SlideShare a Scribd company logo
1 of 57
UNIVERSITY OF HORTICULTURAL
              SCIENCES, BAGALKOT
Kittur Rani Channamma College of Horticulture, Arabhavi.
Introduction

         Importance of bioagents


                   Role of bioagents in coleus

                             Role of bioagents in
                                 ashwagandha

                                   Conclusion
 Bioagents are preparations containing microorganisms in sufficient
   numbers which enhance crop growth, reduce diseases and pests
   infestation
 Bioagents have the ability to replicate rapidly, require minimal
   resources to survive and can infect at very small doses
 Biological approach will be particularly useful under organic
   conditions, especially for medicinal plants, which are mainly used for
   treating various human ailments, where the use of chemicals is
   restricted because of health and residue considerations
                                                             (Paul, 2003)
 Rising costs of chemical inputs and a host environmental concerns

   have caused farmers to consider alternative agri-industrial

   managements to reduce costs, protect human health, and conserve

   the resource base

 High intensity of chemical pesticide use has become serious cause of

   concern in recent years so, lot of importance has been given to

   organically produced medicinal herbs

 Bioagents are eco-friendly, cost-effective and co-existence with

   tissues of host without causing any harm

                                                       (Kritcher, 1993)
Biofertilizers
• 'Biofertilizer' is a substance which contains living
   microorganisms, when applied to seed, plant surfaces, or
   soil, colonizes the rhizosphere and promotes growth by increasing the
   supply or availability of nutrients to the host plant

• These add nutrients through natural processes of N-
   fixation, solubilizing phosphorous and stimulating plant growth
   through the synthesis of growth promoting substances
General classification of Biofertilizers   Murugan, 2002
BIOFERTILIZER ORGANISMS


        RHIZOBIUM



         AZOTOBACTER




          PSB


       BLUE GREEN ALGAE




       AZOSPIRILLUM



        VA-MYCORRHIZA
Commercial
BIO-FERTILIZERS in
     market
Biopesticides

• Biologically active microbial agents applied to control insect-pests
   by non-toxic mechanisms

• Stimulate plant host defenses and other physiological processes
   make plants more resistant to biotic and abiotic stresses

• Prepared by growing and concentrating naturally occurring
   organisms or their metabolites including
   bacteria, fungi, nematodes, etc.
 Viruses, Bacteria, Fungi and Nematodes are                 sources of
  potential biopesticides

 Viruses - NPV, Granulosis viruses (GV)

 Bacteria- Bacillus, Pseudomonas, Streptomyces and
  Salmonella
    22 varieties of Bacillus thuringiensis are used as biopesticides

 Fungi - Beauveria, Metarhizum, Verticillium, Hirsutella etc.

 Nematodes - Paecilomyces lilacinus & Romanomermis
  culicivorax


                                                            (WHO, 2009)
Biopesticides and Target pests
         Biopesticides                         Target pest
Bacillus thurigiensis strains LBT-1,
                                     Lepidoptera, Mites
LBT-13, LBT-21, LBT-24
Beauveria bassiana strain LBB-1     Coleoptera (weevils), ants, thrips
Verticillium lecanii strain Y-57    Bemisia tabaci ,Myzus persicae
Metarhizium anisopliae
                                    Lepidoptera and Coleoptera
strain LBM-11

Trichogramma spp.                   Lepidoptera

Corynebacterium paurometabolum Nematodes

Pheidole megacephala                Sweet potato weevil



                                                              (Nicolas, 2006)
Biofungicides
 Biofungicides are microorganisms and naturally occurring
  substances that control diseases of crops that are approved for
  organic production
     Biofungicides / biologicals                   Diseases
   Bacillus pumilus                Several foliar diseases
   Pseudomonas syringe             Post-harvest diseases
                                   Pythium, Rhizoctonia, Fusarium,
   Bacillus subtilis
                                   Powdery mildew, other foliar diseases
   Trichoderma harzianum           Root diseases
                                   Fusarium, Rhizoctonia,Pythium,
   Streptomyces lydicus
                                   Phytophthora
   Gliocladium virens              Damping off

                                                                    (Roger, 2010)
 Cost effective and eco-friendly

 Renewable sources to supplement chemical fertilizer

 Play vital role in maintaining long term soil fertility and
    sustainability

 Proliferates beneficial microbes in the soil

 Suppress certain plant diseases, soil-borne diseases and
    parasites
   Non-availability of crop/zone specific strains of
    microorganisms

   Genetic instability of the strains

   Inconsistent performance in the field during abiotic
    stresses

   Lesser speed of action

   Lack of adequate knowledge among the farmers
B.N : Plectranthus forskohlii

Family: Lamiaceae

Active principle: Forskohlin (0.1-0.5%)

Origin: Indian-subcontinent

Medicinal Uses : Glaucoma, Asthma,

                Congestive heart failures &

                Certain type of cancers

Economic parts: Tuberous roots

Yield: 3.5 - 4.0 t/ha (Dry tuber)
Table 1: Effect of bioinoculants and neem cake on growth characteristics of Coleus
         forskohlii at the nursery stage (55 day old cuttings) prior to transplanting.
                                                        Singh et al., 2012, Bangalore
                                                                              Dry shoot Dry root
                             Shoot length Root length Plant spread
      Treatments                                                               weight    weight
                                (cm)         (cm)         (cm)
                                                                              (g/plant) (g/plant)
TV (1.2x106 CFU mL-1)            17.6bc          10.8ab          13.2a          0.81a        0.044bc
BS (1.8x108 CFU mL-1)            15.8ab          11.6b           15.0a          0.75a        0.017a
AZ (2.3x107 CFU mL-1)            19.6bc          12.0b           16.4ab         1.31b        0.059c
GF (1.2x106 CFU mL-1)            20.6c           13.4b           20.8c          1.05b        0.069c
PF (2.5x108 CFU mL-1)            19.0bc          12.4b           18.6b          0.98ab       0.063c
NC                               20.4bc          12.4b           20.2c          1.19b        0.078c
Control                          13.8a           9.20a           14.4a          0.77a        0.013a
LSD (P<0.05)                     3.33             2.27            2.89           0.27         0.022

TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus
fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake (Soil, sand, vermicompost & neem
cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantly
different at P=0.05 by ANOVA (LSD) test.
Table 2: Effect of bioinoculants and neem cake on growth characteristics of Coleus
         forskohlii at harvesting in field conditions.
                                                       Singh et al., 2012, Bangalore
                                                                                            Forskohlin
                         Plant height Plant spread No. of   Dry shoot     Dry root
     Treatments                                                                               yield
                            (cm)          (cm)     branches yield (t/ha) yield (t/ha)
                                                                                             (Kg/ha)
TV (1.2x106 CFU mL-1)       41.7ab         43.7ab       20.3a        1.34a        0.18a         1.1a
BS (1.8x108 CFU mL-1)       40.0ab         46.7b        19.3a        1.36a        0.17a        1.02a
AZ (2.3x107 CFU mL-1)       40.2ab         41.3ab       18.3a        1.49a        0.22a       1.32ab
GF (1.2x106 CFU mL-1)        49.6c         49.3b        28.3b        2.58b        0.41c        2.71c
PF (2.5x108 CFU mL-1)        43.6b         47.1b        28.0b        2.01a       0.32bc       2.15bc
NC                           48.2c         46.3b        27.7b        2.64b        0.42c        2.67c

Control                      38.0a         37.1a        17.0a        1.33a        0.14a        0.83a
LSD (P<0.05)                  4.1           7.0          6.8          0.8          0.1         0.84

TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus
fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake- (Soil, sand, vermicompost & neem
cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantly
different at P=0.05 by ANOVA (LSD) test.
Table 3: Effect of bioinoculants and neem cake on nutrient uptake by Coleus
         forskohlii under field conditions.
                                                       Singh et al., 2012, Bangalore
                         Shoot uptake (Kg/ha)        Root uptake (Kg/ha)        Total uptake (Kg/ha)
     Treatment
                          N        P        K        N        P        K         N        P         K
TV (1.2x106 CFU mL-1)   18.62a    4.89ab   22.31a   0.89a    0.39a    2.44a    19.51a    5.28a    24.75a

BS (1.8x108 CFU mL-1)   19.35ab   4.62a    21.96a   1.04a    0.44ab    2.7a    20.39ab   5.06a    24.66a

AZ (2.3x107 CFU mL-1)   26.97ab   4.82ab   24.62a   1.00a    0.55ab   3.16ab   27.97b    5.37a    27.78ab

GF (1.2x106 CFU mL-1)   28.03b    7.49b    35.68b   1.99b    0.94b    6.05b    30.02b    8.43b    41.73b

PF (2.5x108 CFU mL-1)   27.78b    5.10ab   30.06a   1.41ab   0.73b    4.76b    29.19b    5.83ab   34.82b

NC                      32.78b    7.94b    36.11b   2.35b    0.83b    5.90b    35.13b    8.77b    42.01b

control                  18.6a    4.62a    21.86a   0.80a    0.36a    2.27a    19.40a    4.98a    24.13a

LSD (P<0.05)             8.4      2.8       9.1     0.7      0.3       2        8.2      2.8       9.2

TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus
fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake-(Soil, sand, vermicompost &
neem cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are
significantly different at P=0.05 by ANOVA (LSD) test.
Table 4: Influence of inoculation with different arbuscular fungi on various characters of
          Coleus forskohlii.
                                                     Sailo and Bagyaraj, 2005, Bangalore
                         Plant height        No. of        length of fresh   Dry weight (g/plant)
     Treatments
                            (cm)         branches/plant       root (cm)       Root        Shoot
Uninoculated control        13.33f            81.87e           10.3d           80e        15.85d
Acaulospora laevis          13.67ef          87.87cd           12.5cd         99cd        18.85c
Gigaspora margarita         14.22de           82.87e           12.3cd         99cd        18.90c
Glomus bagyaragii           16.72a           109.20a           18.2a          121a        27.16a
G. etunicatum               14.37de           82.30e           10.6d           94d        18.85c
G. fasciculatum             15.37dc          94.00bc           14.9bc         102bc       19.63c
G. intraradices            14.52cde          87.00cd           13.4cd         99cd        19.15c
G. leptotichum             14.00def           82.05e           11.3d           94d        18.85c
G. macrocarpum             14.58cde          84.73d            11.0d          95cd        18.38c
G. monosporum              14.60cde          86.03d            10.9d          95cd        16.65d
G. mosseae                  14.73cd          95.86b            14.5bc         102bc       19.60c
Scutellospora
                            15.70b           99.43b            16.5ab         107b        23.36b
calospora

Means followed by the same letter in each column do not differ significantly at P= 0.05 by DMRT.
Values are an average of 20 plants taken at 150 DAP.
Table 5: Influence of inoculation with different arbuscular fungi on root and shoot P- content,
         and root forskohlin concentration and content of Coleus forskohlii.
                                                         Sailo and Bagyaraj, 2005, Bangalore

                               P content (mg/plant)          Forskohlin     Forskohlin content
      Treatments
                             Shoot              Root      concentration (%)     (mg/plant)

Uninoculated control         19.61e             3.20e            0.57g             45.6h

Acaulospora laevis           41.31cd           4.27cde          0.74ef             73.58f

Gigaspora margarita          43.44cd           4.71bcd          0.75ef             74.58f
Glomus bagyaragii            76.49a             7.65a            0.93a             112.5a
G. etunicatum                37.41d            3.98de            0.80c             75.51f
G. fasciculatum              48.12c            5.27bc           0.79cd             80.89e
G. intraradices              48.42c            4.94bcd           0.86b             85.13d
G. leptotichum               28.07e            4.04de            0.73f             68.62g
G. macrocarpum               41.44cd           4.46bcd          0.76def            72.19f
G. monosporum                26.45e            4.45bcd          0.77cde            72.45f
G. mosseae                   49.99c            4.85bcd           0.88b             89.41c
Scutellospora calospora      59.93b             5.48b            0.92a             98.43b
Table 6: Influence of inoculation with different arbuscular fungi on mycorrhizal root
         colonization and spore numbers in the root zone of Coleus forskohlii.
                                                  Sailo and Bagyaraj, 2005, Bangalore
                                                         Number of spore (CFU) /50 g
      Treatments             Root colonization (%)
                                                                     soil
Uninoculated control                  3.64f                         9.67g
Acaulospora laevis                   74.80cd                        72.33c
Gigaspora margarita                   71.82e                        66.00d
Glomus bagyaragii                     98.72a                       158.00a
G. etunicatum                         63.56e                        33.33f
G. fasciculatum                       77.97c                       131.33bc
G. intraradices                      73.75cd                        124.0c
G. leptotichum                        63.24e                        36.33ef
G. macrocarpum                        63.61e                        36.3ef
G. monosporum                        68.95de                        43.33e
G. mosseae                            76.81c                       123.00c
Scutellospora calospora               85.61b                       139.67b
Fig 1: Effect of Pseudomonas monteilii (PM) (strain CRC1) and Glomus fasciculatum
       (GF) alone and co-inoculated (PM + GF) on growth characteristics of Coleus
       forskohlii.
                                                         Alok et al., 2012, Lucknow
Fig 2: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone
       and co-inoculated (PM + GF) on yield of C. forskohlii.
                                                        Alok et al., 2012, Lucknow
Fig 3: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-
       inoculated (PM + GF) on forskolin content (percent) in root tubers of C. forskohlii
                                                               Alok et al., 2012, Lucknow
Fig 4: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-
       inoculated (PM + GF) on percent disease index (PDI) and percent wilt incidence
       (PWI) of C. forskohlii.
                                                               Alok et al., 2012, Lucknow
Table 7: Effect of AM fungi on growth characters in coleus forskohlii.
                                                 Dharana et al., 2006, Arabhavi
                            Percent    Plant Plant spread (cm) No. of    Stem
       Treatment         establishment height                  branche diameter
                                              E -W      N-S
                           of cuttings  (cm)                   s/Plant   (cm)
Glomus intraradices           85.00    52.66  52.80     52.00   53.46    2.57
Glomus fasciculatum           91.66        53.40     50.63     52.36     55.83      2.26
Glomus monosporum             83.33        50.73     51.86     51.20      52.5      2.40
Glomus mosseae                91.66        56.76     56.00     52.50     52.50      2.35
Gigaspora margarita           86.66        61.23     55.16     55.20     57.66      2.34
Sclerocystis dussii           90.00        57.76     53.50     53.46      53.5      2.33
Consortia- I                  93.33        58.36     56.16     56.96     58.40      2.35
Control                       80.00        49.23     54.30     54.16     48.13      2.24
Mean                            -          55.02     54.17     53.48     54.00      2.35
S. Em                         2.530        1.406     1.190     1.122     0.769      0.020
C. D. @ 5%                    7.673        4.265     3.609     3.402     2.334      0.062
CV (%)                        5.00         4.43      3.80       3.63      2.47      1.50
Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata &
Trichoderma harzianum
Table 8: Effect of AM- fungi on tuber yield and forskohlin content in Coleus forskohlii.
                                                                Dharana et al., 2006, Arabhavi
                        No. of     Fresh tuber yield     Dry tuber yield   Forskohlin Forskohlin
     Treatment        tubers/pla                                            content     yield
                                   g/plant      q/ha    g/plant     q/ha
                          nt                                                  (%)     (mg/plant)
Glomus intraradices     9.26       107.78       89.82    14.08     11.85        -          -

Glomus fasciculatum     11.60      120.74      100.62    15.78     13.15      0.329      19.30

Glomus monosporum       10.73      126.26      105.21    16.43     13.69        -          -
Glomus mosseae          9.53       125.4       104.48    16.39     13.65        -          -
Gigaspora margarita     10.53      160.09       133.4    20.92     17.36      0.307      17.28

Sclerocystis dussii     13.53      133.06      110.89    17.39     14.62      0.274      15.56
Consortia- I            16.8       159.46      132.89    20.85     17.35      0.403      26.07
Control                  9.8       127.6       106.33    16.69     13.91      0.330      20.75
S. Em                   1.119       7.01        5.84      0.94      0.80        -          -
C. D. @ 5%              3.393      21.25        17.7      2.86      2.44        -          -
CV (%)                  4.709       9.16        9.15      9.43      9.65        -          -

Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata &
Trichoderma harzianum
Table 9: Effect of bio-inoculants on growth parameters of Coleus forskohlii
                                                    Singh et al., 2009, Bangalore

     Treatments          Plant height (cm)       Plant spread (cm)       No. of branches
    GA+120F                 57.21bc                 39.17bc                  9.13b
    GF+120F                 78.25d                  49.75c                   13.38c
    GI+120F                 46.96ab                 36.71bc                  8.0ab
    GM+120F                 64.5cd                  37.0bc                   9.0b
    PF6+120F                81.88d                  56.0c                    12.25c
    120F                    50.5b                   28.38ab                  6.75ab
    GA+240F                 42.88ab                 31.63ab                  8.5ab
    GF+240F                 76.0d                   39.75bc                  10.75bc
    GI+240F                 48.38ab                 34.46ab                  7.13ab
    GM+240F                 58.38b                  33.13ab                  7.88ab
    PF6+240F                76.0d                   43.5bc                   9.75bc
    240F                    37.25a                  21.5a                    4.75a
    Soil only               50.42b                  30.04ab                  7.5ab
    SED                     5.564                   6.3542                   1.9221
GA: Glomus aggregatum; GF: Glomus fasciculatum; GI: Glomus intraradices; GM: Glomus mosseae;
PF6: Pseudomonas fluorescens: 120 F: 120 mL suspension of Fusarium chlamydosporum; 240 F: 240
mL suspension of Fusarium chlamydosporum.& SED: Standard error of mean difference.
Table 10: Effect of bio-inoculants on P and K uptake, Forskohlin content of Coleus forskohlii.
                                                                 Singh et al., 2009, Bangalore

                                                                          Forskohlin content
       Treatments       P - uptake (mg/plant)    K- uptake (mg/plant)
                                                                         (mg/100gm dry roots)
     GA+120F                66.5cd                  495.0de                   890.0ab
     GF+120F                77.5d                   600.0f                    1010.0c
     GI+120F                59.5cd                  385.0c                    795.0a
     GM+120F                59.0c                   390.0c                    920.0bc
     PF6+120F               81.0d                   555.0ef                   975.0bc
     120F                   23.5ab                  150.0ab                   795.0a
     GA+240F                36.5b                   195.0b                    790.0a
     GF+240F                71.5c                   500.0de                   835.0ab
     GI+240F                50.0bc                  270.0b                    820.0ab
     GM+240F                59.5cd                  390.0c                    835.0ab
     PF6+240F               72.5cd                  495.0de                   820.0ab
     240F                   18.0a                   115.0a                    820.0ab
     Soil only              30.5ab                  140.0ab                   895.0ab
     SED                    8.448                   36.576                    47.871
Fig 5: Effect of bio-inoculants on mean shoot dry yield.
                                                      Singh et al., 2009, Bangalore
Fig 6: Effect of bio-inoculants on mean root dry yield.
                                                    Singh et al., 2009, Bangalore
Fig 7: Effect of bio-inoculants on Per cent disease index (PDI).
                                                       Singh et al., 2009, Bangalore
Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents.

                                               Thangavel et al., 2011, Coimbatore

Treatment Details:

 T1- Chrysoperla carnea @ 50,000 eggs/ha (5 releases)

 T2- Trichogramma chilonis @ 6.25 cc/ha (5 releases)

 T3- Bacillus thuringiensis 750 g/ha (5 sprays)

 T4- Beauveria bassiana 2 g/L (5 sprays)

 T5- C.c (1 release) + T.c (1 release) + B.b (1 spray) + B.t (2 spray)

 T6- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.t (2 spray)

 T7- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.b (2 spray)

 T8- Untreated check
Table 11 :Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents.
                                                                 Thangavel et al., 2011, Madurai
           Pre-         No. of thrips/Sq. cm at monthly interval                 Percentage
Treatm
       treatment                                                          Mean reduction over
 ents    count       60 DAP       90 DAP       120 DAP      150 DAP
                                                                                  control
  T1       38.2    11.5 (3.46)a 9.2 (3.11)a 7.4 (2.81)a     4.4 (2.21)a    8.2          60
  T2       39.8    22.1 (4.75)f 19.2 (4.43)g 15.8 (4.03)g 13.4 (3.72)e    17.6         14.1
  T3       40.7    18.3 (4.33)d 15.4 (3.98)e 12.3 (3.57)e 10.9 (3.37)d    14.4         29.7
  T4       41.4    20.2 (4.54)e 17.4 (4.23)f 14.4 (3.86)f 12.8 (3.64)e    16.3         20.4
  T5       37.8    12.7 (3.63)b 10.4 (3.30)b 8.8 (3.04)b    6.3 (2.60)b    9.5         53.6
  T6       39.7    14.4 (3.86)c 13.2 (3.70)d 11.4 (3.44)d 8.3 (2.96)c     11.8         42.4
  T7       40.5    14.2 (3.83)c 12.3 (3.57)c 10.2 (3.27)c 7.8 (2.88)c     11.2         45.3

  T8       41.6    24.7 (5.01)g 22.3(4.77)h 18.6 (4.37)h 16.3 (4.09)f     20.5           -

 SEd         -         0.05         0.05         0.05          0.06         -            -
C. D @
  5%
             -         0.11         0.11         0.12          0.14         -            -

Figures in parentheses are square root transformed values in a column, means followed by same
letter are not significantly different by DMRT (P=0.05).
Table 12 : Population of Orphanostigma abruptalis and yield of wet tubers in coleus, as influenced
            by bio-control agents
                                                                    Thangavel et al., 2011, Madurai

                                     No. of larvae/5 plant                       Percentage
              Pre-
                                                                                  reduction Wet tuber
Treatments treatment                                                        Mean
                        60 DAP       90 DAP      120 DAP      150 DAP               over    yield (kg/ha)
             count
                                                                                   control
    T1         7.6     5.5 (2.44)c 5.1 (2.36)c 3.9 (2.09)b 3.2 (1.92)c       4.4     48.2      20,105c

    T2         8.4     7.9 (2.89)de 7.7 (2.86)e 6.6 (2.66)d 5.5 (2.44)d      6.9     18.8       17,075f

    T3         9.2     7.1 (2.75)d 6.3 (2.60)d 5.1 (2.36)c 4.8 (2.30)d       5.8     31.7      18,112d

    T4         8.3     7.6 (2.84)d 6.8 (2.70)de 5.7 (2.48)cd 4.4 (2.21)d     6.1     28.2      17,454e

    T5         7.1     3.9 (2.09)a 3.3 (1.94)a 2.1 (1.61)a 1.3 (1.34)a       2.6     69.4      20,643a

    T6         8.2     4.6 (2.25)ab 4.2 (2.16)b 3.1 (1.89)b 2.2 (1.64)b      3.5     58.8      20,455ab

    T7         7.8     5.0 (2.34)bc 4.8 (2.30)bc 3.3 (1.94)b 2.5 (1.73)bc    3.9     54.1      20,283bc

    T8         9.2     8.8 (3.04)e 9.1 (3.09)f 8.5 (3.00)e 7.6 (2.84)e       8.5       -       20,256g
   SEd        0.08        0.09         0.09        0.11           -           -        -         0.33
 C. D @
              0.17        0.19         0.21        0.25           -           -        -         1.32
   5%
  T5- C.c (1 relaese) + T.c (1 relaese) + B.b (1 spray) + B.t (2 spray)
Management of collar rot complex in Coleus forskohlii using bioagents, organic
amendments and chemicals.
                                                         Kulkarni et al., 2007, Arabhavi

Treatment Details:
T1- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml)
T2- Trichoderma harzianum @ 10 ml/plant (8x103 cfu/ml)
T3- Pseudomonas fluorescens @ 10 ml/plant (24x105 cfu/ml)
T4- Pronto @ 5% as soil drench (neem based product)
T5- Neemto @500 g/5 m2 (neem based product)
T6-Carbofuran 3G @ 15 gai/5 m2
T7- Farm yard manure @ 5 kg/5 m2
T8- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml) + Neemto @500 g/5 m2
T9- Carbendazim @ 0.1% soil drench
T10- Propiconazole @ 0.1% soil drench
T11- Control
Table 13: Management of collar rot complex of Coleus forskohlii using bioagents, organic
          amendments and chemicals.
                                                            Kulkarni et al., 2007, Arabhavi
                               Population of root                                       CFU (103/g)
              Wilt incidence                        No. of galls / 5 g of
Treatments         (%)
                               knot juveniles/200
                                                           root
                                   cc of soil                               F. chlamydosporum    R. bataticola

    T1        21.09 (27.33)          1640                 21.13                   7.6                 12.2
    T2        18.87 (25.74)        1633.33                19.53                    8                  12.6
    T3        19.98 (26.51)        1533.33                18.27                    8                  14.2
    T4        23.31 (28.84)         136.67                17.33                   10.6                15.6
    T5        21.09 (27.24)          1180                 16.07                   12.6                16.4
    T6        24.42 (29.57)        1066.67                14.93                   16.2                17.6
    T7        25.53 (30.38)          1960                 25.67                   15.2                18.8
    T8        12.76 (20.93)         873.33                10.13                   6.2                  9.6
   T9         21.09 (27.33)        1933.33                23.33                   3.6                  6.8
   T10        23.31 (28.84)        1906.67                  23                    3.8                  7.4
   T11        35.52 (36.59)        2177.33                 28.4                  19.6                  21.6
 Mean         22.45 (28.12)        1569.69                19.82                  10.13                13.89
 S.Em             1.18              49.05                  1.83                  0.87                  0.95
CD @ 5%           3.48              144.68                 5.38                  2.49                  2.72
Figures in parentheses are arc sine (angular) transformed values
Table 14: Effect of antagonists on the growth of Macrophomina phaseolina in the dual
          culture technique in coleus.
                                                            Paramasivan et al., 2007, TN
                                                               Per cent reduction over
          Treatment               Mycelial growth (cm)
                                                                       control
Trichoderma viride                         4.2                           52.2
T. viride Isolate1                         4.3                          51.1
T. viride Isolate2                         3.8                          56.8
T. viride Isolate3                         4.6                          47.7
T. viride Isolate4                         3.1                          64.7
Trichoderma harzianum                      3.6                          59.6
Trichoderma reesei                         5.1                          41.1
Trichoderma koningeei                      4.2                          48.5
Chaetomium globosum                        4.5                           55
Pseudomonas fluorescens                    3.7                          58.7
Bacillus subtilis                          4.2                          51.1
Carbendazim                                 4                           59.1
Control                                     9                             -
C. D @ 5%                                  0.3                            -
Table 15: Efficacy of bioagents against dry root rot of coleus under pot culture
          conditions                              Paramasivan et al., 2007, TN
            Treatment         Disease incidence    Total sprouts     Yield (g)
Trichoderma viride                28.6 (33.2)*           3              105
T. viride Isolate1               21.8 (27.8)             2              107
T. viride Isolate2               22.9 (28.5)             4              107
T. viride Isolate3               24.6 (29.7)             5              110
T. viride Isolate4               19.2 (26.7)             7              150
T. harzianum                     20.6 (26.9)             5              120
T. reesei                        33.5 (35.3)             4              90
T. koningeei                     27.9 (31.1)             3              80
Chaetomium globosum              31.5 (34.2)             2              70
Pseudomonas fluorescens          20.8 (27.2)             6              135
Bacillus subtilis                22.3 (28.7)             5              114
Carbendazim                      18.3 (25.3)             5              140
Control                          44.3 (41.5)             1              60
C. D @ 5%                            3.4                 2.1            12
Figures in parentheses are arc sine transformed values
Table 16: Effect of biocontrol agents on inhibition of mycelial growth of
       Rhizoctonia bataticola infecting Coleus forskohlii.
                                            Ammajamma et al., 2009, Dharwad
                                                Per cent inhibition of mycelial
Sl. No.          Biocontrol agents                 growth of R. bataticola
  1       Bacillus subtilis Cohn.                 12.18 (20.43)
  2       Pseudomonas fluorescens Migula.          6.45 (14.68)
  3       Trichoderma koningii Rifai.              57.40 (49.29)
  4       Trichoderma virens Miller.               56.66 (48.89)
  5       Trichoderma viride Pers.                 76.29 (60.83)
          Trichoderma harzianum Rifai.
  6                                                79.63 (63.57)
          (Dharwad isolate)
  7       Trichoderma harzianum Rifai.             77.03 (61.23)
                      Mean                         52.23 (45.57)
                     S.Em+                         0.28
                    C.D @1%                        1.16
  Figures in the parenthesis indicate angular transformed values
Table 17: Biomanagement of nematode fungal disease complex in coleus under
          controlled conditions.
                                                 Ramakrishnan and Deepa, 2011, Coimbatore
                                   Length (cm)                           Per cent  Tuber
                                                     Shoot Root gall
         Treatments                                                      disease   yield/
                                  Shoot    Root     weight (g) index
                                                                        incidence plant (g)
Super Pseudomonas @ 2.5
                                  120.62   81.87      958.12     2.25     35.62     223.7
kg/ha
P. fluorescens @ 2.5 kg/ha        120.6     75        883.12     2.37     36.87     212.2

Consortial formulations of
                                  113.12   72.5       886.87     2.5      38.12     201.2
Pfbv22 + Bbv 57 @ 2.5 kg/ha

T. viride @ 2.5 kg/ha              125     85.6       994.37     2.00     31.87     235.6
P. fluorescens + T. viride each
                                  113.12   70.62      813.87     3.12     46.87      190
@ 2.5 kg/ha
Carbofuran 3G @ 1 kg a.i/ ha
+ drenching with bavistin         101.87   68.75       772.5     3.37     51.25      185
(1 g/L water)
Untreated control                  70.6    47.5       762.18      5       93.75     157.5
CD@5%                             10.53    4.21        22.7      0.78     3.54       10.5

 Pooled analysis of two pot culture experiments.
Table 18: On farm trial on Biomanagement of nematode fungal disease complex in
         medicinal coleus
                                     Ramakrishnan and Deepa, 2011, Coimbatore
                                                        -
                             Shoot                   Root                   Nematode population           Tuber
    Treatments                                                                                            yield
                        Length    Weight    Length      Weight        Soil     Root     Gall
                                                                                                  PDI     (t/ha)
                         (cm)      (cm)      (cm)        (cm)       (200cc)    (5g)    index

                        134.21    1158.70     76.75      258.18      77.43   23.56   0.866   17.85
T. viride @ 2.5 kg/ha                                                                               24 (68.1)
                        (83.37)   (79.25)   (134.42)    (129.16)    (76.90) (84.58) (81.54) (77.69)


Super pseudomonas @ 115.20        825.07     60.33      208.53      201.36 50.40     2.733   31.23         22.6
      2.5 kg/ha     (57.39)       (27.60)   (84.27)     (85.09)     (39.95) (67.02) (41.41) (60.96)       (58.8)


Carbofuran 3G @ 1 kg
                        117.36    932.46     64.19      218.47      194.30 57.96      2.40   35.00         22.0
 a.i / ha + drenching
                        (60.34)   (44.25)   (96.05)     (93.91)     (42.05) (62.07) (48.49) (56.25)       (54.6)
with Bavistin (1 kg/ha)

  Untreated control     73.19      646.4     32.74      112.66      335.33    152.83   4.66       80.01   14.2

     CD@5%              21.67      145.1     14.99          48.92   33.05      19.1    1.19       19.43    6.7


    Pooled analysis of three field experiments.
Effect of integrated bio-management strategies on root tuber yield in medicinal coleus
           infested with M. incognita and M. phaseolina
                                                                 Seenivasan, 2010, TN

Treatment Details:

 T1-Integrated nematode management strategy (INMS) i.e. dipping of stem
   cuttings in 0.1% Pseudomonas fluorescens (strain Pf1 @ 6x108 CFU/g) talc
   based formulation at planting + growing marigold (Tagetes errecta) as
   intercrop

 T2- T1 (INMS) + Biointensive disease management strategy (BDMS) i.e.
   soil drenching with P. fluorescens (strain PfC6 @ 6x108 CFU/g) talc
   formulation @ 2.5 kg/ha at planting, 30, 60, 90 & 120 DAP

 T3- Standard chemical check i.e. Carbofuran 3G @ 1 kg a.i/ ha + soil
   drenching with carbendazim 0.1%

 T4- Untreated control
Table 19 : Effect of integrated bio-management strategies on root tuber yield in
medicinal coleus infested with M. incognita and M. phaseolina
                                                                 Seenivasan, 2010, TN

               Tuber length No. of tubers Tuber weight/       Root tuber
 Treatments                                                                  B:C ratio
                  (cm)         /plant       plant (g)         yield (t/ha)

T1              11.3a (29.2)   4.8a (22.9)    250.0b (47.6)   6.92b (45.3)     1.37:1

T2              11.3a (29.2)   4.8a (22.9)    258.3b (49.3)   7.07b (46.5)     1.22:1

T3              12.3a (34.9)   4.9a (24.5)    297.8a (56.0)   7.31a (48.2)     1.35:1

T4                 8.0b           3.7b           131.0c           3.78c        0.78:1

SEd                0.84           0.26             8.4            0.16            -

C.D @ 5 %          1.85           0.56            18.3            0.21            -

CV %               12.6           8.75             5.7            8.92            -

Figures in a column followed by different letters are significantly different at P=0.05
level by DMRT; Figures in the parentheses are percent decrease over control; Pooled 2
years data.
B.N : Withania somnifera

Family: Solanaceae

Active principle: Withanine & Somniferine

                     (0.13-0.31 %)

Medicinal Uses: Rheumatic pain, antitumor,

  Anti-inflammatory, antioxidant & nervine tonics.

Economic parts: Roots and seeds

Yield: 4-5 q/ha (Dry roots) &

     50-75 kg/ha (Seed yield)
Table 20: Effect of rhizobacterial inoculation on the shoot length, primary and lateral branches
          development of ashwagandha (var.Jawahar 20).
                                                                       Gopal, 2010, Coimbatore
                                                        No. of
                                Shoot length /plant (cm )         No. of lateral branches/plant
                                                       primary
      Treatment                                                           120     150     180
                        90 DAI 120 DAI 150 DAI 180 DAI branche 90 DAI
                                                        s/plant          DAI      DAI    DAI
 T1- Azospirillum
                          30.25     43.55     52.11    59.75     2.65    9      12.86    13     16.1
 (AAs-11)
 T2- Azotobacter
                          27.25     39.66      50      56.66     2.15   8.16     12     12.95   15.86
(AAz-3)
 T3- Bacillus(APb-1)       27       38.44      48           55   2.05    8      11.86   12.85   15.33
 T4-
                          28.33     41.24     51.15    58.85     2.75   8.76    12.22    13      16
Pseudomonas(APs-1)
 T5-T1+T2                 31.25     46.33     54.66    62..77    2.85   9.15     11      13     16.65
 T6-T1+T3+T4              35.25     62.55     64.65    71.33     3.25    11     12.1    14.25    18
 T7-T2+T3+T4              33.34     49.65      60      68.65     3.12   10.1     12      14     17.23
 T8-T1+T2+T3              32.15     48.25    57.15    66.45       3      9.85   11.86   13.25   17
 T9-T1+T2+T3+T4           38.47     56.22    69.47     76.5      3.52   11.44   13.24   16.32 20.25
 T10-Uninoculated control 26.00     37.33    45.66      53        2      7.96    10     11.85 15.33
                             S.E             C.D(P=0.05)                 S.E            C.D(P=0.05)
           T               2.24               4.45                       0.59            1.18
           D               2.42               2.82                       0.37            0.75
          T D              4.47                8.9                       1.18            2.35
Table 21: Effect of rhizobacterial inoculation on the root growth of ashwagandha
          (var.Jawahar 20).                                   Gopal, 2010, Coimbatore
                                                   Root parameters (180 DAS) -
        Treatment                                                 Lateral      Root fresh      Root dry
                                 Root       Root girth /Plant
                                                                roots/Plant   weight/ Plant   weight/Plant
                           length/Plant(cm)       (cm)
                                                                   (no.)          (g )            (g)
T1- Azospirillum(AAs-11)        19.65             1.78            16.33          17.65           4.72

T2- Azotobacter(AAz-3)          18.95             1.75            14.66          16.95            4.3

T3- Bacillus(APb-1)             18.2              1.75              14             17            4.33
T4- Pseudomonas(APs-1)           19               1.76            14.33          17.33           4.43
T5-T1+T2                        20.65             1.8             17.66            18            4.92
T6-T1+T3+T4                      23                2              18.33            19            5.53
T7-T2+T3+T4                     22.55             1.92              18           18.55           5.33
T8-T1+T2+T3                      21               1.85              17            18.2             5
T9-T1+T2+T3+T4                  26.17             2.32            19.66          21.33            6.1
T10-Uninoculated control         17               1.72            14.66          15.33             4
S.E.                            1.76              0.16             1.31           1.53           0.41
C.D.(P=0.05)                    3.69              0.33             2.76           3.22           0.87
Table 22: Effect of rhizobacterial inoculation on dry matter production of ashwagandha
          (var.Jawahar 20).                                       Gopal, 2010, Coimbatore

                                           Dry matter production(g/plant)
        Treatments
                             90 DAI            120 DAI          150 DAI         180 DAI
T1- Azospirillum(AAs-11)     0.58              4.72              9.65            15.18
T2- Azotobacter(AAz-3)       0.49              4.55              9               14.6
T3- Bacillus(APb-1)          0.51              4.6               9.15            14.64
T4- Pseudomonas(APs-1)       0.55              4.65              9.26            15
T5-T1+T2                     0.61              4.78              9.85            15.33
T6-T1+T3+T4                  0.693             5.11              11.12           16.17
T7-T2+T3+T4                  0.68              4.93              10.56           16
T8-T1+T2+T3                  0.65              4.82              10              15.92
T9-T1+T2+T3+T4               0.703             5.47              12.56           17.27
T10-Uninoculated control     0.41              4.16              8.5             13.26
                             S.E.                                C.D.(P=0.05)
             T               0.42                                0.84
             D               0.27                                0.53
           T D               0.85                                1.68
Table 23: Effect of rhizobacterial inoculation on total alkaloid content of
          ashwagandha (var.Jawahar 20) roots.
                                              Gopal and Kumutha, 2010, Coimbatore

                                                             Total alkaloid yield
            Treatments                Total alkaloid (%)
                                                                 (mg/plant)
T1- Azospirillum(AAs-11)                     1.18                    56
T2- Azotobacter(AAz-3)                       1.12                    48
T3- Bacillus(APb-1)                          1.13                    49
T4- Pseudomonas(APs-1)                       1.15                    51
T5-T1+T2                                     1.20                    59
T6-T1+T3+T4                                  1.29                    71
T7-T2+T3+T4                                  1.26                    67
T8-T1+T2+T3                                  1.23                    62
T9-T1+T2+T3+T4                               1.42                    87
T10-Uninoculated control                     1.10                    44
S.E.                                         0.10                   5.33
C.D. (P=0.05)                                0.22                   11.13
Table 24: Effect of rhizobacterial inoculation on Withaferin-A content of
          ashwagandha (var. Jawahar 20) roots by HPLC.
                                            Gopal and Kumutha, 2010, Coimbatore

                                                       Withaferin-A content
                      Treatments
                                                        (mg /100g of roots)

T1- Azospirillum (AAs-11)                                      44.80

T2- Azospirillum (AAs-11) + Azotobacter (AAz-3)                57.80

T6- Azospirillum (AAs-11) + Bacillus (APb-1) +
                                                               66.42
Pseudomonas (APs-1)

T9- Azospirillum (AAs-11) + Azotobacter (AAz-3) +
                                                               110.00
Bacillus (APb-1) + Pseudomonas (APs-1)

T10- Uninoculated control                                      40.40
Table 25: Influence of organic and biological amendments on root knot
         index in Withania somnifera L.
                                              Pandey et al., 2011, Lucknow

              Treatments                        Root knot Index (RKI)
Untreated control                                         3.33a
Trichoderma harzianum (2x108 cfu/g)
                                                          0.66cd
@0.9 kg/bed
Cow urine @4.5 L/bed                                      0.83cd
Vermicompost @4.5 kg/bed                                  1.33bc
Neem oil seed cake @ 0.36 kg/bed                          1.16bc
Cow urine + T. harzianum                                  0.33d
Vermicompost + T. harzianum                               0.66cd

Neem oil seed cake + T. harzianum                         0.33d

Mean in each column followed by same letters do not differ significantly
(P= 0.05) according to Duncan’s multiple range test.
Table 26: Effect of different organic and biological amendments on the root & Shoot
          dry weight (kg) of Withania somnifera.
                                                         Pandey et al., 2011, Lucknow
                                                                  Root dry weight
          Treatments              Shoot dry weight (kg/m2)
                                                                     (kg/m2)
Untreated control                            1.3f                       0.15h
Trichoderma harzianum (2x108
                                             2.3d                       0.25e
cfu/g) @0.9kg/bed
Cow urine @4.5L/bed                          2.7b                       0.28d
Vermicompost @4.5 kg/bed                     2.3d                       0.29bc
Neem oil seed cake @
                                             2.5c                       0.23f
0.36kg/bed
Cow urine + T. harzianum                     2.8ab                      0.30b
Vermicompost + T. harzianum                  2.9a                       0.32a
Neem oil seed cake + T.
harzianum
                                             2.8ab                      0.29bc

Mean in each column followed by same letters do not differ significantly (P= 0.05)
according to Duncan’s multiple range test.
Conclusion
• Biological approach could be practiced to obtain maximum
  yield, quality and to manage pest & diseases

• Different AM- fungi and PGPR improve growth, forskohlin
  and withaferin- A in coleus and ashwagandha, respectively

• Chrysoperla carnea, Trichogramma chilonis, Beauveria
  bassiana and Bacillus thuringiensis are effective in pest
  management

• Trichoderma harzianum found to be effective in controlling the
  population of Meloidogyne incognita and Rhizoctonia
  bataticola
Role of bioagents in coleus and ashwagandha production

More Related Content

What's hot

biopesticide-deepak yadav university of allahabad
biopesticide-deepak yadav university of allahabadbiopesticide-deepak yadav university of allahabad
biopesticide-deepak yadav university of allahabadDeepak Yadav
 
Biopesticides in opm
Biopesticides in opmBiopesticides in opm
Biopesticides in opmromila123
 
Niranjay,,,microial pest
Niranjay,,,microial pestNiranjay,,,microial pest
Niranjay,,,microial pestniranjay
 
Biopesticides
BiopesticidesBiopesticides
Biopesticidesrhailly
 
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...Shazia Shahzaman
 
Production of biopestcides
Production of biopestcidesProduction of biopestcides
Production of biopestcidesDeepika Rana
 
B.sc. agri sem ii agricultural microbiology unit 4 biopesticides
B.sc. agri sem ii agricultural microbiology unit 4 biopesticidesB.sc. agri sem ii agricultural microbiology unit 4 biopesticides
B.sc. agri sem ii agricultural microbiology unit 4 biopesticidesRai University
 
Entomo-pathogenic Fungi
Entomo-pathogenic FungiEntomo-pathogenic Fungi
Entomo-pathogenic FungiPooja Gangwar
 
Biopesticide
BiopesticideBiopesticide
Biopesticideeswar1810
 
Biopesticides
BiopesticidesBiopesticides
BiopesticidesRuchi
 
Recent advances in microbial pesticide
Recent advances in microbial pesticideRecent advances in microbial pesticide
Recent advances in microbial pesticideRam Kumar
 
Production of biopesticides
Production of biopesticidesProduction of biopesticides
Production of biopesticidesSUSHMITA DHIR
 

What's hot (19)

Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
biopesticide-deepak yadav university of allahabad
biopesticide-deepak yadav university of allahabadbiopesticide-deepak yadav university of allahabad
biopesticide-deepak yadav university of allahabad
 
Biopesticides in opm
Biopesticides in opmBiopesticides in opm
Biopesticides in opm
 
Niranjay,,,microial pest
Niranjay,,,microial pestNiranjay,,,microial pest
Niranjay,,,microial pest
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...
Bio efficacy of pseudomonas fluorescens isolated from chickpea fields as plan...
 
Biotechnology:Biopesticides
Biotechnology:BiopesticidesBiotechnology:Biopesticides
Biotechnology:Biopesticides
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Biopesticide
BiopesticideBiopesticide
Biopesticide
 
Production of biopestcides
Production of biopestcidesProduction of biopestcides
Production of biopestcides
 
Bio pesticides
Bio pesticidesBio pesticides
Bio pesticides
 
B.sc. agri sem ii agricultural microbiology unit 4 biopesticides
B.sc. agri sem ii agricultural microbiology unit 4 biopesticidesB.sc. agri sem ii agricultural microbiology unit 4 biopesticides
B.sc. agri sem ii agricultural microbiology unit 4 biopesticides
 
Entomo-pathogenic Fungi
Entomo-pathogenic FungiEntomo-pathogenic Fungi
Entomo-pathogenic Fungi
 
Biopesticide
BiopesticideBiopesticide
Biopesticide
 
Bio-insecticides
Bio-insecticidesBio-insecticides
Bio-insecticides
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Recent advances in microbial pesticide
Recent advances in microbial pesticideRecent advances in microbial pesticide
Recent advances in microbial pesticide
 
Production of biopesticides
Production of biopesticidesProduction of biopesticides
Production of biopesticides
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 

Viewers also liked

Mass production of bio pesticides and bio agents.
Mass production of bio pesticides and bio agents. Mass production of bio pesticides and bio agents.
Mass production of bio pesticides and bio agents. balram2424
 
Biopesticides
BiopesticidesBiopesticides
BiopesticidesMuslima7
 
Applications Of Industrial Biotechnology
Applications Of Industrial BiotechnologyApplications Of Industrial Biotechnology
Applications Of Industrial BiotechnologyAIT
 

Viewers also liked (7)

BIO-PESTICIDE
BIO-PESTICIDEBIO-PESTICIDE
BIO-PESTICIDE
 
Biopesticides in Integrated Pest Management
Biopesticides in Integrated Pest ManagementBiopesticides in Integrated Pest Management
Biopesticides in Integrated Pest Management
 
Mass production of bio pesticides and bio agents.
Mass production of bio pesticides and bio agents. Mass production of bio pesticides and bio agents.
Mass production of bio pesticides and bio agents.
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Applications Of Industrial Biotechnology
Applications Of Industrial BiotechnologyApplications Of Industrial Biotechnology
Applications Of Industrial Biotechnology
 
Biopesticide
Biopesticide Biopesticide
Biopesticide
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Role of bioagents in coleus and ashwagandha production

Effect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsEffect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsSourabhMohite
 
BIORATIONALS.pptx
BIORATIONALS.pptxBIORATIONALS.pptx
BIORATIONALS.pptxsaswati19
 
Induced systemic resistance in tomato plants against
Induced systemic resistance in tomato plants againstInduced systemic resistance in tomato plants against
Induced systemic resistance in tomato plants againstAlexander Decker
 
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptx
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptxEco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptx
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptxSabinKaphle
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomatoAlexander Decker
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomatoAlexander Decker
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomatoAlexander Decker
 
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...Praveen Banachod
 
Fruit rot control by biological way
Fruit rot control  by biological wayFruit rot control  by biological way
Fruit rot control by biological wayJayesh Shewale
 
Isolation, identification of antagonistic rhizobacterial strains obtained fro...
Isolation, identification of antagonistic rhizobacterial strains obtained fro...Isolation, identification of antagonistic rhizobacterial strains obtained fro...
Isolation, identification of antagonistic rhizobacterial strains obtained fro...Shazia Shahzaman
 
Biofertilizers and their role in vegetable production
Biofertilizers and their role in vegetable productionBiofertilizers and their role in vegetable production
Biofertilizers and their role in vegetable productionAshutosh Kumar
 
Bacterial contaminants of plant tissue culture
Bacterial contaminants of plant tissue cultureBacterial contaminants of plant tissue culture
Bacterial contaminants of plant tissue cultureAmer T. Wazwaz
 
NON INSECTICIDAL APPROACHES IN VEGETABLE PEST
NON INSECTICIDAL APPROACHES IN VEGETABLE PESTNON INSECTICIDAL APPROACHES IN VEGETABLE PEST
NON INSECTICIDAL APPROACHES IN VEGETABLE PESTRAKESH KUMAR MEENA
 
Efficacy of bacterial bioagents in the management of plant diseases
Efficacy of bacterial bioagents  in the management of plant diseasesEfficacy of bacterial bioagents  in the management of plant diseases
Efficacy of bacterial bioagents in the management of plant diseasesShikha Sharma
 
Avs role of plant growth promoting rhizobacteria in disease
Avs role of plant growth promoting rhizobacteria in diseaseAvs role of plant growth promoting rhizobacteria in disease
Avs role of plant growth promoting rhizobacteria in diseaseAMOL SHITOLE
 
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTION
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTIONROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTION
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTIONATMA RAM MEENA
 
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....Mrinmoy Roy Tanu
 
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...CIMMYT
 

Similar to Role of bioagents in coleus and ashwagandha production (20)

Effect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsEffect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural Crops
 
BIORATIONALS.pptx
BIORATIONALS.pptxBIORATIONALS.pptx
BIORATIONALS.pptx
 
Induced systemic resistance in tomato plants against
Induced systemic resistance in tomato plants againstInduced systemic resistance in tomato plants against
Induced systemic resistance in tomato plants against
 
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptx
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptxEco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptx
Eco-friendly Management of fruit fly in Bitter Gourd at Baitadi.pptx
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomato
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomato
 
Effect of phytobiocides in controlling soft rot of tomato
  Effect of phytobiocides in controlling soft rot of tomato  Effect of phytobiocides in controlling soft rot of tomato
Effect of phytobiocides in controlling soft rot of tomato
 
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...
Effect of Bio and Chemical Fertilization on Growth, Yield and Quality of Sunf...
 
Fruit rot control by biological way
Fruit rot control  by biological wayFruit rot control  by biological way
Fruit rot control by biological way
 
Isolation, identification of antagonistic rhizobacterial strains obtained fro...
Isolation, identification of antagonistic rhizobacterial strains obtained fro...Isolation, identification of antagonistic rhizobacterial strains obtained fro...
Isolation, identification of antagonistic rhizobacterial strains obtained fro...
 
Biofertilizers and their role in vegetable production
Biofertilizers and their role in vegetable productionBiofertilizers and their role in vegetable production
Biofertilizers and their role in vegetable production
 
Bacterial contaminants of plant tissue culture
Bacterial contaminants of plant tissue cultureBacterial contaminants of plant tissue culture
Bacterial contaminants of plant tissue culture
 
NON INSECTICIDAL APPROACHES IN VEGETABLE PEST
NON INSECTICIDAL APPROACHES IN VEGETABLE PESTNON INSECTICIDAL APPROACHES IN VEGETABLE PEST
NON INSECTICIDAL APPROACHES IN VEGETABLE PEST
 
Efficacy of bacterial bioagents in the management of plant diseases
Efficacy of bacterial bioagents  in the management of plant diseasesEfficacy of bacterial bioagents  in the management of plant diseases
Efficacy of bacterial bioagents in the management of plant diseases
 
EFFECT OF LIQUID BIO-FERTILIZERS ON GROWTH, YIELD AND QUALITY OF PULSES
EFFECT OF LIQUID BIO-FERTILIZERS ON GROWTH, YIELD AND QUALITY OF PULSES EFFECT OF LIQUID BIO-FERTILIZERS ON GROWTH, YIELD AND QUALITY OF PULSES
EFFECT OF LIQUID BIO-FERTILIZERS ON GROWTH, YIELD AND QUALITY OF PULSES
 
Avs role of plant growth promoting rhizobacteria in disease
Avs role of plant growth promoting rhizobacteria in diseaseAvs role of plant growth promoting rhizobacteria in disease
Avs role of plant growth promoting rhizobacteria in disease
 
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTION
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTIONROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTION
ROLE OF BIOFERTILIZERS IN VEGETABLE PRODUCTION
 
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....
ORGANIC SOIL AMENDMENTS FOR THE MANAGEMENT OF SOIL BORNE PATHOGEN(S)_MRINMOY....
 
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...
Defense Response boost Through Cu-chitosan Nanoparticles and Plant Growth enh...
 
Dr paul struik
Dr paul struikDr paul struik
Dr paul struik
 

More from UHS Bagalkot, KRCCH Arabhavi

Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...
Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...
Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...UHS Bagalkot, KRCCH Arabhavi
 
Sensory evaluation of essential oil final ppt by shivanand m.r
Sensory evaluation of essential oil final ppt by  shivanand m.rSensory evaluation of essential oil final ppt by  shivanand m.r
Sensory evaluation of essential oil final ppt by shivanand m.rUHS Bagalkot, KRCCH Arabhavi
 
Production technology of Safed musli By- Shivanand M.R
 Production technology of Safed musli By- Shivanand M.R Production technology of Safed musli By- Shivanand M.R
Production technology of Safed musli By- Shivanand M.RUHS Bagalkot, KRCCH Arabhavi
 
Crop improvement of patchouli & basil by Shivanand M. R
Crop improvement of patchouli & basil by Shivanand M. RCrop improvement of patchouli & basil by Shivanand M. R
Crop improvement of patchouli & basil by Shivanand M. RUHS Bagalkot, KRCCH Arabhavi
 

More from UHS Bagalkot, KRCCH Arabhavi (10)

Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...
Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...
Production & utilization of Garden Rue (Ruta graveolens. L)- Shivanand M.R (I...
 
Sensory evaluation of essential oil final ppt by shivanand m.r
Sensory evaluation of essential oil final ppt by  shivanand m.rSensory evaluation of essential oil final ppt by  shivanand m.r
Sensory evaluation of essential oil final ppt by shivanand m.r
 
Training and pruning in tea By- Shivanand M.R
Training and pruning in tea By- Shivanand M.RTraining and pruning in tea By- Shivanand M.R
Training and pruning in tea By- Shivanand M.R
 
Tea improvement By- Shivanand M. R
Tea improvement By- Shivanand M. RTea improvement By- Shivanand M. R
Tea improvement By- Shivanand M. R
 
Synthetic seed production By- Parvati Pujar
Synthetic seed production By- Parvati PujarSynthetic seed production By- Parvati Pujar
Synthetic seed production By- Parvati Pujar
 
Production technology of Safed musli By- Shivanand M.R
 Production technology of Safed musli By- Shivanand M.R Production technology of Safed musli By- Shivanand M.R
Production technology of Safed musli By- Shivanand M.R
 
Organic Farming in Herbal spices by Shivanand M.R
Organic Farming in Herbal spices by Shivanand M.ROrganic Farming in Herbal spices by Shivanand M.R
Organic Farming in Herbal spices by Shivanand M.R
 
Multiple cropping in Arecanut By- Shivanand M.R
Multiple cropping in Arecanut By- Shivanand M.RMultiple cropping in Arecanut By- Shivanand M.R
Multiple cropping in Arecanut By- Shivanand M.R
 
Cofee pests shivanand by Shivanand M. R
Cofee pests shivanand by Shivanand M. RCofee pests shivanand by Shivanand M. R
Cofee pests shivanand by Shivanand M. R
 
Crop improvement of patchouli & basil by Shivanand M. R
Crop improvement of patchouli & basil by Shivanand M. RCrop improvement of patchouli & basil by Shivanand M. R
Crop improvement of patchouli & basil by Shivanand M. R
 

Recently uploaded

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...liera silvan
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 

Recently uploaded (20)

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 

Role of bioagents in coleus and ashwagandha production

  • 1.
  • 2.
  • 3. UNIVERSITY OF HORTICULTURAL SCIENCES, BAGALKOT Kittur Rani Channamma College of Horticulture, Arabhavi.
  • 4. Introduction Importance of bioagents Role of bioagents in coleus Role of bioagents in ashwagandha Conclusion
  • 5.  Bioagents are preparations containing microorganisms in sufficient numbers which enhance crop growth, reduce diseases and pests infestation  Bioagents have the ability to replicate rapidly, require minimal resources to survive and can infect at very small doses  Biological approach will be particularly useful under organic conditions, especially for medicinal plants, which are mainly used for treating various human ailments, where the use of chemicals is restricted because of health and residue considerations (Paul, 2003)
  • 6.  Rising costs of chemical inputs and a host environmental concerns have caused farmers to consider alternative agri-industrial managements to reduce costs, protect human health, and conserve the resource base  High intensity of chemical pesticide use has become serious cause of concern in recent years so, lot of importance has been given to organically produced medicinal herbs  Bioagents are eco-friendly, cost-effective and co-existence with tissues of host without causing any harm (Kritcher, 1993)
  • 7.
  • 8. Biofertilizers • 'Biofertilizer' is a substance which contains living microorganisms, when applied to seed, plant surfaces, or soil, colonizes the rhizosphere and promotes growth by increasing the supply or availability of nutrients to the host plant • These add nutrients through natural processes of N- fixation, solubilizing phosphorous and stimulating plant growth through the synthesis of growth promoting substances
  • 9. General classification of Biofertilizers Murugan, 2002
  • 10. BIOFERTILIZER ORGANISMS RHIZOBIUM AZOTOBACTER PSB BLUE GREEN ALGAE AZOSPIRILLUM VA-MYCORRHIZA
  • 12. Biopesticides • Biologically active microbial agents applied to control insect-pests by non-toxic mechanisms • Stimulate plant host defenses and other physiological processes make plants more resistant to biotic and abiotic stresses • Prepared by growing and concentrating naturally occurring organisms or their metabolites including bacteria, fungi, nematodes, etc.
  • 13.  Viruses, Bacteria, Fungi and Nematodes are sources of potential biopesticides  Viruses - NPV, Granulosis viruses (GV)  Bacteria- Bacillus, Pseudomonas, Streptomyces and Salmonella  22 varieties of Bacillus thuringiensis are used as biopesticides  Fungi - Beauveria, Metarhizum, Verticillium, Hirsutella etc.  Nematodes - Paecilomyces lilacinus & Romanomermis culicivorax (WHO, 2009)
  • 14. Biopesticides and Target pests Biopesticides Target pest Bacillus thurigiensis strains LBT-1, Lepidoptera, Mites LBT-13, LBT-21, LBT-24 Beauveria bassiana strain LBB-1 Coleoptera (weevils), ants, thrips Verticillium lecanii strain Y-57 Bemisia tabaci ,Myzus persicae Metarhizium anisopliae Lepidoptera and Coleoptera strain LBM-11 Trichogramma spp. Lepidoptera Corynebacterium paurometabolum Nematodes Pheidole megacephala Sweet potato weevil (Nicolas, 2006)
  • 15. Biofungicides  Biofungicides are microorganisms and naturally occurring substances that control diseases of crops that are approved for organic production Biofungicides / biologicals Diseases Bacillus pumilus Several foliar diseases Pseudomonas syringe Post-harvest diseases Pythium, Rhizoctonia, Fusarium, Bacillus subtilis Powdery mildew, other foliar diseases Trichoderma harzianum Root diseases Fusarium, Rhizoctonia,Pythium, Streptomyces lydicus Phytophthora Gliocladium virens Damping off (Roger, 2010)
  • 16.  Cost effective and eco-friendly  Renewable sources to supplement chemical fertilizer  Play vital role in maintaining long term soil fertility and sustainability  Proliferates beneficial microbes in the soil  Suppress certain plant diseases, soil-borne diseases and parasites
  • 17. Non-availability of crop/zone specific strains of microorganisms  Genetic instability of the strains  Inconsistent performance in the field during abiotic stresses  Lesser speed of action  Lack of adequate knowledge among the farmers
  • 18. B.N : Plectranthus forskohlii Family: Lamiaceae Active principle: Forskohlin (0.1-0.5%) Origin: Indian-subcontinent Medicinal Uses : Glaucoma, Asthma, Congestive heart failures & Certain type of cancers Economic parts: Tuberous roots Yield: 3.5 - 4.0 t/ha (Dry tuber)
  • 19. Table 1: Effect of bioinoculants and neem cake on growth characteristics of Coleus forskohlii at the nursery stage (55 day old cuttings) prior to transplanting. Singh et al., 2012, Bangalore Dry shoot Dry root Shoot length Root length Plant spread Treatments weight weight (cm) (cm) (cm) (g/plant) (g/plant) TV (1.2x106 CFU mL-1) 17.6bc 10.8ab 13.2a 0.81a 0.044bc BS (1.8x108 CFU mL-1) 15.8ab 11.6b 15.0a 0.75a 0.017a AZ (2.3x107 CFU mL-1) 19.6bc 12.0b 16.4ab 1.31b 0.059c GF (1.2x106 CFU mL-1) 20.6c 13.4b 20.8c 1.05b 0.069c PF (2.5x108 CFU mL-1) 19.0bc 12.4b 18.6b 0.98ab 0.063c NC 20.4bc 12.4b 20.2c 1.19b 0.078c Control 13.8a 9.20a 14.4a 0.77a 0.013a LSD (P<0.05) 3.33 2.27 2.89 0.27 0.022 TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake (Soil, sand, vermicompost & neem cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantly different at P=0.05 by ANOVA (LSD) test.
  • 20. Table 2: Effect of bioinoculants and neem cake on growth characteristics of Coleus forskohlii at harvesting in field conditions. Singh et al., 2012, Bangalore Forskohlin Plant height Plant spread No. of Dry shoot Dry root Treatments yield (cm) (cm) branches yield (t/ha) yield (t/ha) (Kg/ha) TV (1.2x106 CFU mL-1) 41.7ab 43.7ab 20.3a 1.34a 0.18a 1.1a BS (1.8x108 CFU mL-1) 40.0ab 46.7b 19.3a 1.36a 0.17a 1.02a AZ (2.3x107 CFU mL-1) 40.2ab 41.3ab 18.3a 1.49a 0.22a 1.32ab GF (1.2x106 CFU mL-1) 49.6c 49.3b 28.3b 2.58b 0.41c 2.71c PF (2.5x108 CFU mL-1) 43.6b 47.1b 28.0b 2.01a 0.32bc 2.15bc NC 48.2c 46.3b 27.7b 2.64b 0.42c 2.67c Control 38.0a 37.1a 17.0a 1.33a 0.14a 0.83a LSD (P<0.05) 4.1 7.0 6.8 0.8 0.1 0.84 TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake- (Soil, sand, vermicompost & neem cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantly different at P=0.05 by ANOVA (LSD) test.
  • 21. Table 3: Effect of bioinoculants and neem cake on nutrient uptake by Coleus forskohlii under field conditions. Singh et al., 2012, Bangalore Shoot uptake (Kg/ha) Root uptake (Kg/ha) Total uptake (Kg/ha) Treatment N P K N P K N P K TV (1.2x106 CFU mL-1) 18.62a 4.89ab 22.31a 0.89a 0.39a 2.44a 19.51a 5.28a 24.75a BS (1.8x108 CFU mL-1) 19.35ab 4.62a 21.96a 1.04a 0.44ab 2.7a 20.39ab 5.06a 24.66a AZ (2.3x107 CFU mL-1) 26.97ab 4.82ab 24.62a 1.00a 0.55ab 3.16ab 27.97b 5.37a 27.78ab GF (1.2x106 CFU mL-1) 28.03b 7.49b 35.68b 1.99b 0.94b 6.05b 30.02b 8.43b 41.73b PF (2.5x108 CFU mL-1) 27.78b 5.10ab 30.06a 1.41ab 0.73b 4.76b 29.19b 5.83ab 34.82b NC 32.78b 7.94b 36.11b 2.35b 0.83b 5.90b 35.13b 8.77b 42.01b control 18.6a 4.62a 21.86a 0.80a 0.36a 2.27a 19.40a 4.98a 24.13a LSD (P<0.05) 8.4 2.8 9.1 0.7 0.3 2 8.2 2.8 9.2 TV: Trichoderma viride; BS: Bacillus subtilis; AZ: Azotobactor chroococcum; GF: Glomus fasciculatum; PF: Pseudomonas fluorescens; NC: Neem cake-(Soil, sand, vermicompost & neem cake @ 1:1:1/10:1/40, v/v); values in vertical columns followed by different letters are significantly different at P=0.05 by ANOVA (LSD) test.
  • 22. Table 4: Influence of inoculation with different arbuscular fungi on various characters of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore Plant height No. of length of fresh Dry weight (g/plant) Treatments (cm) branches/plant root (cm) Root Shoot Uninoculated control 13.33f 81.87e 10.3d 80e 15.85d Acaulospora laevis 13.67ef 87.87cd 12.5cd 99cd 18.85c Gigaspora margarita 14.22de 82.87e 12.3cd 99cd 18.90c Glomus bagyaragii 16.72a 109.20a 18.2a 121a 27.16a G. etunicatum 14.37de 82.30e 10.6d 94d 18.85c G. fasciculatum 15.37dc 94.00bc 14.9bc 102bc 19.63c G. intraradices 14.52cde 87.00cd 13.4cd 99cd 19.15c G. leptotichum 14.00def 82.05e 11.3d 94d 18.85c G. macrocarpum 14.58cde 84.73d 11.0d 95cd 18.38c G. monosporum 14.60cde 86.03d 10.9d 95cd 16.65d G. mosseae 14.73cd 95.86b 14.5bc 102bc 19.60c Scutellospora 15.70b 99.43b 16.5ab 107b 23.36b calospora Means followed by the same letter in each column do not differ significantly at P= 0.05 by DMRT. Values are an average of 20 plants taken at 150 DAP.
  • 23. Table 5: Influence of inoculation with different arbuscular fungi on root and shoot P- content, and root forskohlin concentration and content of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore P content (mg/plant) Forskohlin Forskohlin content Treatments Shoot Root concentration (%) (mg/plant) Uninoculated control 19.61e 3.20e 0.57g 45.6h Acaulospora laevis 41.31cd 4.27cde 0.74ef 73.58f Gigaspora margarita 43.44cd 4.71bcd 0.75ef 74.58f Glomus bagyaragii 76.49a 7.65a 0.93a 112.5a G. etunicatum 37.41d 3.98de 0.80c 75.51f G. fasciculatum 48.12c 5.27bc 0.79cd 80.89e G. intraradices 48.42c 4.94bcd 0.86b 85.13d G. leptotichum 28.07e 4.04de 0.73f 68.62g G. macrocarpum 41.44cd 4.46bcd 0.76def 72.19f G. monosporum 26.45e 4.45bcd 0.77cde 72.45f G. mosseae 49.99c 4.85bcd 0.88b 89.41c Scutellospora calospora 59.93b 5.48b 0.92a 98.43b
  • 24. Table 6: Influence of inoculation with different arbuscular fungi on mycorrhizal root colonization and spore numbers in the root zone of Coleus forskohlii. Sailo and Bagyaraj, 2005, Bangalore Number of spore (CFU) /50 g Treatments Root colonization (%) soil Uninoculated control 3.64f 9.67g Acaulospora laevis 74.80cd 72.33c Gigaspora margarita 71.82e 66.00d Glomus bagyaragii 98.72a 158.00a G. etunicatum 63.56e 33.33f G. fasciculatum 77.97c 131.33bc G. intraradices 73.75cd 124.0c G. leptotichum 63.24e 36.33ef G. macrocarpum 63.61e 36.3ef G. monosporum 68.95de 43.33e G. mosseae 76.81c 123.00c Scutellospora calospora 85.61b 139.67b
  • 25. Fig 1: Effect of Pseudomonas monteilii (PM) (strain CRC1) and Glomus fasciculatum (GF) alone and co-inoculated (PM + GF) on growth characteristics of Coleus forskohlii. Alok et al., 2012, Lucknow
  • 26. Fig 2: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co-inoculated (PM + GF) on yield of C. forskohlii. Alok et al., 2012, Lucknow
  • 27. Fig 3: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co- inoculated (PM + GF) on forskolin content (percent) in root tubers of C. forskohlii Alok et al., 2012, Lucknow
  • 28. Fig 4: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum (GF) alone and co- inoculated (PM + GF) on percent disease index (PDI) and percent wilt incidence (PWI) of C. forskohlii. Alok et al., 2012, Lucknow
  • 29. Table 7: Effect of AM fungi on growth characters in coleus forskohlii. Dharana et al., 2006, Arabhavi Percent Plant Plant spread (cm) No. of Stem Treatment establishment height branche diameter E -W N-S of cuttings (cm) s/Plant (cm) Glomus intraradices 85.00 52.66 52.80 52.00 53.46 2.57 Glomus fasciculatum 91.66 53.40 50.63 52.36 55.83 2.26 Glomus monosporum 83.33 50.73 51.86 51.20 52.5 2.40 Glomus mosseae 91.66 56.76 56.00 52.50 52.50 2.35 Gigaspora margarita 86.66 61.23 55.16 55.20 57.66 2.34 Sclerocystis dussii 90.00 57.76 53.50 53.46 53.5 2.33 Consortia- I 93.33 58.36 56.16 56.96 58.40 2.35 Control 80.00 49.23 54.30 54.16 48.13 2.24 Mean - 55.02 54.17 53.48 54.00 2.35 S. Em 2.530 1.406 1.190 1.122 0.769 0.020 C. D. @ 5% 7.673 4.265 3.609 3.402 2.334 0.062 CV (%) 5.00 4.43 3.80 3.63 2.47 1.50 Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata & Trichoderma harzianum
  • 30. Table 8: Effect of AM- fungi on tuber yield and forskohlin content in Coleus forskohlii. Dharana et al., 2006, Arabhavi No. of Fresh tuber yield Dry tuber yield Forskohlin Forskohlin Treatment tubers/pla content yield g/plant q/ha g/plant q/ha nt (%) (mg/plant) Glomus intraradices 9.26 107.78 89.82 14.08 11.85 - - Glomus fasciculatum 11.60 120.74 100.62 15.78 13.15 0.329 19.30 Glomus monosporum 10.73 126.26 105.21 16.43 13.69 - - Glomus mosseae 9.53 125.4 104.48 16.39 13.65 - - Gigaspora margarita 10.53 160.09 133.4 20.92 17.36 0.307 17.28 Sclerocystis dussii 13.53 133.06 110.89 17.39 14.62 0.274 15.56 Consortia- I 16.8 159.46 132.89 20.85 17.35 0.403 26.07 Control 9.8 127.6 106.33 16.69 13.91 0.330 20.75 S. Em 1.119 7.01 5.84 0.94 0.80 - - C. D. @ 5% 3.393 21.25 17.7 2.86 2.44 - - CV (%) 4.709 9.16 9.15 9.43 9.65 - - Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata & Trichoderma harzianum
  • 31. Table 9: Effect of bio-inoculants on growth parameters of Coleus forskohlii Singh et al., 2009, Bangalore Treatments Plant height (cm) Plant spread (cm) No. of branches GA+120F 57.21bc 39.17bc 9.13b GF+120F 78.25d 49.75c 13.38c GI+120F 46.96ab 36.71bc 8.0ab GM+120F 64.5cd 37.0bc 9.0b PF6+120F 81.88d 56.0c 12.25c 120F 50.5b 28.38ab 6.75ab GA+240F 42.88ab 31.63ab 8.5ab GF+240F 76.0d 39.75bc 10.75bc GI+240F 48.38ab 34.46ab 7.13ab GM+240F 58.38b 33.13ab 7.88ab PF6+240F 76.0d 43.5bc 9.75bc 240F 37.25a 21.5a 4.75a Soil only 50.42b 30.04ab 7.5ab SED 5.564 6.3542 1.9221 GA: Glomus aggregatum; GF: Glomus fasciculatum; GI: Glomus intraradices; GM: Glomus mosseae; PF6: Pseudomonas fluorescens: 120 F: 120 mL suspension of Fusarium chlamydosporum; 240 F: 240 mL suspension of Fusarium chlamydosporum.& SED: Standard error of mean difference.
  • 32. Table 10: Effect of bio-inoculants on P and K uptake, Forskohlin content of Coleus forskohlii. Singh et al., 2009, Bangalore Forskohlin content Treatments P - uptake (mg/plant) K- uptake (mg/plant) (mg/100gm dry roots) GA+120F 66.5cd 495.0de 890.0ab GF+120F 77.5d 600.0f 1010.0c GI+120F 59.5cd 385.0c 795.0a GM+120F 59.0c 390.0c 920.0bc PF6+120F 81.0d 555.0ef 975.0bc 120F 23.5ab 150.0ab 795.0a GA+240F 36.5b 195.0b 790.0a GF+240F 71.5c 500.0de 835.0ab GI+240F 50.0bc 270.0b 820.0ab GM+240F 59.5cd 390.0c 835.0ab PF6+240F 72.5cd 495.0de 820.0ab 240F 18.0a 115.0a 820.0ab Soil only 30.5ab 140.0ab 895.0ab SED 8.448 36.576 47.871
  • 33. Fig 5: Effect of bio-inoculants on mean shoot dry yield. Singh et al., 2009, Bangalore
  • 34. Fig 6: Effect of bio-inoculants on mean root dry yield. Singh et al., 2009, Bangalore
  • 35. Fig 7: Effect of bio-inoculants on Per cent disease index (PDI). Singh et al., 2009, Bangalore
  • 36. Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents. Thangavel et al., 2011, Coimbatore Treatment Details:  T1- Chrysoperla carnea @ 50,000 eggs/ha (5 releases)  T2- Trichogramma chilonis @ 6.25 cc/ha (5 releases)  T3- Bacillus thuringiensis 750 g/ha (5 sprays)  T4- Beauveria bassiana 2 g/L (5 sprays)  T5- C.c (1 release) + T.c (1 release) + B.b (1 spray) + B.t (2 spray)  T6- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.t (2 spray)  T7- B.t (1 spray) + C.c (1 release) + T.c (1 spray) + B.b (2 spray)  T8- Untreated check
  • 37. Table 11 :Population of Scirtothrips dorsalis on coleus, as influenced by bio-control agents. Thangavel et al., 2011, Madurai Pre- No. of thrips/Sq. cm at monthly interval Percentage Treatm treatment Mean reduction over ents count 60 DAP 90 DAP 120 DAP 150 DAP control T1 38.2 11.5 (3.46)a 9.2 (3.11)a 7.4 (2.81)a 4.4 (2.21)a 8.2 60 T2 39.8 22.1 (4.75)f 19.2 (4.43)g 15.8 (4.03)g 13.4 (3.72)e 17.6 14.1 T3 40.7 18.3 (4.33)d 15.4 (3.98)e 12.3 (3.57)e 10.9 (3.37)d 14.4 29.7 T4 41.4 20.2 (4.54)e 17.4 (4.23)f 14.4 (3.86)f 12.8 (3.64)e 16.3 20.4 T5 37.8 12.7 (3.63)b 10.4 (3.30)b 8.8 (3.04)b 6.3 (2.60)b 9.5 53.6 T6 39.7 14.4 (3.86)c 13.2 (3.70)d 11.4 (3.44)d 8.3 (2.96)c 11.8 42.4 T7 40.5 14.2 (3.83)c 12.3 (3.57)c 10.2 (3.27)c 7.8 (2.88)c 11.2 45.3 T8 41.6 24.7 (5.01)g 22.3(4.77)h 18.6 (4.37)h 16.3 (4.09)f 20.5 - SEd - 0.05 0.05 0.05 0.06 - - C. D @ 5% - 0.11 0.11 0.12 0.14 - - Figures in parentheses are square root transformed values in a column, means followed by same letter are not significantly different by DMRT (P=0.05).
  • 38. Table 12 : Population of Orphanostigma abruptalis and yield of wet tubers in coleus, as influenced by bio-control agents Thangavel et al., 2011, Madurai No. of larvae/5 plant Percentage Pre- reduction Wet tuber Treatments treatment Mean 60 DAP 90 DAP 120 DAP 150 DAP over yield (kg/ha) count control T1 7.6 5.5 (2.44)c 5.1 (2.36)c 3.9 (2.09)b 3.2 (1.92)c 4.4 48.2 20,105c T2 8.4 7.9 (2.89)de 7.7 (2.86)e 6.6 (2.66)d 5.5 (2.44)d 6.9 18.8 17,075f T3 9.2 7.1 (2.75)d 6.3 (2.60)d 5.1 (2.36)c 4.8 (2.30)d 5.8 31.7 18,112d T4 8.3 7.6 (2.84)d 6.8 (2.70)de 5.7 (2.48)cd 4.4 (2.21)d 6.1 28.2 17,454e T5 7.1 3.9 (2.09)a 3.3 (1.94)a 2.1 (1.61)a 1.3 (1.34)a 2.6 69.4 20,643a T6 8.2 4.6 (2.25)ab 4.2 (2.16)b 3.1 (1.89)b 2.2 (1.64)b 3.5 58.8 20,455ab T7 7.8 5.0 (2.34)bc 4.8 (2.30)bc 3.3 (1.94)b 2.5 (1.73)bc 3.9 54.1 20,283bc T8 9.2 8.8 (3.04)e 9.1 (3.09)f 8.5 (3.00)e 7.6 (2.84)e 8.5 - 20,256g SEd 0.08 0.09 0.09 0.11 - - - 0.33 C. D @ 0.17 0.19 0.21 0.25 - - - 1.32 5% T5- C.c (1 relaese) + T.c (1 relaese) + B.b (1 spray) + B.t (2 spray)
  • 39. Management of collar rot complex in Coleus forskohlii using bioagents, organic amendments and chemicals. Kulkarni et al., 2007, Arabhavi Treatment Details: T1- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml) T2- Trichoderma harzianum @ 10 ml/plant (8x103 cfu/ml) T3- Pseudomonas fluorescens @ 10 ml/plant (24x105 cfu/ml) T4- Pronto @ 5% as soil drench (neem based product) T5- Neemto @500 g/5 m2 (neem based product) T6-Carbofuran 3G @ 15 gai/5 m2 T7- Farm yard manure @ 5 kg/5 m2 T8- Trichoderma viride @ 10 ml/plant (8x103 cfu/ml) + Neemto @500 g/5 m2 T9- Carbendazim @ 0.1% soil drench T10- Propiconazole @ 0.1% soil drench T11- Control
  • 40. Table 13: Management of collar rot complex of Coleus forskohlii using bioagents, organic amendments and chemicals. Kulkarni et al., 2007, Arabhavi Population of root CFU (103/g) Wilt incidence No. of galls / 5 g of Treatments (%) knot juveniles/200 root cc of soil F. chlamydosporum R. bataticola T1 21.09 (27.33) 1640 21.13 7.6 12.2 T2 18.87 (25.74) 1633.33 19.53 8 12.6 T3 19.98 (26.51) 1533.33 18.27 8 14.2 T4 23.31 (28.84) 136.67 17.33 10.6 15.6 T5 21.09 (27.24) 1180 16.07 12.6 16.4 T6 24.42 (29.57) 1066.67 14.93 16.2 17.6 T7 25.53 (30.38) 1960 25.67 15.2 18.8 T8 12.76 (20.93) 873.33 10.13 6.2 9.6 T9 21.09 (27.33) 1933.33 23.33 3.6 6.8 T10 23.31 (28.84) 1906.67 23 3.8 7.4 T11 35.52 (36.59) 2177.33 28.4 19.6 21.6 Mean 22.45 (28.12) 1569.69 19.82 10.13 13.89 S.Em 1.18 49.05 1.83 0.87 0.95 CD @ 5% 3.48 144.68 5.38 2.49 2.72 Figures in parentheses are arc sine (angular) transformed values
  • 41. Table 14: Effect of antagonists on the growth of Macrophomina phaseolina in the dual culture technique in coleus. Paramasivan et al., 2007, TN Per cent reduction over Treatment Mycelial growth (cm) control Trichoderma viride 4.2 52.2 T. viride Isolate1 4.3 51.1 T. viride Isolate2 3.8 56.8 T. viride Isolate3 4.6 47.7 T. viride Isolate4 3.1 64.7 Trichoderma harzianum 3.6 59.6 Trichoderma reesei 5.1 41.1 Trichoderma koningeei 4.2 48.5 Chaetomium globosum 4.5 55 Pseudomonas fluorescens 3.7 58.7 Bacillus subtilis 4.2 51.1 Carbendazim 4 59.1 Control 9 - C. D @ 5% 0.3 -
  • 42. Table 15: Efficacy of bioagents against dry root rot of coleus under pot culture conditions Paramasivan et al., 2007, TN Treatment Disease incidence Total sprouts Yield (g) Trichoderma viride 28.6 (33.2)* 3 105 T. viride Isolate1 21.8 (27.8) 2 107 T. viride Isolate2 22.9 (28.5) 4 107 T. viride Isolate3 24.6 (29.7) 5 110 T. viride Isolate4 19.2 (26.7) 7 150 T. harzianum 20.6 (26.9) 5 120 T. reesei 33.5 (35.3) 4 90 T. koningeei 27.9 (31.1) 3 80 Chaetomium globosum 31.5 (34.2) 2 70 Pseudomonas fluorescens 20.8 (27.2) 6 135 Bacillus subtilis 22.3 (28.7) 5 114 Carbendazim 18.3 (25.3) 5 140 Control 44.3 (41.5) 1 60 C. D @ 5% 3.4 2.1 12 Figures in parentheses are arc sine transformed values
  • 43. Table 16: Effect of biocontrol agents on inhibition of mycelial growth of Rhizoctonia bataticola infecting Coleus forskohlii. Ammajamma et al., 2009, Dharwad Per cent inhibition of mycelial Sl. No. Biocontrol agents growth of R. bataticola 1 Bacillus subtilis Cohn. 12.18 (20.43) 2 Pseudomonas fluorescens Migula. 6.45 (14.68) 3 Trichoderma koningii Rifai. 57.40 (49.29) 4 Trichoderma virens Miller. 56.66 (48.89) 5 Trichoderma viride Pers. 76.29 (60.83) Trichoderma harzianum Rifai. 6 79.63 (63.57) (Dharwad isolate) 7 Trichoderma harzianum Rifai. 77.03 (61.23) Mean 52.23 (45.57) S.Em+ 0.28 C.D @1% 1.16 Figures in the parenthesis indicate angular transformed values
  • 44. Table 17: Biomanagement of nematode fungal disease complex in coleus under controlled conditions. Ramakrishnan and Deepa, 2011, Coimbatore Length (cm) Per cent Tuber Shoot Root gall Treatments disease yield/ Shoot Root weight (g) index incidence plant (g) Super Pseudomonas @ 2.5 120.62 81.87 958.12 2.25 35.62 223.7 kg/ha P. fluorescens @ 2.5 kg/ha 120.6 75 883.12 2.37 36.87 212.2 Consortial formulations of 113.12 72.5 886.87 2.5 38.12 201.2 Pfbv22 + Bbv 57 @ 2.5 kg/ha T. viride @ 2.5 kg/ha 125 85.6 994.37 2.00 31.87 235.6 P. fluorescens + T. viride each 113.12 70.62 813.87 3.12 46.87 190 @ 2.5 kg/ha Carbofuran 3G @ 1 kg a.i/ ha + drenching with bavistin 101.87 68.75 772.5 3.37 51.25 185 (1 g/L water) Untreated control 70.6 47.5 762.18 5 93.75 157.5 CD@5% 10.53 4.21 22.7 0.78 3.54 10.5 Pooled analysis of two pot culture experiments.
  • 45. Table 18: On farm trial on Biomanagement of nematode fungal disease complex in medicinal coleus Ramakrishnan and Deepa, 2011, Coimbatore - Shoot Root Nematode population Tuber Treatments yield Length Weight Length Weight Soil Root Gall PDI (t/ha) (cm) (cm) (cm) (cm) (200cc) (5g) index 134.21 1158.70 76.75 258.18 77.43 23.56 0.866 17.85 T. viride @ 2.5 kg/ha 24 (68.1) (83.37) (79.25) (134.42) (129.16) (76.90) (84.58) (81.54) (77.69) Super pseudomonas @ 115.20 825.07 60.33 208.53 201.36 50.40 2.733 31.23 22.6 2.5 kg/ha (57.39) (27.60) (84.27) (85.09) (39.95) (67.02) (41.41) (60.96) (58.8) Carbofuran 3G @ 1 kg 117.36 932.46 64.19 218.47 194.30 57.96 2.40 35.00 22.0 a.i / ha + drenching (60.34) (44.25) (96.05) (93.91) (42.05) (62.07) (48.49) (56.25) (54.6) with Bavistin (1 kg/ha) Untreated control 73.19 646.4 32.74 112.66 335.33 152.83 4.66 80.01 14.2 CD@5% 21.67 145.1 14.99 48.92 33.05 19.1 1.19 19.43 6.7 Pooled analysis of three field experiments.
  • 46. Effect of integrated bio-management strategies on root tuber yield in medicinal coleus infested with M. incognita and M. phaseolina Seenivasan, 2010, TN Treatment Details:  T1-Integrated nematode management strategy (INMS) i.e. dipping of stem cuttings in 0.1% Pseudomonas fluorescens (strain Pf1 @ 6x108 CFU/g) talc based formulation at planting + growing marigold (Tagetes errecta) as intercrop  T2- T1 (INMS) + Biointensive disease management strategy (BDMS) i.e. soil drenching with P. fluorescens (strain PfC6 @ 6x108 CFU/g) talc formulation @ 2.5 kg/ha at planting, 30, 60, 90 & 120 DAP  T3- Standard chemical check i.e. Carbofuran 3G @ 1 kg a.i/ ha + soil drenching with carbendazim 0.1%  T4- Untreated control
  • 47. Table 19 : Effect of integrated bio-management strategies on root tuber yield in medicinal coleus infested with M. incognita and M. phaseolina Seenivasan, 2010, TN Tuber length No. of tubers Tuber weight/ Root tuber Treatments B:C ratio (cm) /plant plant (g) yield (t/ha) T1 11.3a (29.2) 4.8a (22.9) 250.0b (47.6) 6.92b (45.3) 1.37:1 T2 11.3a (29.2) 4.8a (22.9) 258.3b (49.3) 7.07b (46.5) 1.22:1 T3 12.3a (34.9) 4.9a (24.5) 297.8a (56.0) 7.31a (48.2) 1.35:1 T4 8.0b 3.7b 131.0c 3.78c 0.78:1 SEd 0.84 0.26 8.4 0.16 - C.D @ 5 % 1.85 0.56 18.3 0.21 - CV % 12.6 8.75 5.7 8.92 - Figures in a column followed by different letters are significantly different at P=0.05 level by DMRT; Figures in the parentheses are percent decrease over control; Pooled 2 years data.
  • 48. B.N : Withania somnifera Family: Solanaceae Active principle: Withanine & Somniferine (0.13-0.31 %) Medicinal Uses: Rheumatic pain, antitumor, Anti-inflammatory, antioxidant & nervine tonics. Economic parts: Roots and seeds Yield: 4-5 q/ha (Dry roots) & 50-75 kg/ha (Seed yield)
  • 49. Table 20: Effect of rhizobacterial inoculation on the shoot length, primary and lateral branches development of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore No. of Shoot length /plant (cm ) No. of lateral branches/plant primary Treatment 120 150 180 90 DAI 120 DAI 150 DAI 180 DAI branche 90 DAI s/plant DAI DAI DAI T1- Azospirillum 30.25 43.55 52.11 59.75 2.65 9 12.86 13 16.1 (AAs-11) T2- Azotobacter 27.25 39.66 50 56.66 2.15 8.16 12 12.95 15.86 (AAz-3) T3- Bacillus(APb-1) 27 38.44 48 55 2.05 8 11.86 12.85 15.33 T4- 28.33 41.24 51.15 58.85 2.75 8.76 12.22 13 16 Pseudomonas(APs-1) T5-T1+T2 31.25 46.33 54.66 62..77 2.85 9.15 11 13 16.65 T6-T1+T3+T4 35.25 62.55 64.65 71.33 3.25 11 12.1 14.25 18 T7-T2+T3+T4 33.34 49.65 60 68.65 3.12 10.1 12 14 17.23 T8-T1+T2+T3 32.15 48.25 57.15 66.45 3 9.85 11.86 13.25 17 T9-T1+T2+T3+T4 38.47 56.22 69.47 76.5 3.52 11.44 13.24 16.32 20.25 T10-Uninoculated control 26.00 37.33 45.66 53 2 7.96 10 11.85 15.33 S.E C.D(P=0.05) S.E C.D(P=0.05) T 2.24 4.45 0.59 1.18 D 2.42 2.82 0.37 0.75 T D 4.47 8.9 1.18 2.35
  • 50. Table 21: Effect of rhizobacterial inoculation on the root growth of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore Root parameters (180 DAS) - Treatment Lateral Root fresh Root dry Root Root girth /Plant roots/Plant weight/ Plant weight/Plant length/Plant(cm) (cm) (no.) (g ) (g) T1- Azospirillum(AAs-11) 19.65 1.78 16.33 17.65 4.72 T2- Azotobacter(AAz-3) 18.95 1.75 14.66 16.95 4.3 T3- Bacillus(APb-1) 18.2 1.75 14 17 4.33 T4- Pseudomonas(APs-1) 19 1.76 14.33 17.33 4.43 T5-T1+T2 20.65 1.8 17.66 18 4.92 T6-T1+T3+T4 23 2 18.33 19 5.53 T7-T2+T3+T4 22.55 1.92 18 18.55 5.33 T8-T1+T2+T3 21 1.85 17 18.2 5 T9-T1+T2+T3+T4 26.17 2.32 19.66 21.33 6.1 T10-Uninoculated control 17 1.72 14.66 15.33 4 S.E. 1.76 0.16 1.31 1.53 0.41 C.D.(P=0.05) 3.69 0.33 2.76 3.22 0.87
  • 51. Table 22: Effect of rhizobacterial inoculation on dry matter production of ashwagandha (var.Jawahar 20). Gopal, 2010, Coimbatore Dry matter production(g/plant) Treatments 90 DAI 120 DAI 150 DAI 180 DAI T1- Azospirillum(AAs-11) 0.58 4.72 9.65 15.18 T2- Azotobacter(AAz-3) 0.49 4.55 9 14.6 T3- Bacillus(APb-1) 0.51 4.6 9.15 14.64 T4- Pseudomonas(APs-1) 0.55 4.65 9.26 15 T5-T1+T2 0.61 4.78 9.85 15.33 T6-T1+T3+T4 0.693 5.11 11.12 16.17 T7-T2+T3+T4 0.68 4.93 10.56 16 T8-T1+T2+T3 0.65 4.82 10 15.92 T9-T1+T2+T3+T4 0.703 5.47 12.56 17.27 T10-Uninoculated control 0.41 4.16 8.5 13.26 S.E. C.D.(P=0.05) T 0.42 0.84 D 0.27 0.53 T D 0.85 1.68
  • 52. Table 23: Effect of rhizobacterial inoculation on total alkaloid content of ashwagandha (var.Jawahar 20) roots. Gopal and Kumutha, 2010, Coimbatore Total alkaloid yield Treatments Total alkaloid (%) (mg/plant) T1- Azospirillum(AAs-11) 1.18 56 T2- Azotobacter(AAz-3) 1.12 48 T3- Bacillus(APb-1) 1.13 49 T4- Pseudomonas(APs-1) 1.15 51 T5-T1+T2 1.20 59 T6-T1+T3+T4 1.29 71 T7-T2+T3+T4 1.26 67 T8-T1+T2+T3 1.23 62 T9-T1+T2+T3+T4 1.42 87 T10-Uninoculated control 1.10 44 S.E. 0.10 5.33 C.D. (P=0.05) 0.22 11.13
  • 53. Table 24: Effect of rhizobacterial inoculation on Withaferin-A content of ashwagandha (var. Jawahar 20) roots by HPLC. Gopal and Kumutha, 2010, Coimbatore Withaferin-A content Treatments (mg /100g of roots) T1- Azospirillum (AAs-11) 44.80 T2- Azospirillum (AAs-11) + Azotobacter (AAz-3) 57.80 T6- Azospirillum (AAs-11) + Bacillus (APb-1) + 66.42 Pseudomonas (APs-1) T9- Azospirillum (AAs-11) + Azotobacter (AAz-3) + 110.00 Bacillus (APb-1) + Pseudomonas (APs-1) T10- Uninoculated control 40.40
  • 54. Table 25: Influence of organic and biological amendments on root knot index in Withania somnifera L. Pandey et al., 2011, Lucknow Treatments Root knot Index (RKI) Untreated control 3.33a Trichoderma harzianum (2x108 cfu/g) 0.66cd @0.9 kg/bed Cow urine @4.5 L/bed 0.83cd Vermicompost @4.5 kg/bed 1.33bc Neem oil seed cake @ 0.36 kg/bed 1.16bc Cow urine + T. harzianum 0.33d Vermicompost + T. harzianum 0.66cd Neem oil seed cake + T. harzianum 0.33d Mean in each column followed by same letters do not differ significantly (P= 0.05) according to Duncan’s multiple range test.
  • 55. Table 26: Effect of different organic and biological amendments on the root & Shoot dry weight (kg) of Withania somnifera. Pandey et al., 2011, Lucknow Root dry weight Treatments Shoot dry weight (kg/m2) (kg/m2) Untreated control 1.3f 0.15h Trichoderma harzianum (2x108 2.3d 0.25e cfu/g) @0.9kg/bed Cow urine @4.5L/bed 2.7b 0.28d Vermicompost @4.5 kg/bed 2.3d 0.29bc Neem oil seed cake @ 2.5c 0.23f 0.36kg/bed Cow urine + T. harzianum 2.8ab 0.30b Vermicompost + T. harzianum 2.9a 0.32a Neem oil seed cake + T. harzianum 2.8ab 0.29bc Mean in each column followed by same letters do not differ significantly (P= 0.05) according to Duncan’s multiple range test.
  • 56. Conclusion • Biological approach could be practiced to obtain maximum yield, quality and to manage pest & diseases • Different AM- fungi and PGPR improve growth, forskohlin and withaferin- A in coleus and ashwagandha, respectively • Chrysoperla carnea, Trichogramma chilonis, Beauveria bassiana and Bacillus thuringiensis are effective in pest management • Trichoderma harzianum found to be effective in controlling the population of Meloidogyne incognita and Rhizoctonia bataticola

Editor's Notes

  1. General classification of Biofertilizers
  2. (Sharma, 2007)
  3. Biopesticides and target pests Nicolas, 2006
  4. (Roger, 2010)
  5. ADVANTAGES Of BIOAGENTS:
  6. Means followed by the same letter in each column do not differ significantly at P= 0.05 by DMRT. Values are an average of 20 plants taken at 150 DAP.
  7. Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on growth characteristics ofC. forskohlii.
  8. Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on yield of C. forskohlii
  9. Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on forskolin content (percent)in root tubers of C. forskohlii.
  10. Fig: Effect of P. monteilii (PM) (strain CRC1) and G. fasciculatum(GF) alone and co-inoculated (PM + GF) on percent disease index(PDI) and percent wilt incidence (PWI) of C. forskohlii.
  11. Consortia-I : Azotobacter chroococcum, Azospirillum brassilence, Pseudomonas striata &amp; Trichoderma harzianum
  12. GA: Glomus aggregatum; GF: Glomus fasciculatum; GI: Glomus intradices; GM: Glomus mosseae; PF6: Pseudomonas fluorescens: 120 F: 120 mL suspension of Fusarium chlamydosporum; 240 F: 120 mL suspension of Fusarium chlamydosporum
  13. Fig:3 Effect of bio-inoculants on Mean shoot dry yield.
  14. Fig:4 Effect of bio-inoculants on Mean root dry yield.
  15. Fig:2 Effect of bio-inoculants on Percent Disease Index (PDI).
  16. DAP:Days after planting; Each release/spray at monthly interval starting from 30 days after planting; Figures in parentheses are square root transformed values in a column, means followed by same letter are not significantly different by DMRT (P=0.05).
  17. Figures in parentheses are arc sine (angular) transformed values.
  18. * Figures in parentheses are arc sine transformed values.
  19. * Figures in the parenthesis indicate angular transformed values
  20. * Pooled analysis of two pot culture experiments
  21. * Pooled analysis of three field experiments
  22. Figures in a column followed by different letters are significantly different at P=0.05 level by DMRT; Figures in the parentheses are percent decrease over control; Pooled 2 years data.
  23. Mean in each column followed by same letters do not differ significantly (P= 0.05) accordingl to Duncan’s multiple range test.