Your SlideShare is downloading. ×
Rectilinear motion
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Rectilinear motion

738
views

Published on

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
738
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Chapter 2 Kinematics of particles Particle motion physical dimensions are so small compared with the radius of curvature of its path The motion of particle may be treated as that of a point Ex: the motion of airplane, car 2/2 Rectilinear motion t=0 − t t+Δt + The change in the position coordinate during the interval time Δt is called the displacement Δs
  • 2. Velocity and Acceleration (1) −v +v The average velocity vav = Δs / Δt Instantaneous velocity v = lim Δs Δt → 0 Δt v= ds & =s dt Similarly Instantaneous acceleration dv & a= =v dt Speeding up: +a Slowing down: −a (decelerating) or d 2s a = 2 = && s dt
  • 3. Velocity and Acceleration (2) Another relation By chain rule v= ds ds dv ds = ⋅ =a dt dv dt dv vdv = ads Graphical interpretations s-t graph ds & = s = v (velocity) • Slope = dt
  • 4. Graphical interpretations (1) v-t graph dv & = v = a (acceleration) • Slope = dt • Area under v-t curve ds =v dt s2 t2 s1 t1 A = ∫ ds = ∫ vdt ds = vdt = dA t2 A = s2 − s1 = ∫ vdt t1 Area under v-t graph between t1 and t2 is the net displacement during that interval
  • 5. Graphical interpretations (2) a-t graph • Area under a-t curve dv =a dt v2 t2 v1 t1 A = ∫ dv = ∫ adt dv = adt = dA t2 A = v2 − v1 = ∫ adt t1 Area under a-t graph between t1 and t2 is the net change in velocity between t1 and t2
  • 6. Graphical interpretations (3) θ θ v2 s2 v1 s1 A = ∫ vdv = ∫ ads A= vdv = ads dv a CB = = ds v v s2 1 2 2 (v2 − v1 ) = ∫ ads 2 s1 Acceleration can be found from distance CB (s axis)
  • 7. Analytical integration (1) Constant acceleration dv a= dt v t ∫ dv = ∫ adt = a ∫ dt v0 0 v vdv = ads Basic relation v = v0 + at 0 s s ∫ vdv = ∫ ads = a ∫ ds v 2 = v0 + 2a ( s − s0 ) s 1 2 s = s0 + v0t + at 2 v0 ds v= dt t s0 t s0 t ∫ ds = ∫ vdt = ∫ (v 0 s0 0 2 0 + at )dt
  • 8. Analytical integration (2) Acceleration given as a function of time, a = f(t) dv a= dt v t t v0 0 0 ∫ dv = ∫ adt = ∫ f (t )dt t v = v0 + ∫ f (t )dt 0 v = g (t ) vdv = ads ds v= dt Basic relation s t s0 0 ∫ ds = ∫ vdt t s = s0 + ∫ vdt 0 Or by solving the differential equation && = a = f (t ) s
  • 9. Analytical integration (3) Acceleration given as a function of velocity, a = f(v) dv a= dt t v s vdv = ads ds v= dt Basic relation v 1 1 ∫ dt = v∫ a dv = v∫ f (v) dv 0 0 0 v v v v ∫ ds = v∫ a dv = v∫ f (v) dv s0 0 0 v s = s0 + ∫ v0 v dv f (v )
  • 10. Analytical integration (4) Acceleration given as a function of displacement, a = f(s) dv a= dt v vdv = ads s ∫ vdv = ∫ ads = ∫ f (s)ds v0 ds v= dt Basic relation s t s0 s0 s s 1 1 ∫ dt = s∫ v ds =s∫ g (s) ds 0 0 0 s v 2 = v0 + 2 ∫ f ( s )ds 2 s0 v = g (s )
  • 11. Sample 1 The position coordinate of a particle which is confined to move along a straight line is given by s = 2t 3 − 24t + 6, where s is measured in meters from a convenient origin and t is in seconds. Determine (a) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0, (b) the acceleration of the particle when v = 30 m/s, and (c) the net displacement of the particle during the interval from t = 1 s to t = 4 s.
  • 12. Sample 1
  • 13. Sample 2 A particle moves along the x-axis with an initial velocity vx = 50 m/s at the origin when t = 0. For the first 4 seconds it has no acceleration, and thereafter it is acted on by a retarding force which gives it a constant acceleration ax = −10 m/s2. Calculate the velocity and the x-coordinate of the particle for the conditions of t = 8 s and t = 12 s and find the maximum positive x-coordinate reached by the particle.
  • 14. Sample 3 The spring-mounted slider moves in the horizontal guide with negligible friction and has a velocity v0 in the s-direction as it crosses the mid-position where s = 0 and t = 0. The two springs together exert a retarding force to the motion of the slider, which gives it an acceleration proportional to the displacement but oppositely directed and equal to a = −k2s, where k is constant. Determine the expressions for the displacement s and velocity v as functions of the time t.
  • 15. Sample 4 The car is traveling at a constant speed v0 = 100 km/h on the level portion of the road. When the 6-percent (tanθ = 6/100) incline is encountered, the driver does not change the throttle setting and consequently the car decelerates at the constant rate gsinθ. Determine the speed of the car (a) 10 seconds after passing point A and (b) when s = 100 m.
  • 16. Sample 5 A motorcycle patrolman starts from rest at A two seconds after a car, speeding at the constant rate of 120 km/h, passes point A. If the patrolman accelerates at the rate of 6 m/s2 until he reaches his maximum permissible speed of 150 km/h, which he maintains, calculate the distance s from point A to the point at which he overtakes the car.
  • 17. Sample 5 t2 A v = 120 km/h t = -2 t1 a = 6 m/s2 v = 150 km/h t=0 s1 s2 s=?
  • 18. Sample 6 A particle starts from rest at x = -2 m and moves along the x-axis with the velocity history shown. Plot the corresponding acceleration and the displacement histories for the 2 seconds. Find the time t when the particle crosses the origin.
  • 19. Sample 7 When the effect of aerodynamic drag is included, the y-acceleration of a baseball moving vertically upward is au = – g – kv2, while the acceleration when the ball moving downward is ad = – g + kv2, where k is a positive constant and v is the speed in meters per second. If the ball is thrown upward at 30 m/s from essentially ground level, compute its maximum height h and its speed vf upon impact with the ground. Take k to be 0.006 m-1 and measure that g is constant.