growth characteristics of Coleus forskohlii. Alok et al., 2012, Lucknow
    23. 23. Fig 2: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-inoculated (PM + GF) on yield of C. forskohlii. Alok et al., 2012, Lucknow
    24. 24. Fig 3: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co- inoculated (PM + GF) on forskolin content (percent) in root tubers of C. forskohlii Alok et al., 2012, Lucknow
    25. 25. Fig 4: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co- inoculated (PM + GF) on percent disease index (PDI) and percent wilt incidence (PWI) of C. forskohlii. Alok et al., 2012, Lucknow
    26. 26. Table 7: Effect of AM fungi on growth characters in coleus forskohlii. Dharana et al., 2006, Arabhavi Percent Plant Plant spread (cm) No. of Stem Treatment establishment height branche diameter E -W N-S of cuttings (cm) s/Plant (cm)Glomus intraradices 85.00 52.66 52.80 52.00 53.46 2.57Glomus fasciculatum 91.66 53.40 50.63 52.36 55.83 2.26Glomus monosporum 83.33 50.73 51.86 51.20 52.5 2.40Glomus mosseae 91.66 56.76 56.00 52.50 52.50 2.35Gigaspora margarita 86.66 61.23 55.16 55.20 57.66 2.34Sclerocystis dussii 90.00 57.76 53.50 53.46 53.5 2.33Consortia- I 93.33 58.36 56.16 56.96 58.40 2.35Control 80.00 49.23 54.30 54.16 48.13 2.24Mean - 55.02 54.17 53.48 54.00 2.35S. Em 2.530 1.406 1.190 1.122 0.769 0.020C. D. @ 5% 7.673 4.265 3.609 3.402 2.334 0.062CV (%) 5.00 4.43 3.80 3.63 2.47 1.50Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata &Trichoderma harzianum
    27. 27. Table 8: Effect of AM- fungi on tuber yield and forskohlin content in Coleus forskohlii. Dharana et al., 2006, Arabhavi No. of Fresh tuber yield Dry tuber yield Forskohlin Forskohlin Treatment tubers/pla content yield g/plant q/ha g/plant q/ha nt (%) (mg/plant)Glomus intraradices 9.26 107.78 89.82 14.08 11.85 - -Glomus fasciculatum 11.60 120.74 100.62 15.78 13.15 0.329 19.30Glomus monosporum 10.73 126.26 105.21 16.43 13.69 - -Glomus mosseae 9.53 125.4 104.48 16.39 13.65 - -Gigaspora margarita 10.53 160.09 133.4 20.92 17.36 0.307 17.28Sclerocystis dussii 13.53 133.06 110.89 17.39 14.62 0.274 15.56Consortia- I 16.8 159.46 132.89 20.85 17.35 0.403 26.07Control 9.8 127.6 106.33 16.69 13.91 0.330 20.75S. Em 1.119 7.01 5.84 0.94 0.80 - -C. D. @ 5% 3.393 21.25 17.7 2.86 2.44 - -CV (%) 4.709 9.16 9.15 9.43 9.65 - -Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata &Trichoderma harzianum
    28. 28. Table 9: Effect of bio-inoculants on growth parameters of Coleus forskohlii Singh et al., 2009, Bangalore Treatments Plant height (cm) Plant spread (cm) No. of branches GA+120F 57.21bc 39.17bc 9.13b GF+120F 78.25d 49.75c 13.38c GI+120F 46.96ab 36.71bc 8.0ab GM+120F 64.5cd 37.0bc 9.0b PF6+120F 81.88d 56.0c 12.25c 120F 50.5b 28.38ab 6.75ab GA+240F 42.88ab 31.63ab 8.5ab GF+240F 76.0d 39.75bc 10.75bc GI+240F 48.38ab 34.46ab 7.13ab GM+240F 58.38b 33.13ab 7.88ab PF6+240F 76.0d 43.5bc 9.75bc 240F 37.25a 21.5a 4.75a Soil only 50.42b 30.04ab 7.5ab SED 5.564 6.3542 1.9221GA: Glomus aggregatum; GF: Glomus fasciculatum; GI: Glomus intraradices; GM: Glomus mosseae;PF6: Pseudomonas fluorescens: 120 F: 120 mL suspension of Fusarium chlamydosporum; 240 F: 240mL suspension of Fusarium chlamydosporum.& SED: Standard error of mean difference.
    29. 29. Table 10: Effect of bio-inoculants on P and K uptake, Forskohlin content of Coleus forskohlii. Singh et al., 2009, Bangalore Forskohlin content Treatments P - uptake (mg/plant) K- uptake (mg/plant) (mg/100gm dry roots) GA+120F 66.5cd 495.0de 890.0ab GF+120F 77.5d 600.0f 1010.0c GI+120F 59.5cd 385.0c 795.0a GM+120F 59.0c 390.0c 920.0bc PF6+120F 81.0d 555.0ef 975.0bc 120F 23.5ab 150.0ab 795.0a GA+240F 36.5b 195.0b 790.0a GF+240F 71.5c 500.0de 835.0ab GI+240F 50.0bc 270.0b 820.0ab GM+240F 59.5cd 390.0c 835.0ab PF6+240F 72.5cd 495.0de 820.0ab 240F 18.0a 115.0a 820.0ab Soil only 30.5ab 140.0ab 895.0ab SED 8.448 36.576 47.871
    30. 30. Fig 5: Effect of bio-inoculants on mean shoot dry yield. Singh et al., 2009, Bangalore
    31. 31. Fig 6: Effect of bio-inoculants on mean root dry yield. Singh et al., 2009, Bangalore
    32. 32. Fig 7: Effect of bio-inoculants on Per cent disease index (PDI). Singh et al., 2009, Bangalore
    33. 33. Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents. Thangavel et al., 2011, CoimbatoreTreatment Details: T1- Chrysoperla carnea @ 50,000 eggs/ha (5 releases) T2- Trichogramma chilonis @ 6.25 cc/ha (5 releases) T3- Bacillus thuringiensis 750 g/ha (5 sprays) T4- Beauveria bassiana 2 g/L (5 sprays) T5- C.c (1 release) + T.c (1 release) + B.b (1 spray) + B.t (2 spray) T6- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.t (2 spray) T7- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.b (2 spray) T8- Untreated check
    34. 34. Table 11 :Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents. Thangavel et al., 2011, Madurai Pre- No. of thrips/Sq. cm at monthly interval PercentageTreatm treatment Mean reduction over ents count 60 DAP 90 DAP 120 DAP 150 DAP control T1 38.2 11.5 (3.46)a 9.2 (3.11)a 7.4 (2.81)a 4.4 (2.21)a 8.2 60 T2 39.8 22.1 (4.75)f 19.2 (4.43)g 15.8 (4.03)g 13.4 (3.72)e 17.6 14.1 T3 40.7 18.3 (4.33)d 15.4 (3.98)e 12.3 (3.57)e 10.9 (3.37)d 14.4 29.7 T4 41.4 20.2 (4.54)e 17.4 (4.23)f 14.4 (3.86)f 12.8 (3.64)e 16.3 20.4 T5 37.8 12.7 (3.63)b 10.4 (3.30)b 8.8 (3.04)b 6.3 (2.60)b 9.5 53.6 T6 39.7 14.4 (3.86)c 13.2 (3.70)d 11.4 (3.44)d 8.3 (2.96)c 11.8 42.4 T7 40.5 14.2 (3.83)c 12.3 (3.57)c 10.2 (3.27)c 7.8 (2.88)c 11.2 45.3 T8 41.6 24.7 (5.01)g 22.3(4.77)h 18.6 (4.37)h 16.3 (4.09)f 20.5 - SEd - 0.05 0.05 0.05 0.06 - -C. D @ 5% - 0.11 0.11 0.12 0.14 - -Figures in parentheses are square root transformed values in a column, means followed by sameletter are not significantly different by DMRT (P=0.05).
    35. 35. Table 12 : Population of Orphanostigma abruptalis and yield of wet tubers in coleus, as influenced by bio-control agents Thangavel et al., 2011, Madurai No. of larvae/5 plant Percentage Pre- reduction Wet tuberTreatments treatment Mean 60 DAP 90 DAP 120 DAP 150 DAP over yield (kg/ha) count control T1 7.6 5.5 (2.44)c 5.1 (2.36)c 3.9 (2.09)b 3.2 (1.92)c 4.4 48.2 20,105c T2 8.4 7.9 (2.89)de 7.7 (2.86)e 6.6 (2.66)d 5.5 (2.44)d 6.9 18.8 17,075f T3 9.2 7.1 (2.75)d 6.3 (2.60)d 5.1 (2.36)c 4.8 (2.30)d 5.8 31.7 18,112d T4 8.3 7.6 (2.84)d 6.8 (2.70)de 5.7 (2.48)cd 4.4 (2.21)d 6.1 28.2 17,454e T5 7.1 3.9 (2.09)a 3.3 (1.94)a 2.1 (1.61)a 1.3 (1.34)a 2.6 69.4 20,643a T6 8.2 4.6 (2.25)ab 4.2 (2.16)b 3.1 (1.89)b 2.2 (1.64)b 3.5 58.8 20,455ab T7 7.8 5.0 (2.34)bc 4.8 (2.30)bc 3.3 (1.94)b 2.5 (1.73)bc 3.9 54.1 20,283bc T8 9.2 8.8 (3.04)e 9.1 (3.09)f 8.5 (3.00)e 7.6 (2.84)e 8.5 - 20,256g SEd 0.08 0.09 0.09 0.11 - - - 0.33 C. D @ 0.17 0.19 0.21 0.25 - - - 1.32 5% T5- C.c (1 relaese) + T.c (1 relaese) + B.b (1 spray) + B.t (2 spray)
    36. 36. Management of collar rot complex in Coleus forskohlii using bioagents, organicamendments and chemicals. Kulkarni et al., 2007, ArabhaviTreatment Details:T1- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml)T2- Trichoderma harzianum @ 10 ml/plant (8x103 cfu/ml)T3- Pseudomonas fluorescens @ 10 ml/plant (24x105 cfu/ml)T4- Pronto @ 5% as soil drench (neem based product)T5- Neemto @500 g/5 m2 (neem based product)T6-Carbofuran 3G @ 15 gai/5 m2T7- Farm yard manure @ 5 kg/5 m2T8- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml) + Neemto @500 g/5 m2T9- Carbendazim @ 0.1% soil drenchT10- Propiconazole @ 0.1% soil drenchT11- Control
    37. 37. Table 13: Management of collar rot complex of Coleus forskohlii using bioagents, organic amendments and chemicals. Kulkarni et al., 2007, Arabhavi Population of root CFU (103/g) Wilt incidence No. of galls / 5 g ofTreatments (%) knot juveniles/200 root cc of soil F. chlamydosporum R. bataticola T1 21.09 (27.33) 1640 21.13 7.6 12.2 T2 18.87 (25.74) 1633.33 19.53 8 12.6 T3 19.98 (26.51) 1533.33 18.27 8 14.2 T4 23.31 (28.84) 136.67 17.33 10.6 15.6 T5 21.09 (27.24) 1180 16.07 12.6 16.4 T6 24.42 (29.57) 1066.67 14.93 16.2 17.6 T7 25.53 (30.38) 1960 25.67 15.2 18.8 T8 12.76 (20.93) 873.33 10.13 6.2 9.6 T9 21.09 (27.33) 1933.33 23.33 3.6 6.8 T10 23.31 (28.84) 1906.67 23 3.8 7.4 T11 35.52 (36.59) 2177.33 28.4 19.6 21.6 Mean 22.45 (28.12) 1569.69 19.82 10.13 13.89 S.Em 1.18 49.05 1.83 0.87 0.95CD @ 5% 3.48 144.68 5.38 2.49 2.72Figures in parentheses are arc sine (angular) transformed values
    38. 38. Table 14: Effect of antagonists on the growth of Macrophomina phaseolina in the dual culture technique in coleus. Paramasivan et al., 2007, TN Per cent reduction over Treatment Mycelial growth (cm) controlTrichoderma viride 4.2 52.2T. viride Isolate1 4.3 51.1T. viride Isolate2 3.8 56.8T. viride Isolate3 4.6 47.7T. viride Isolate4 3.1 64.7Trichoderma harzianum 3.6 59.6Trichoderma reesei 5.1 41.1Trichoderma koningeei 4.2 48.5Chaetomium globosum 4.5 55Pseudomonas fluorescens 3.7 58.7Bacillus subtilis 4.2 51.1Carbendazim 4 59.1Control 9 -C. D @ 5% 0.3 -
    39. 39. Table 15: Efficacy of bioagents against dry root rot of coleus under pot culture conditions Paramasivan et al., 2007, TN Treatment Disease incidence Total sprouts Yield (g)Trichoderma viride 28.6 (33.2)* 3 105T. viride Isolate1 21.8 (27.8) 2 107T. viride Isolate2 22.9 (28.5) 4 107T. viride Isolate3 24.6 (29.7) 5 110T. viride Isolate4 19.2 (26.7) 7 150T. harzianum 20.6 (26.9) 5 120T. reesei 33.5 (35.3) 4 90T. koningeei 27.9 (31.1) 3 80Chaetomium globosum 31.5 (34.2) 2 70Pseudomonas fluorescens 20.8 (27.2) 6 135Bacillus subtilis 22.3 (28.7) 5 114Carbendazim 18.3 (25.3) 5 140Control 44.3 (41.5) 1 60C. D @ 5% 3.4 2.1 12Figures in parentheses are arc sine transformed values
    40. 40. Table 16: Effect of biocontrol agents on inhibition of mycelial growth of Rhizoctonia bataticola infecting Coleus forskohlii. Ammajamma et al., 2009, Dharwad Per cent inhibition of mycelialSl. No. Biocontrol agents growth of R. bataticola 1 Bacillus subtilis Cohn. 12.18 (20.43) 2 Pseudomonas fluorescens Migula. 6.45 (14.68) 3 Trichoderma koningii Rifai. 57.40 (49.29) 4 Trichoderma virens Miller. 56.66 (48.89) 5 Trichoderma viride Pers. 76.29 (60.83) Trichoderma harzianum Rifai. 6 79.63 (63.57) (Dharwad isolate) 7 Trichoderma harzianum Rifai. 77.03 (61.23) Mean 52.23 (45.57) S.Em+ 0.28 C.D @1% 1.16 Figures in the parenthesis indicate angular transformed values
    41. 41. Table 17: Biomanagement of nematode fungal disease complex in coleus under controlled conditions. Ramakrishnan and Deepa, 2011, Coimbatore Length (cm) Per cent Tuber Shoot Root gall Treatments disease yield/ Shoot Root weight (g) index incidence plant (g)Super Pseudomonas @ 2.5 120.62 81.87 958.12 2.25 35.62 223.7kg/haP. fluorescens @ 2.5 kg/ha 120.6 75 883.12 2.37 36.87 212.2Consortial formulations of 113.12 72.5 886.87 2.5 38.12 201.2Pfbv22 + Bbv 57 @ 2.5 kg/haT. viride @ 2.5 kg/ha 125 85.6 994.37 2.00 31.87 235.6P. fluorescens + T. viride each 113.12 70.62 813.87 3.12 46.87 190@ 2.5 kg/haCarbofuran 3G @ 1 kg a.i/ ha+ drenching with bavistin 101.87 68.75 772.5 3.37 51.25 185(1 g/L water)Untreated control 70.6 47.5 762.18 5 93.75 157.5CD@5% 10.53 4.21 22.7 0.78 3.54 10.5 Pooled analysis of two pot culture experiments.
    42. 42. Table 18: On farm trial on Biomanagement of nematode fungal disease complex in medicinal coleus Ramakrishnan and Deepa, 2011, Coimbatore - Shoot Root Nematode population Tuber Treatments yield Length Weight Length Weight Soil Root Gall PDI (t/ha) (cm) (cm) (cm) (cm) (200cc) (5g) index 134.21 1158.70 76.75 258.18 77.43 23.56 0.866 17.85T. viride @ 2.5 kg/ha 24 (68.1) (83.37) (79.25) (134.42) (129.16) (76.90) (84.58) (81.54) (77.69)Super pseudomonas @ 115.20 825.07 60.33 208.53 201.36 50.40 2.733 31.23 22.6 2.5 kg/ha (57.39) (27.60) (84.27) (85.09) (39.95) (67.02) (41.41) (60.96) (58.8)Carbofuran 3G @ 1 kg 117.36 932.46 64.19 218.47 194.30 57.96 2.40 35.00 22.0 a.i / ha + drenching (60.34) (44.25) (96.05) (93.91) (42.05) (62.07) (48.49) (56.25) (54.6)with Bavistin (1 kg/ha) Untreated control 73.19 646.4 32.74 112.66 335.33 152.83 4.66 80.01 14.2 CD@5% 21.67 145.1 14.99 48.92 33.05 19.1 1.19 19.43 6.7 Pooled analysis of three field experiments.
    43. 43. Effect of integrated bio-management strategies on root tuber yield in medicinal coleus infested with M. incognita and M. phaseolina Seenivasan, 2010, TNTreatment Details: T1-Integrated nematode management strategy (INMS) i.e. dipping of stem cuttings in 0.1% Pseudomonas fluorescens (strain Pf1 @ 6x108 CFU/g) talc based formulation at planting + growing marigold (Tagetes errecta) as intercrop T2- T1 (INMS) + Biointensive disease management strategy (BDMS) i.e. soil drenching with P. fluorescens (strain PfC6 @ 6x108 CFU/g) talc formulation @ 2.5 kg/ha at planting, 30, 60, 90 & 120 DAP T3- Standard chemical check i.e. Carbofuran 3G @ 1 kg a.i/ ha + soil drenching with carbendazim 0.1% T4- Untreated control
    44. 44. Table 19 : Effect of integrated bio-management strategies on root tuber yield inmedicinal coleus infested with M. incognita and M. phaseolina Seenivasan, 2010, TN Tuber length No. of tubers Tuber weight/ Root tuber Treatments B:C ratio (cm) /plant plant (g) yield (t/ha)T1 11.3a (29.2) 4.8a (22.9) 250.0b (47.6) 6.92b (45.3) 1.37:1T2 11.3a (29.2) 4.8a (22.9) 258.3b (49.3) 7.07b (46.5) 1.22:1T3 12.3a (34.9) 4.9a (24.5) 297.8a (56.0) 7.31a (48.2) 1.35:1T4 8.0b 3.7b 131.0c 3.78c 0.78:1SEd 0.84 0.26 8.4 0.16 -C.D @ 5 % 1.85 0.56 18.3 0.21 -CV % 12.6 8.75 5.7 8.92 -Figures in a column followed by different letters are significantly different at P=0.05level by DMRT; Figures in the parentheses are percent decrease over control; Pooled 2years data.
    45. 45. B.N : Withania somniferaFamily: SolanaceaeActive principle: Withanine & Somniferine (0.13-0.31 %)Medicinal Uses: Rheumatic pain, antitumor, Anti-inflammatory, antioxidant & nervine tonics.Economic parts: Roots and seedsYield: 4-5 q/ha (Dry roots) & 50-75 kg/ha (Seed yield)
    46. 46. Table 20: Effect of rhizobacterial inoculation on the shoot length, primary and lateral branches development of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore No. of Shoot length /plant (cm ) No. of lateral branches/plant primary Treatment 120 150 180 90 DAI 120 DAI 150 DAI 180 DAI branche 90 DAI s/plant DAI DAI DAI T1- Azospirillum 30.25 43.55 52.11 59.75 2.65 9 12.86 13 16.1 (AAs-11) T2- Azotobacter 27.25 39.66 50 56.66 2.15 8.16 12 12.95 15.86(AAz-3) T3- Bacillus(APb-1) 27 38.44 48 55 2.05 8 11.86 12.85 15.33 T4- 28.33 41.24 51.15 58.85 2.75 8.76 12.22 13 16Pseudomonas(APs-1) T5-T1+T2 31.25 46.33 54.66 62..77 2.85 9.15 11 13 16.65 T6-T1+T3+T4 35.25 62.55 64.65 71.33 3.25 11 12.1 14.25 18 T7-T2+T3+T4 33.34 49.65 60 68.65 3.12 10.1 12 14 17.23 T8-T1+T2+T3 32.15 48.25 57.15 66.45 3 9.85 11.86 13.25 17 T9-T1+T2+T3+T4 38.47 56.22 69.47 76.5 3.52 11.44 13.24 16.32 20.25 T10-Uninoculated control 26.00 37.33 45.66 53 2 7.96 10 11.85 15.33 S.E C.D(P=0.05) S.E C.D(P=0.05) T 2.24 4.45 0.59 1.18 D 2.42 2.82 0.37 0.75 T D 4.47 8.9 1.18 2.35
    47. 47. Table 21: Effect of rhizobacterial inoculation on the root growth of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore Root parameters (180 DAS) - Treatment Lateral Root fresh Root dry Root Root girth /Plant roots/Plant weight/ Plant weight/Plant length/Plant(cm) (cm) (no.) (g ) (g)T1- Azospirillum(AAs-11) 19.65 1.78 16.33 17.65 4.72T2- Azotobacter(AAz-3) 18.95 1.75 14.66 16.95 4.3T3- Bacillus(APb-1) 18.2 1.75 14 17 4.33T4- Pseudomonas(APs-1) 19 1.76 14.33 17.33 4.43T5-T1+T2 20.65 1.8 17.66 18 4.92T6-T1+T3+T4 23 2 18.33 19 5.53T7-T2+T3+T4 22.55 1.92 18 18.55 5.33T8-T1+T2+T3 21 1.85 17 18.2 5T9-T1+T2+T3+T4 26.17 2.32 19.66 21.33 6.1T10-Uninoculated control 17 1.72 14.66 15.33 4S.E. 1.76 0.16 1.31 1.53 0.41C.D.(P=0.05) 3.69 0.33 2.76 3.22 0.87
    48. 48. Table 22: Effect of rhizobacterial inoculation on dry matter production of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore Dry matter production(g/plant) Treatments 90 DAI 120 DAI 150 DAI 180 DAIT1- Azospirillum(AAs-11) 0.58 4.72 9.65 15.18T2- Azotobacter(AAz-3) 0.49 4.55 9 14.6T3- Bacillus(APb-1) 0.51 4.6 9.15 14.64T4- Pseudomonas(APs-1) 0.55 4.65 9.26 15T5-T1+T2 0.61 4.78 9.85 15.33T6-T1+T3+T4 0.693 5.11 11.12 16.17T7-T2+T3+T4 0.68 4.93 10.56 16T8-T1+T2+T3 0.65 4.82 10 15.92T9-T1+T2+T3+T4 0.703 5.47 12.56 17.27T10-Uninoculated control 0.41 4.16 8.5 13.26 S.E. C.D.(P=0.05) T 0.42 0.84 D 0.27 0.53 T D 0.85 1.68
    49. 49. Table 23: Effect of rhizobacterial inoculation on total alkaloid content of ashwagandha (var.Jawahar 20) roots. Gopal and Kumutha, 2010, Coimbatore Total alkaloid yield Treatments Total alkaloid (%) (mg/plant)T1- Azospirillum(AAs-11) 1.18 56T2- Azotobacter(AAz-3) 1.12 48T3- Bacillus(APb-1) 1.13 49T4- Pseudomonas(APs-1) 1.15 51T5-T1+T2 1.20 59T6-T1+T3+T4 1.29 71T7-T2+T3+T4 1.26 67T8-T1+T2+T3 1.23 62T9-T1+T2+T3+T4 1.42 87T10-Uninoculated control 1.10 44S.E. 0.10 5.33C.D. (P=0.05) 0.22 11.13
    50. 50. Table 24: Effect of rhizobacterial inoculation on Withaferin-A content of ashwagandha (var. Jawahar 20) roots by HPLC. Gopal and Kumutha, 2010, Coimbatore Withaferin-A content Treatments (mg /100g of roots)T1- Azospirillum (AAs-11) 44.80T2- Azospirillum (AAs-11) + Azotobacter (AAz-3) 57.80T6- Azospirillum (AAs-11) + Bacillus (APb-1) + 66.42Pseudomonas (APs-1)T9- Azospirillum (AAs-11) + Azotobacter (AAz-3) + 110.00Bacillus (APb-1) + Pseudomonas (APs-1)T10- Uninoculated control 40.40
    51. 51. Table 25: Influence of organic and biological amendments on root knot index in Withania somnifera L. Pandey et al., 2011, Lucknow Treatments Root knot Index (RKI)Untreated control 3.33aTrichoderma harzianum (2x108 cfu/g) 0.66cd@0.9 kg/bedCow urine @4.5 L/bed 0.83cdVermicompost @4.5 kg/bed 1.33bcNeem oil seed cake @ 0.36 kg/bed 1.16bcCow urine + T. harzianum 0.33dVermicompost + T. harzianum 0.66cdNeem oil seed cake + T. harzianum 0.33dMean in each column followed by same letters do not differ significantly(P= 0.05) according to Duncan’s multiple range test.
    52. 52. Table 26: Effect of different organic and biological amendments on the root & Shoot dry weight (kg) of Withania somnifera. Pandey et al., 2011, Lucknow Root dry weight Treatments Shoot dry weight (kg/m2) (kg/m2)Untreated control 1.3f 0.15hTrichoderma harzianum (2x108 2.3d 0.25ecfu/g) @0.9kg/bedCow urine @4.5L/bed 2.7b 0.28dVermicompost @4.5 kg/bed 2.3d 0.29bcNeem oil seed cake @ 2.5c 0.23f0.36kg/bedCow urine + T. harzianum 2.8ab 0.30bVermicompost + T. harzianum 2.9a 0.32aNeem oil seed cake + T.harzianum 2.8ab 0.29bcMean in each column followed by same letters do not differ significantly (P= 0.05)according to Duncan’s multiple range test.
    53. 53. Conclusion• Biological approach could be practiced to obtain maximum yield, quality and to manage pest & diseases• Different AM- fungi and PGPR improve growth, forskohlin and withaferin- A in coleus and ashwagandha, respectively• Chrysoperla carnea, Trichogramma chilonis, Beauveria bassiana and Bacillus thuringiensis are effective in pest management• Trichoderma harzianum found to be effective in controlling the population of Meloidogyne incognita and Rhizoctonia bataticola
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×