Biotransformation

27,049 views
26,800 views

Published on

Published in: Education, Technology, Business
9 Comments
29 Likes
Statistics
Notes
No Downloads
Views
Total views
27,049
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1,185
Comments
9
Likes
29
Embeds 0
No embeds

No notes for slide

Biotransformation

  1. 1. BIOTRANSFORMATION
  2. 2. <ul><li>Biotransformation (regiospecific and steriospecific bioconversion) is a biological process whereby an organic compound is modified into reversible product(s). These involves simple, chemically defined reactions catalyzed by enzymes present in the cell. Cells (i.e., microbial, plants and animal) provide the enzymes to catalyze the transformation reactions. </li></ul><ul><li>Types of transformations/Bioconversion </li></ul><ul><li>1) Microbial transformation </li></ul><ul><li>2) Plant cell culture transformation </li></ul><ul><li>3) Animal cell culture transformation </li></ul><ul><li>Microbial transformation </li></ul><ul><li>When the transformation of the organic compounds is carried out by microorganism then the process is called as microbial transformation. </li></ul><ul><li>The microorganisms have got the ability to chemically modify a wide variety of organic compounds. These microbes during the bioconversion provide enzymes which act upon and convert the organic compound into other compounds or modify it. </li></ul><ul><li>E.g. production of Vinegar: the oldest and most established transformation process. </li></ul>
  3. 3. <ul><li>Comparison of microbial transformation with others: </li></ul><ul><li>Microbial cells are preferred more as compared to animal cells or plant cells due to the following reasons: </li></ul><ul><li>Surface-volume ratio: The microorganisms have high surface-volume ratio as compared to the plant or animal cell culture. </li></ul><ul><li>Growth Rate: The microorganism have high growth rate as compared to the plant or animal cell culture thus the Transformation using the cell culture is a less time consuming. </li></ul><ul><li>Sterility: Sterility is the major factor that should be taken care of. In case of plant or animal cell culture it is difficult to maintain sterility as compared to the transformation using microorganism. </li></ul><ul><li>Metabolism Rate: The microorganisms possess high rate of metabolism for the efficient transformation of the substrate added as compared to the plant or animal culture. </li></ul>
  4. 4. <ul><li>Comparison with chemical synthesis </li></ul><ul><li>Substrate specificity : Only one specific reaction step is normally catalyzed by an enzyme. </li></ul><ul><li>Site specificity (regiospecificity): If several functional groups of one type are present in the molecule, only one specific position may be affected. It is possible to obtain conversions at centers that are chemically unreactive. </li></ul><ul><li>Progesterone to 11alpha hydroxyprogesterone by Rhizopus nigricans </li></ul><ul><li>Stereoselectivity : If a racemic mixture is used as starting material, only one specific enantiomer is converted. They are well suited to obtain specific conformation. </li></ul><ul><li>Ibuprofen(R&S) --------------------Ibuprofen(S) 100% </li></ul><ul><li>Pseudomonas antartica active at(100mg) </li></ul>
  5. 5. <ul><li>Reaction conditions: Enzymatic reactions do not cause destruction of sensitive substrates due to the mild conditions of conversion. </li></ul><ul><li>Several reactions can be combined, either in one fermentation step using an organism with suitable enzyme systems, or by step-wise conversions using different microorganisms. </li></ul><ul><ul><li>Conditions are usually mild. The reaction conditions cause less environmental hazard, as they take place chiefly in water. </li></ul></ul><ul><ul><li>These reactions proceed at ambient temperature(20 o -40 o C) and </li></ul></ul><ul><li>pressure normal in aqueous media. </li></ul><ul><ul><li>The number of process reaction steps are much less. The total chemical transformation of one steroid to another may require many steps, and the process may be costly and provide only low yields because of certain difficult steps in the process. </li></ul></ul>
  6. 6. <ul><li>Example: Biosynthesis of Androsterone by Chemical Route. </li></ul><ul><li>The biosynthesis of Androsterones via chemical route involves several steps as compared to the steroidal transformation (catalyzed by microorganism) where the multi step reaction is reduced to a single step reaction. </li></ul>
  7. 7. <ul><ul><li>Conversion gives mostly high yields </li></ul></ul><ul><li>Tryptophan to 5-hydroxy tryptophan by B. subtilis (90% yield) </li></ul><ul><ul><li>Combination of two or more reaction can carried out by the same organism. </li></ul></ul><ul><ul><li>Microbial conversions are much cheaper than chemical synthesis. </li></ul></ul><ul><ul><li>Disadvantages </li></ul></ul><ul><ul><li>Chemical reactions are easier to handle and less complicated equipment used. </li></ul></ul><ul><ul><li>Tedious </li></ul></ul><ul><ul><li>Specific organism required. </li></ul></ul><ul><ul><li>Selection of organism is a laborious job. </li></ul></ul><ul><ul><li>Some time process is not economical. </li></ul></ul><ul><ul><li>The substrate concentration added bound by certain limits. </li></ul></ul>
  8. 8. <ul><li>Types of microbial transformation/bioconversion </li></ul><ul><li>Chemically these transformations can be grouped under the following categories: </li></ul><ul><li>Oxidation </li></ul><ul><li>Reduction </li></ul><ul><li>Hydrolysis </li></ul><ul><li>Condensation </li></ul><ul><li>Isomerization </li></ul><ul><li>Formation of new C=C double bond </li></ul><ul><li>Introduction of hetero functions </li></ul><ul><li>Oxidation reactions are particularly useful in industrial production. To a lesser extent, isomerization, reduction, hydrolysis and condensation also have industrial application. </li></ul>
  9. 9. <ul><li>OXIDATION </li></ul><ul><ul><li>Hydroxylation (100% conversion efficiency) </li></ul></ul><ul><ul><li>Epoxidation ( approx. 25% conversion efficiency) </li></ul></ul>
  10. 10. <ul><li>Dehydrogenation ( 60% conversion efficiency) </li></ul><ul><li>Oxidation of aliphatic side chains with the formation of aldehydes, ketones or carboxyl functions ( 80% conversion efficiency) </li></ul><ul><li>Oxidative splitting of aromatic rings (70% conversion efficiency) </li></ul>
  11. 11. <ul><li>Oxidation of heterofunctions i.e. amino groups to nitro groups; formation of N-oxides and sulfoxides </li></ul><ul><li>Oxidative splitting of substituents i.e. oxidative deamination, N-CH 3 -demethylation, O-CH 3 -demethylation (100% conversion efficiency) </li></ul>
  12. 12. <ul><li>REDUCTION </li></ul><ul><ul><li>Reduction of carbonyl functions ( 50% conversion efficiency) </li></ul></ul><ul><ul><li>Reduction of hetero functions, particularly –NO 2 ­ </li></ul></ul><ul><ul><li>Hydrogenation of Carbon-Carbon double bonds </li></ul></ul>
  13. 13. <ul><li>HYDROLYTIC REACTIONS </li></ul><ul><ul><li>Hydration of carbon- carbon double bonds (55%conversion efficiency ) </li></ul></ul><ul><ul><li>Hydrolysis of carboxylic acid esters </li></ul></ul>
  14. 14. <ul><li>Hydrolysis of N- derivatives (conversion efficiency data unavailable ) </li></ul><ul><li>Amination </li></ul><ul><li>Deamination </li></ul>
  15. 15. <ul><li>CONDENSATION </li></ul><ul><ul><li>Phosphorylation </li></ul></ul><ul><ul><li>N- Glycosidation (16% conversion efficiency) </li></ul></ul><ul><li>O- Glycosidation (60% conversion efficiency) </li></ul>
  16. 16. <ul><li>Practical aspects of microbial conversions </li></ul><ul><li>1. Organism: </li></ul><ul><li>Two requirements should be fulfilled by the MO </li></ul><ul><ul><ul><li>To obtain a particular product the MO should have the enzyme which brings about the desired transformation. </li></ul></ul></ul><ul><ul><ul><li>Should able to use the starting material as the substrate. Organism which capable of utilizing substrate grow in the medium. </li></ul></ul></ul><ul><li>Selection of Organism: </li></ul><ul><li>Random screening </li></ul><ul><li>The method consists of addition of the substrate to a culture of a large number of MO and after a given time, the medium is analyzed for presence of the product. </li></ul><ul><li>If a particular organism brings about the transformation the organism is selected for further investigation. </li></ul><ul><li>Parallel system </li></ul><ul><li>A better chance to find a suitable organism is by searching the literature for similar type of conversions and testing the organism or closely ones in the system under study. </li></ul>
  17. 17. <ul><li>Enrichment procedure </li></ul><ul><li>Large amount of substrate is added to the soil samples together with water and additional nutrients. Organism which capable of utilizing substrate grows in the medium, these organisms are isolated and used for transformation. </li></ul><ul><li>Mixed cultures </li></ul><ul><li>In some cases it may be advantageous to use a mixture of two or more MO for conversion of a particular substrate. </li></ul><ul><li>Tropine Bacillus alvei & Enterococcus cerevisae Pseudotropine </li></ul><ul><li>Not possible by individual bacteria </li></ul><ul><li>2. Sterilization </li></ul><ul><li>Sterility is necessary because contamination can suppress the desired reaction , induce the formation of faulty conversion products or cause total substrate breakdown. </li></ul><ul><li>Fermentation media is sterilized by </li></ul><ul><li>Boiling </li></ul><ul><li>Passing steam. </li></ul><ul><li>Autoclaving. </li></ul><ul><li>Synthetic media require shorter sterilization time </li></ul><ul><li>Greater the viscosity of media longer the sterilization time. </li></ul>
  18. 18. <ul><li>3. Aeration and stirring </li></ul><ul><li>For efficient microbial transformation oxygen should be placed in intimate contact with cellular structure. Sterile air obtained by passing through sterile filter under pressure. Aeration is always a problem with filamentous organisms growth creates Non-Newtonian broth ( Viscosity) therefore impellers are used to facilitate aeration Newer methods like Airlift fermentors, surface attached microorganism (biofilms) in fixed fluidized bed reactor are now a days used. </li></ul><ul><li>4. Diffusion </li></ul><ul><li>Transformation takes place with in the cell. Hence to reach the cell solubility of the substrate in medium and its rate of diffusion are rate limiting step. Emulsifiers such a Tween or water miscible solvents with low toxicity (ethanol, acetone, DMF, DMSO) may help to solublize poorly soluble compounds. </li></ul>
  19. 19. <ul><li>5. Elimination of side reactions </li></ul><ul><li>Side reactions can produce unwanted products and complicate the process of isolation and can be prevented by controlling heat or pH of the medium. </li></ul><ul><li>6. Product isolation </li></ul><ul><li>The end product of transformation reactions are usually extra cellular and may occur in either dissolved form or suspended form. For further purification, bacteria and yeast are not separated, were as fungal mycelium is usually removed by filtration. In all cases the separated cell must be washed repeatedly with water or organic solvents since significant amounts of the reaction product can be adsorbed on to the cells. Depending upon the solubility of the product recover is performed by precipitation as calcium salt, by adsorption or ion exchangers, by extraction with appropriate solvents, or for volatile substances, by direct distillation from medium. </li></ul>
  20. 20. <ul><li>Theoretical aspects of microbial transformations </li></ul><ul><li>Conversion of uncommon substrates. </li></ul><ul><li>Interference with metabolic pathways </li></ul><ul><li>Interference with biotransformation </li></ul><ul><li>Interference with biosynthesis. </li></ul><ul><li>Rate of conversion depends upon the structure of substrate </li></ul><ul><li>Specificity of enzyme reaction. </li></ul><ul><li>Conversion of uncommon substrates. </li></ul><ul><li>A number of theories have been put forward to explain why an organism should have enzyme system to achieve a transformation of uncommon substrate. </li></ul><ul><li>The ability to convert certain substrate may be due to presence of enzyme that commonly functioning by catalyzing the conversion of structurally related substances. </li></ul><ul><li>An alternative hypothesis, according to which a mutation takes place somewhere in the ancestry of the organism which enables offspring to carry out the transformation, As long as the compound (substrate) is not available the enzyme has no function and it becomes apparent only in the presence of the substrate . </li></ul>
  21. 21. <ul><li>Interference with metabolic pathways. </li></ul><ul><li>Every substances formed inside the cell can theoretically becomes a product if further degradative pathway is inhibited. </li></ul><ul><li>Majority of degradation of organic compounds occur by oxidation and reduction. This give energy to the cell needed for biosynthesis of cell constituents. The right balance between biosynthesis and degradation is kept by regulation of mechanism. </li></ul><ul><li>Interference with biotransformation </li></ul><ul><li>Several methods are used to prevent certain transformation. </li></ul><ul><li>1. The enzyme that is responsible for the conversion is inhibited selectively. </li></ul><ul><li>Eg. Degradation of cholesterol by mycobacterium species is restricted to side chain only when Ni 2+ or Co 2+ ions are added to the growth medium. </li></ul>
  22. 22. <ul><li>Aspergillus orchraceus convert progesterone to 11-  -hydroxyprogesterone and this is further converted to 6-  -11-  -dihydroxyprogesterone in the presence of Zn 2+ . In the absence of Zn 2+ only 11-  -hydroxyprogesterone is formed. </li></ul>2. Remove the product from the site were further transformation would occur.
  23. 23. <ul><li>Interference with biosynthesis </li></ul><ul><li>The biosynthesis of complex molecules involves enzyme catalyzed combination of distinct moieties. The addition of one of the subunits may result in a considerable improvement in the yield where production of this substance is the limiting factor in the synthesis. </li></ul><ul><li>Eg. Phenyl acetate is added during the production of benzylpenicillin to improve the yield. </li></ul><ul><li>Rate of conversion depends upon the structure of substrate. </li></ul><ul><li>Methylation rate of 2-demethylmenaquinones depends upon the length of side chain in the position 3. </li></ul><ul><li>A optimum rate is obtained with n=3 </li></ul>
  24. 24. <ul><li>Specificity of enzyme reaction </li></ul><ul><li>Only one specific reaction step is normally catalyzed by an enzyme. An enzyme from pseudomonas testosterone catalysis only the oxidation of 3  and 17  hydroxysteroid </li></ul><ul><li>Microbial transformation of steroids </li></ul><ul><li>Naturally occurring steroids possess remarkable hormonal properties which are of therapeutic importance to human well-being, such as hormones of adrenal cortex (cortisone, cortisol, corticosterone), the progestational hormone (progesterone), the androgens or male sex hormones(testosterone, dihydrotestosterone) and the estrogens or female sex hormones (estradiol, estrone, etc.). </li></ul><ul><li>Types of steroidal transformation </li></ul><ul><li>Oxidation </li></ul><ul><ul><li>Hydroxylation </li></ul></ul><ul><ul><li>Dehydrogenation. </li></ul></ul><ul><ul><li>Epoxidations </li></ul></ul><ul><ul><li>Oxidation to ketone through hydroxylation </li></ul></ul><ul><ul><li>Ring A Aromatization </li></ul></ul><ul><ul><li>Degradation of steroid nucleus </li></ul></ul>
  25. 25. <ul><ul><li>Oxidation of alcohols to ketone: 3β-OH to 3-keto (with formation of Δ 5 to Δ 4 ) </li></ul></ul><ul><ul><li>Side chain cleavage of steroids </li></ul></ul><ul><ul><li>Decarboxylation of acids </li></ul></ul><ul><li>Reduction </li></ul><ul><ul><li>Double bond </li></ul></ul><ul><ul><li>aldehyde and ketone to alcohol </li></ul></ul><ul><li>Hydrolysis </li></ul><ul><li>Isomerization </li></ul><ul><li>Resolution of racemic mixture </li></ul><ul><li>Other reactions </li></ul><ul><ul><li>Aminations </li></ul></ul><ul><ul><li>Enolization of carbonyl compounds </li></ul></ul><ul><ul><li>Esterification. </li></ul></ul>
  26. 26. <ul><li>Hydroxylation </li></ul><ul><li>Hydroxylation involves the substitution of hydroxyl group directly for the hydrogen at the position, be it  or  , in the steroid with a retention of configuration. The oxygen atom in the hydroxyl group is derived form molecular oxygen (gaseous), not from water, and the hydroxyl group thus formed always retains the stereochemical configuration of the hydrogen atom that has been replaced. </li></ul><ul><li>Example 2: Certain microorganisms can introduce hydroxyl groups at any of several of the carbon atoms of the steroid molecule. </li></ul><ul><li>Fungi are the most active hydroxylating microorganisms, but some bacteria particularly the Bacilli, Nocardia and Streptomyces show fair to good activity. </li></ul><ul><li>The hydroxylation at the 11-position of progesterone was one of the first hydroxylation described. </li></ul>
  27. 27. <ul><li>Dehydrogenation </li></ul><ul><li>Dehydrogenation with the concomitant introduction of a double bond has been reported for all four rings of the steroid nucleus, although the introduction of unsaturated bonds in Ring A is the only reactions of commercial importance. </li></ul><ul><li>Example 1: </li></ul><ul><li>In 1955, Charney and co-worker observed that they could greatly enhance the anti-inflammatory properties of cortisol by causing the compound to be dehydrogenated at 1 st position by Corynebacterium simplex. The resultant product, prednisolone, was 3-5 times more active than the parent compound and produced fewer side effects . </li></ul>
  28. 28. <ul><li>Epoxidation </li></ul><ul><li>The epoxidation of steroidal double bonds is a rare example of biological epoxidation. The 9,11-epoxidation of 9(11)-dehydro-compounds , and the 14, 15-epoxidation of 14(15)-dehydrocompounds , using Curvalaria lunata. </li></ul>
  29. 29. <ul><li>Ring A Aromatization </li></ul><ul><li>The microbial aromatization of suitable steroid substrates can lead to ring A aromatic compounds, particularly the estrogens which constitutes an important ingredient in oral contraceptives drugs and play important role in replacement therapy for menopause treatment </li></ul><ul><li>Cell free extracts of Pseudomonas testosteroni could transform 19-nor-testosterone into estrone with small quantities of estradiol-17  . </li></ul>19-nortestosterone Estrone Estradoil-17 
  30. 30. <ul><li>Degradation of steroid nucleus </li></ul><ul><li>Side chain degradation of steroids </li></ul><ul><li>Selectively removal of the aliphatic side chain with out further breakdown of the steroidal nucleus. The breakdown of the side chain to yield C-17 keto steroids can be done by several organisms as given below. (Nocardia species) </li></ul>
  31. 31. <ul><li>Reduction </li></ul><ul><li>Reduction of aldehydes and ketones to alcohols </li></ul><ul><li>Hydrolysis </li></ul><ul><li>Hydrolysis of esters- Flavobacterium dehydrogenans contain a specific enzyme acetolase which hydrolyses the steroidal acetates </li></ul>
  32. 32. <ul><li>Esterification </li></ul><ul><li>Usually involve acetylation </li></ul>
  33. 33. <ul><li>Steroid Ring Degradation </li></ul>
  34. 34. Microbial transformation of Glycosides <ul><li>Reductive Inactivation of Digitoxin by Eubacterium lentum Cultures </li></ul><ul><li>The anaerobe Eubacterium lentum inactivated the cardiac glycoside digitoxin by reducing the double bond in the lactone ring. This conversion was quantitative when the substrate was incubated at a concentration of 10 mcg/ml. </li></ul>R= OH Digoxin series n=3(digitoxose)
  35. 35. <ul><li>On the biotransformation of phenol and monofluorophenols by the cultured cells of Eucalyptus perriniana , phenyl and fluorophenyl  -D-glucosides were isolated after a 1-h incubation. </li></ul>
  36. 36. <ul><li>N- Glycosidation (16% conversion efficiency) </li></ul><ul><li>O- Glycosidation (60% conversion efficiency) </li></ul>
  37. 37. <ul><li>Erythromycin can be inactivated by microorganisms through phosphorylation. Erythromycin is glycosylated and inactivated by Streptomyces vendargensis and that the product of glycosylation is 2'-(0-[D-glucopyranosyl]) erythromycin A (Fig. 1; structure 2). Such a glycosylation system could protect macrolide-producing microorganisms during antibiotic biosynthesis or be a mechanism of macrolide resistance in pathogens. </li></ul>
  38. 38. Microbial transformation of Vitamins
  39. 39. <ul><li>Synthesis of Ascorbic Acid </li></ul><ul><li>The starting material: D- glucose (which is converted into D- sorbitol by electrolytic reduction) </li></ul><ul><li>Next step: conversion of D- sorbitol into L- sorbose (carried out using strains of Gluconobacter suboxydans or Acetobacter suboxydans ). </li></ul>
  40. 40. Colour scheme Background Text & Lines Shadows Title Text Fills Accent Accent & Hyperlink Followed Hyperlink
  41. 41. Sample Graph (3 colours)
  42. 42. Picture slide <ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul>
  43. 43. Process Flow <ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul><ul><li>Bullet 3 </li></ul><ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul><ul><li>Bullet 3 </li></ul><ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul><ul><li>Bullet 3 </li></ul><ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul><ul><li>Bullet 3 </li></ul><ul><li>Bullet 1 </li></ul><ul><li>Bullet 2 </li></ul><ul><li>Bullet 3 </li></ul>Plan Design Build Test Evaluate
  44. 44. Example of a table Note: PowerPoint does not allow you to have nice default tables - but you can cut and paste this one Title Title Data Data
  45. 45. Examples of default styles <ul><li>Text and lines are like this </li></ul><ul><li>Hyperlinks like this </li></ul><ul><li>Visited hyperlinks like this </li></ul>Text box Text box With shadow Table
  46. 46. Use of templates You are free to use these templates for your personal and business presentations. <ul><li>Do </li></ul><ul><li>Use these templates for your presentations </li></ul><ul><li>Display your presentation on a web site provided that it is not for the purpose of downloading the template. </li></ul><ul><li>If you like these templates, we would always appreciate a link back to our website. Many thanks. </li></ul><ul><li>Don’t </li></ul><ul><li>Resell or distribute these templates </li></ul><ul><li>Put these templates on a website for download. This includes uploading them onto file sharing networks like Slideshare, Myspace, Facebook, bit torrent etc </li></ul><ul><li>Pass off any of our created content as your own work </li></ul><ul><ul><li>You can find many more free PowerPoint templates on the Presentation Helper website www.presentationhelper.co.uk </li></ul></ul>We have put a lot of work into developing all these templates and retain the copyright in them. You can use them freely providing that you do not redistribute or sell them.

×