Energy Lesson Plans

3,553 views
3,160 views

Published on

3 lesson plans (non-consecutive) relating to a Year 6 Science Programme on Energy.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
3,553
On SlideShare
0
From Embeds
0
Number of Embeds
42
Actions
Shares
0
Downloads
51
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Energy Lesson Plans

  1. 1. The Context of Science TeachingThe topic of learning in this report is tailored for a small primary school in a high socio-economic area, which generally attracts students of parents in professional fields. The Year 6class has 24 children, consisting of 14 boys and 10 girls, aged between 11-12 years old. Thereare 3 ESL (English Second Language) students in the class.The majority of students display positive student affect towards Science, and several engagein organising lunch-time Science Club activities for younger children at the school. Many ofthese activities focus around exciting, observable physical and chemical changes in matter(e.g. jumping sultanas, erupting volcanoes); implicit in these changes is the concept of energy.“Matter and Energy” has been identified in The Australian Curriculum as one of theoverarching ideas, bridging knowledge and understanding across the Physical, Biological, 08Chemical and Earth and Space Sciences disciplines. The topic is therefore useful in assisting Fallchildren make connections between these areas and view science as “an integrated whole,rather than, a great mass of unconnected pieces of knowledge.” (Wenham, 2010, pg 168 CD).Students are continuously exposed to different forms of energy in their daily lives (e.g. usingsporting equipment/toys, using appliances at home, playing musical instruments, heating andcooling). The topic allows students to explore science club experiments and everydayoccurrences from an energy perspective, directly contributing to their scientific literacy(Skamp, 2012) by extending their interest in and understanding of the world around them,and allowing them to connect the scientific process of inquiry (i.e. questioning and predicting,planning and conducting investigations, analysing data and information, evaluating andcommunicating evidence-based results) with real life.Cross-curriculum priorities include “Sustainability” (ACARA, 2011, pg 12), involving thedesign, construction and management of physical environments to shape more sustainablefutures. This is particularly relevant as 2012 is the United Nations International Year ofSustainable Energy for All (UNF, 2012). In this unit students are given opportunities tobecome familiar with renewable and non-renewable fuel types, observe and understandenergy transfers and transformations, and gradually build awareness of how scientificunderstandings, discoveries and inventions are used to inform decisions and solve problems,facilitating their understanding of science as a human endeavour.The topic integrates the three strands of the Australian Curriculum: Science as Understanding,Human Endeavour and Inquiry Skills, which are each critical to producing scientificallyliterate people. It provides concrete learning experiences using the 5E and Guided Inquirymodels (Trotter, 2011) to encourage the development of students’ scientific processes inresponse to both the search for knowledge and the need to apply it to solve problems.
  2. 2. Intended Learning OutcomesThe intended Science Learning Outcomes for the Year 6 class, as related to the Australian NationalCurriculum (ACARA, 2010) are listed below:Science Understanding:Students shall be able to: 1. Explain that changes to materials can be reversible i.e. melting, freezing, evaporating, or irreversible i.e. burning (ACSSU095). 2. Describe ‘Energy’ as a scientific concept associated with physical and chemical changes, which is a vital part of our lives. 3. Identify several different sources of energy, including fuels, and classify these as Renewable or Non-Renewable. 4. Generate examples from everyday life of how energy is transferred and transformed within systems. 5. List several forms of energy (e.g. chemical, mechanical, electrical, sound, light) and state that they can be classified into two types: Kinetic and Potential Energy. 6. Give examples of how energy from a variety of sources can be used to generate electricity (ACSSU219). 7. Explain the need to ‘conserve energy’ or the requirement to move towards renewable sources.Science as a Human Endeavour:Nature and Development of Science: 8. Predict an outcome and test their prediction by gathering accurate data and using evidence to explain it (ACSHE098).Use and Influence of Science: 9. Scientific understandings, discoveries and inventions are used to solve problems that directly affect people’s lives (ACSHE100). 10. Give examples of how scientific knowledge is used to inform personal and community decisions (ACSHE220).Science Inquiry Skills:Questioning and Predicting: 11.With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be (ACSIS232).Planning and Conducting: 12. Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate (ACSIS104). 13. Select appropriate methods to answer questions or solve problems, with guidance (ACSIS103). 14. Use equipment and materials safely (ACSIS105).Processing and Analysing Data and Information: 15. Construct and use a range of representations to represent and describe observations, patterns or relationships in data (ACSIS107). 16. Decide which variable should be changed and measured in fair tests, accurately observing, measuring and recording data (ACSIS104).Evaluate: 17. Suggest improvements to the methods used to investigate a question or solve a problem (ACSIS108).Communicating: 18. Communicate ideas, explanations and processes in a variety of ways, including multi-modal 2
  3. 3. texts (ACSIS110) - improve expository writing skill. 3
  4. 4. Science Lesson Plan 1 (Lesson 2): Energy is Associated with ChangesDay: Date: Time: 1 hour 30 mins Class: Year 6Subject: Science Topic: EnergyStudents’ Prior Knowledge and Experience:In previous years students have studied various forms of energy, including heat, light and sound, and they have beenexposed to investigating and representing familiar contexts scientifically and making predictions based on priorknowledge. Typical misconceptions likely to exist in the class include: describing energy as a substance, or a force,thinking it is only associated with living things, and confusing energy forms with energy sources.Learning Purposes: Student Evaluation:1. Identify energy as associated with physical On-going observation checklist of unit outcomes to bechanges. i.e. solid to liquid, liquid to gas, gas to completed during class discussions and co-operativeliquid and liquid to solid. learning group discussions (i.e. including responses to questioning during investigations).2. Define the terms melting, evaporation,condensation and freezing. Review of written work (Science Notebooks) for planning and recording of observations and evidence.3. State some considerations in planning a fairtest i.e. change 1 variable at a time. Written response to Evaporation/Boiling assessment question.4. Select appropriate ways to present evidenceand communicate results.Preparation and Resources:Introduction: metal spoons, soft fabric, blu-tack, twig, plastic spoon, water and empty container todemonstrate pouring, thick custard, soft drink, juice from an orange, maple syrup, detergent, empty balloonto inflate, helium balloon to demonstrate voice change/diff. gas, aerosol deodorant, whiteboard, whiteboardmarkers, egg poacher, butter, chocolate buttons, bowls, ice, clear perspex, large poster paper, textas.Main Activity: Science Notebooks, ice blocks, shallow dishes, mixing bowls, spoons, chocolate buttons,measuring cups, egg poachers, window sills, milk and dark chocolate blocks, copha, butter, glasses of coldwater, detergent, milk, cordial, glass kettle.Timing: Learning Experiences:15mins Introduction: (Whole Class)(5mins) 1. Provide the students with real examples of solids, liquids and gases, with varying properties and discuss man-made and naturally occurring substances (i.e. solids: metal spoon, soft fabric, blu-tack, twig, plastic spoon; liquids: water and empty container to demonstrate pouring, thick custard, soft drink, juice from an orange, maple syrup, detergent), gas: empty balloon to inflate, helium balloon to demonstrate voice change/diff. gas, aerosol deodorant, cup of hot water and clear perspex surface. Ask students to write the key properties of each state in a table: compare and discuss differences. 2. Divide the class into four groups of 6 and seat them in a large circle.(5mins) 3. Ask Group 1 to physically model (using their bodies) their idea of a solid changing into a liquid to the rest of the class, Group 2: a liquid changing into a gas, Group 3 a gas changing into a liquid, and Group 4: a liquid changing into a solid. Safety: be aware of physical contact with other students and avoid collisions. 4. Ask each group to describe which state they felt like they had more energy in.(5mins) 5. Place laminated cards “Melting”, “Evaporating”, “Condensing” and “Freezing” inside the circle and ask students to select the correct term for the change of state they modelled. Body: (Whole Class, Groups of 3)55 mins 6. What are some things that can change from a solid, to a liquid, to a gas? Ask students for examples they have seen in everyday life.
  5. 5. 7. What causes a change of state? (Use Think/Pair/Share, then group discussion to elicit students’ ideas). 8. Clarify relevant topic vocabulary (e.g. melting, evaporation, condensation, boiling etc) during discussion and add pre-made laminated words and meanings to the word wall. 9. Inform students they will have access to ice blocks, deep and shallow dishes, mixing bowls, spoons, chocolate buttons, measuring cups, egg poachers, window sills, milk and dark chocolate blocks, copha, butter, glasses of cold water, detergent, milk, cordial, glass kettle, freezer. 10. Ask them to investigate how these substances change state. - what factors affect changes from solid to a liquid, liquid to gas? - what factors affect changes from gas to liquid, liquid to solid? - are the changes reversible? - predict (& record) what effect a heat source will have on state changes? - design a fair test for the factors affecting a change of state (choose 1 example e.g. evaporation). If necessary, provide students with template reminding them to change 1 independent variable at a time, identify the control variable and reduce error.) - record observations and evidence in Science Notebooks, using various representations (i.e. written comments, labelled drawings, diagrams, data tables, graphs, in preparation for dedicated literacy session on expository writing linked to this topic i.e. Integrated Science- Writing Approach (Fulwiler, 2007). SAFETY - Ensure students are aware of the dangers involved: Liquid spills - provide paper towels for immediate clean-up Glass breakages - establish protocol: Stay still, advise teacher, assist with clean-up (do not handle glass with hands, use a dustpan/vacuum cleaner. Burns – immediately place under cold water for 20 mins. Allergies – do not eat or drink any of the substances (anaphylactic shock). Emphasise prevention – keep materials away from edges of bench, move slowly and carefully and be aware of your classmates and surroundings, observe from a safe distance. Conclusion:20 mins 11. Invite 3-5 groups of students to share their investigations with the rest of the class,(15mins) explaining their scientific process: i.e. state their objective, how they planned their investigation, decided which variables to change, minimised their measurement error, recorded their data and, if possible, analysed their data to arrive at an evidence-based conclusion. Ask students to state whether the results of their investigation agreed/disagreed with their predictions, and offer reasons why. Encourage use of correct vocabulary. Encourage peers to think critically and comment appropriately, suggesting alternatives/improvements where necessary. 12. Give students a piece of paper (to be collected) and ask them to answer the question: “Are(5 mins) evaporation and boiling the same thing?” using words, drawings to explain why/why not. 5
  6. 6. Science Lesson Plan 2 (Lesson 5): Energy is Associated with ChangesDay: Date: Time: 1 hour 30 mins Class: Year 6Subject: Science Topic: EnergyStudents’ Prior Knowledge and Experience:Students have related the concept of energy to physical changes involving a change of state (i.e. melting, evaporation,condensation and freezing), and discussed various sources of energy, including different fuel sources. Students haveengaged in questioning, planning and conducting investigations, carrying out a fair test and evaluating evidence toextend their knowledge.Learning Purposes: Student Evaluation:1. Explain that mixing materials can result in Photo sort: reversible and irreversible changes.changes, including the formation of new On-going observation checklist of unit outcomesmaterials in various forms. (knowledge and process) to be completed during class2. Identify burning as an example of an discussions and co-operative learning group discussions.irreversible change involving energytransformations. Review of individual written work in science notebook,3. Use knowledge to predict/hypothesise ability to use knowledge to hypothesise, and evidence topossible outcomes. explain outcomes and responses to questions during investigations.4. Use evidence (in various representationalforms) to explain actual outcomes. Review of comic strip explanation of candle burning.Preparation and Resources:Introduction: Bi-carbonate of soda, vinegar, plate, zip-lock bag, plastic bottles, balloons, water.Main Activity: 2 Candles, 1 large glass jar, 1 small glass jar, insulated gloves, long matches, tongs, candlesnuffer, electronic scales, digital camera.Conclusion: Photo of cake with candle, comic strip templates.Timing: Learning Experiences:20mins Introduction:(5mins) 1. Divide the class into 4 co-operative learning groups of 6. Provide each group with bi- carbonate of soda and vinegar, and a plate to mix them on. Ask each group to record observations ready to present to the class. 2. Discuss the observations – what did you see happen when the materials mixed? Did(5mins) you hear any sounds? Did you notice any smells? What happened to the original substances? What do the bubbles signify? (Where else in your lives do you see bubbles?) What do you think is happening? How do you think we could test this idea (using the equipment we have) to get evidence that supports/disproves it? 3. If necessary, scaffold students to suggest using the balloons or zip-lock bags to collect(5mins) the gas produced. Ask them to predict what will happen, then record their observations and see if they verify their prediction.(5 mins) 4. Discuss observations, their reliance on careful use of the senses, how noticing changes leads to hypothesis and further investigation. Read the quote “Discovery consists of seeing what everybody has seen and thinking what nobody else has thought.” (Smith, 2010, pg 5) by Albert Szent-Gyorgyi (Hungarian Physiologist credited with discovering vitimin C) and talk about how we can use what we know to help us see more, and think further. Use Michael Faraday’s observation as an example (Literacy Link: Biography). Safety: Be aware of spills. Advise students to avoid touching the vinegar/bi-carb. and wash their hands immediately if they come into contact with either substance. 6
  7. 7. 55 mins Body:(5 mins) 5. Show the class the photograph of a birthday cake with a burning candle, and ask them to work in pairs to write down what they see.(15 mins) 6. Carry out a teacher demonstration, ensuring students are able to clearly observe from a safe distance. Ask an assistant to record parts of the demonstration on a digital camera so it can be re-played and studied safely on the smartboard: -Place a candle (ensure it is secure) on top of the scales. Record the initial weight of the candle in a table on the whiteboard (model how to correctly set up and label the table), then light the candle using a match. Update the weight every minute. -Ask the students to observe the candle and draw a labelled diagram of what they see in their science notebooks. Use the camera to photograph the flame; zoom in on the base of the wick so the melted wax can be seen. Display images on the smartboard. - Use the tongs to place a burnt match in the flame, and ask the students if it is burning. Use another candle to melt some wax and cover the burnt match with melted wax before placing it in the flame. Ask the students to record what happened and why they think it happened. Can they see any evidence to support their hypothesis? Can the burnt match be returned to its original condition? Safety: Ensure long hair and clothing is well secured, and students are at a safe(15 mins) distance. Keep a small fire extinguisher/large towel on standby, to smother flames. -Ask students to think about why/how the candle keeps burning (provide focus questions on a handout): What is happening to the wax? What types of energy can they observe? What material is the wick made of and why? (hand out some unburnt candles), Where did the initial energy come from? What is happening to the weight of the candle? (Convert the table results to a graph for easier interpretation of results- Mathematics link). Why? Is there a fuel source in this system? Could it be mixing with anything else? Provide students an opportunity to discuss in groups of 4. 7. Set up another candle and light it, then cover it with a glass jar. -Ask the students to predict what they think will happen in their science notebooks, then record their observations. Why is the jar misty? Why did the candle go out?(10 mins) What does this tell you? (What else is in the jar that may be mixing with the fuel?) 8. Invite groups to share their explanations and evidence with the rest of the class. Discuss the energy inputs and outputs, state changes and ask students to identify what is necessary for the flame to keep burning. Use a see-saw analogy (i.e. needs 2 people to balance, energy input to keep it in motion) to help explain how all 3 elements (high(10 mins) temperature, oxygen and fuel) are needed for burning to continue. 9. Ask students to work in pairs and produce a comic strip to break down the series of events for the candle burning, using the comic strip template (which has picture frames, space for title and captions). Ask them to consider energy transfers, state20 mins changes, energy transformation, heat and light.(5 mins) Conclusion: 10. Show the students the picture of the birthday cake with 1 candle on it, and ask them to(15 mins) tell you what they see when they look at the picture. Read the “Jack be Nimble” rhyme from Science Verse (Scieszka & Smith, 2004). 11. Provide photos of various changes (e.g. fabric burning, egg boiling, water boiling, condensation on a can, gas burning, metal melting, bicarb. & vinegar mixing and ask students to classify as reversible or irreversible. 7
  8. 8. Science Lesson Plan 3 (Lesson 7): Thermal Energy TransferDay: Date: Time: 2 hours Class: Year 6Subject: Science Topic: EnergyStudents’ Prior Knowledge and Experience:Students have investigated mechanisms of thermal energy transfer (radiation, convection and conduction).Students have engaged in questioning, planning and conducting investigations, carrying out a fair test andevaluating evidence to extend their knowledge.Learning Purposes: Student Evaluation:1. Explain that objects have internal/thermal On-going observation checklist of unit outcomes to beenergy (from kinetic energy/motion of completed during class discussions and co-operativeparticles), which is related to temperature. learning group discussions.2. Explain that if the temperature of an object isdifferent to the temperature of its surroundings, Review of written work (Science Notebooks) forthermal energy is transferred from the higher planning, conducting and recording of observations andtemperature object to the lower temperature evidence.object. Review of application of concepts in letter.3. Identify some factors affecting thermalenergy transfer (e.g. properties of materials,temperature of surroundings) and applyknowledge of these to solve problems.4. State some considerations in planning andconducting a fair test i.e. decide which variableto change, set a control variable.Preparation and Resources:Introduction: metal spoons, plastic spoon, glass of warm water, ice-blocks, stop-watch, thermometer.Main Activity: thick cotton, foam, scissors, black paper/paint, white paper/paint, alfoil, cardboard,polystyrene, frozen bottles of water (different sizes), measuring cylinders, string, thermometers, fans.Timing: Learning Experiences:30mins Introduction: (Co-operative Learning Groups of 4)(10mins) 1. Give each group an ice-block, a cup of warm water, a thermometer and a stopwatch. Ask them to predict what will happen to the temperature of the water if they put the ice-block into the warm water, giving reasons for their prediction. 2. Share some predictions with the whole class before allowing students to take and record the initial temperature of the water, place the ice-block into the water and record subsequent temperature at regular time intervals.(10mins) 3. Request feedback from the students about what happened and whether the evidence they collected agreed with their prediction. Ask them to discuss the following in their groups: - What caused the ice-block to melt? Did the temperature of the ice-block increase or decrease? What does this indicate about internal/kinetic energy of the particles? (Relate to the change of state lesson). - What happened to the temperature of the warm water? Why did it stop decreasing after some time? What does the temperature change indicate about the internal energy of the particles? - Describe what you saw in term of energy – did an energy transfer take place between the two substances? Did the room temperature affect your results? 8
  9. 9. 4. Discuss with the whole class, clarifying definitions of internal energy, temperature, and(10mins) using examples of a metal spoon feeling cold, and warm food becoming cold in the fridge to illustrate how thermal energy flows from one object to another, and temperature is influenced by the surrounding environment. Ask the class to think of more examples from everyday life where internal energy is transferred between objects (e.g. swimming to cool down in summer, tea getting cold on a cold day, hugging to keep warm) and to use some of these (picture/photo/drawing form) on the ‘Energy’ wall display.60 mins Body: (Groups of 4)(10mins) 5. Tell the students the Year 3 class is planning to build an ice-monster mascot for their slushy stall at the school Easter Fair. Some of them think it is a bad idea because the monster will melt too fast; others say he will last long enough if they put a coat on him, especially if it is nice and thick, and the right colour. Who is right? Is there anything the Year 3’s could do to slow down the melting process? 6. Ask the students to think about what science knowledge they have that may be useful in solving this problem. What type(s) of energy are involved? Produce an energy flow diagram and brainstorm the different factors which they think will affect the melting process. Consider: Will the size of the monster matter? Will the shape of the monster matter? Will the colour of the coat affect melting time? Will the material of the coat make a difference? Will the thickness of the coat make a difference? Will the temperature of the external environment make a difference? Justify your answers.(20mins) 7. Discuss as a class and allocate one factor to each group. Ask them to design a fair test to determine if that factor has an effect on melting time. Ensure they clearly identify the dependent, independent and control variables. 8. Use the various materials to carry out the fair test, and record results ready to share with(30mins) the rest of the class. (ICT could be used to present the results.) SAFETY - Ensure students consider liquid spills - provide paper towels for immediate clean-up. Glass breakages - establish protocol: Stay still, advise teacher, assist with clean-up (do not handle glass with hands, use a dustpan/vacuum cleaner and safety with scissors. Emphasise prevention – keep materials away from edges of bench, move slowly and carefully and be aware of your classmates and surroundings, observe from a safe distance. Conclusion:30mins 9. Invite each group to explain their fair test to the rest of the class, and present their results and conclusions. 10. Remind students to think critically and evaluate the testing procedure of each group carefully, offering suggestions where necessary. 11. Ask each student to write a letter to the Year 3’s, with recommendations on how to build their slushy ice-monster mascot (Link to Literacy), explaining why their recommendations will work. 9
  10. 10. Part D: Evaluating Science Teaching and LearningAssessment plays a key role in educational accountability (Gillies, 2007), and it is thereforeessential that the evidence collected clearly demonstrates each student’s progress andachievement in relation to the prescribed unit outcomes. The outcomes for ScienceUnderstanding, Science as a Human Endeavour and Science Inquiry Skills are continuouslyassessed throughout the unit, using various methods to allow for the diversity of students’learning styles and capabilities.A combination of formative (on-going assessment aimed at informing future teaching andlearning) and summative assessments (designed to measure unit learning outcomes:criterion-referenced with clearly specified goals) is used to facilitate quality teaching andlearning and promote student attainment of the unit outcomes. This combination ofassessment methods is intended to be comprehensive, valid, educative, and fair (Brady &Kennedy, 2009), and provide opportunities for positive, constructive feedback which willimprove students’ thinking skills and processes while retaining their self-esteem andincreasing their motivation for science learning.The Science Understanding outcomes are evaluated using different forms of authenticformative and summative assessment, reflecting real-world applications of knowledgewherever possible (Forte, 2006). e.g. recommendation letter for the Year 3 ice monster,identification of energy flows in everyday scenarios, classification of fuel sources, conceptmaps, short-answer quizzes. These assessments are conducted over time, to ensure studentshave ample opportunity to demonstrate learning outcomes and increase the reliability of theassessment data. e.g. Outcome 1 (Explain that changes to materials can be reversible) isassessed by targeted observation during class/group discussions, a short-answer quiz, reviewof written observations in the science notebooks after several lessons, use of directquestioning/student interviews on different days, using a self-assessment form, and throughvarious activities which require students to link concepts to real-life, such as sorting photos ofreal-life changes into reversible/irreversible, which can be particularly useful in assessing ESLstudents.The assessment is actively carried out as an integral part of the teaching and learning process,in order to collect evidence which helps identify student strengths and weaknesses over time,in different contexts and in relation to specific science learning outcomes. This allows timely,substantive feedback (Skamp, 2012) related to the content and purposes of the work to begiven, enabling students to overcome obstacles to their learning and make progress.Feedback has been shown to improve learning when it gives each pupil specific guidance onstrengths and weaknesses, preferably without any overall marks.” (Black and Wiliam, 1998,pg 8). The assessment strategies do not rely on a single mode of representation, which alsoincreases the likelihood of obtaining reliable and valid data on student knowledge of thelearning objectives.The Science Inquiry Skills outcomes are assessed over time using a composite studentobservation checklist, which enables a systematic, tiered assessment (Vasquez, 2008) forstudents of differing abilities. i.e. in designing a fair test, struggling students can be providedwith a template to prompt decision-making, but can still be assessed using the outcome-basedchecklist, which provides opportunities for the teacher to record student progress undercategories for each outcome i.e. “Developing, Developed, Highly Developed” for a listedoutcome of “Students are able to decide which variable should be changed in a fair test”.Outcomes related to Science as a Human Endeavour are also assessed using the observation 10
  11. 11. checklist, during several hands-on inquiry learning experiences. Students are able todemonstrate their ability to predict outcomes, gather data and explain events by oral andwritten communication during the investigations. Knowledge of the use and influence ofscience is assessed during the unit through the science notebooks, contributions to the“Energy topic wall” and word wall, and at the end of the unit using the revised KWL chart.The science notebooks effectively represent a learning journey, or collection of work samplesand thought processes over time. They provide invaluable insight into students’ thoughtprocesses, and their ability to represent and interpret data in multiple ways, as well asmonitoring individual growth and development in a given area over time. In addition theyoffer an ideal means to identify student alternative conceptions, allowing teachers to tailorlessons towards challenging these and enabling students to construct meanings which alignwith current scientific thinking. Peer Assessment strategies of sharing journal entries areused on a regular basis, in order to expose students to different methods of recordingobservations, communicating/representing results, understanding, analysing and applyingconcepts, and ultimately expanding their repertoire and ability in each of these areas.This is done in various ways, including sharing exemplar entries with the whole class, using abuddy system, or an alternating partner system, giving written or oral feedback against aspecifically identified focus. Opportunities to discuss observations, procedures and results,and evaluate investigation outcomes with peers in a co-operative learning environmentassists struggling students with their conceptual understanding and communication skills,and allows advanced students to clarifying their thinking (Gillies, 2007).Self-assessment is also used to encourage student ownership of learning (Forte, 2006) andincrease metacognition, which has been linked to positive student attainment (Krause, 2011).Students are given opportunities to evaluate their own journal entries against set criteria(aligned with one or more outcomes), reflecting on how well they have addressed key issuesor demonstrated key skills. This allows students to develop an Ipsative assessment mentality,encouraging them to set learning goals and aim for continual improvement, and motivatingthem to focus on key skills and processes in order to gradually improve their own abilities. Italso enables changes in perspective due to increases in knowledge and understanding to bedemonstrated.A combination of formative and summative assessment incorporating self and peerassessment is used throughout the unit to evaluate student learning against the unit outcomesin each strand of the Australian Curriculum. Targeted observations, questioning, verbalresponses during student interviews, short answer quizzes, explanations and written work,including concept maps for assessing conceptual knowledge gained throughout the unit andascertaining how students represent and relate this knowledge, as well as observation ofclassification activities which incorporate both recall and higher level thinking are used toprovide a valid, fair and comprehensive sense of student learning in relation to the outcomes. 11
  12. 12. ReferencesArcher, S. (2006). 100 Ideas for Teaching Science. Continuum International Publishing Group, London.Black, P. & Wiliam, D. (2001). Inside the Black Box: Raising Standards Through Classroom Assessment”, King’s College London School of Education, London.Brady, L. & Kennedy, K. (2009). Celebrating Student Achievement: Assessment and Reporting. Pearson Education Australia.Curriculum Council (Ed.). (1998). Curriculum Framework, Kindergarten to Year 12 Education in Western Australia (Science Learning Area Statement). Curriculum Council of Western Australia. Perth. WA. Retrieved from http://www.curriculum.wa.edu.auCurriculum Council. (2005). Outcomes and Standards Framework and Syllabus Documents, Progress Maps and Curriculum Guide. Curriculum Council of Western Australia. Perth. WA. Retrieved from http://www.curriculum.wa.edu.auDriver, R., Guesne, E. & Tiberghien, A. (2009). Children’s Ideas In Science. Open University Press, United Kingdom.Fang, A., Lamme, L. & Pringle, R. (2010). Language and Literacy in Inquiry-Based Science Classrooms, Grades 3-8. Corwin and National Science Teachers Association, USA.Forte, I. & Schurr. (2006). Integrating Thinking in Science. Hawker Brownlow Education, Australia.Fulwiler, B. (2007). Writing in Science, How to Scaffold Instruction to Support Learning. Heinemann, Portsmouth.Gribbin, J. (Ed.). (1998). A Brief History of Science. Weidenfeld & Nicolson, London.Hackling, M. (1998). Working Scientifically, Implementing and Assessing Open Investigation Work in Science: A Resource Book for Teachers of Primary and Secondary Science. Education Department of Western Australia.Krause, K., Bochner, S., Duchesne, S. & McMaugh, A. (2011). Educational Psychology for Learning and Teaching, 3rd Edition. Cengage Learning, Australia. 12
  13. 13. Lind, K. (2005). Exploring Science in Early Childhood Education, A Developmental Approach, 4th Edition. Delmar Cengage Learning. Canada.Matricardi, J. & McLarty, J. (2005). Science Activities A to Z. Wadsworth Cengage Learning, Australia.Murphy, N., Feasey, R., Goldsworthy, A., Phipps, R., Stringer, J. (2004). My Zone Science, Changing State. Heinemann, Australia.Murphy, N., Feasey, R., Goldsworthy, A., Phipps, R., Stringer, J. (2004). My Zone Science, Changing State, Teacher’s Notes. Heinemann, Australia.Murphy, N., Feasey, R., Goldsworthy, A., Phipps, R., Stringer, J. (2004). My Zone Science, Different Changes. Heinemann, Australia.Murphy, N., Feasey, R., Goldsworthy, A., Phipps, R., Stringer, J. (2004). My Zone Science, Different Changes, Teacher’s Notes. Heinemann, Australia.Pentland, P. & Stoyles, P. (2003). Party Science. Chelsea House Publishers, Philadelphia.Peters, J. & Stout, D. (2006). Methods for Teaching Elementary School Science, 5th Edition. Pearson Prentice Hall, New Jersey.Skamp, K. (2012). Teaching Primary Science Constructively, 4th Edition. Cengage Learning Australia.The Australian Curriculum-Science, Version 1.1, (2010). Australian Curriculum, Assessment and Reporting Authority [ACARA], Retrieved from: http://www.australiancurriculum.edu.auTrotter, H. & Druhan, A. (2011). Science by Doing: Engaging Students with Science: Inquiry DIY Guide, An Adaptation Manual. Australian Academy of Science. Canberra.Vasquez, J. (2008). Tools & Traits for Highly Effective Science Teaching, K-8. Heinemann, Portsmouth.Ward, H. (2007). Using Their Brains in Science: Ideas for Children Aged 5 to 14. Paul Chapman Publishing, London.Wenham, M. & Ovens, P. (2010). Understanding Primary Science, 3rd Edition. SAGE Publications, London.Wiley, D. & Royce, C. (2000). Investigate and Connect: Physical Science, Years 4-8. 13
  14. 14. Hawker Brownlow Education, Australia.References – Differentiated Topic Texts selected for lessons:Hawkes, N. (2000). Saving Our World: New Energy Sources – Stimulating Talking Points for Lively Discussion. Franklin Watts. London.Love, C. & Smith, P. (2010). How Things Work Encyclopedia. Dorling Kindersley. London.McLeish, E. (2005). World Issues: Energy Crisis. A look at the way the world is today. Franklin Watts, London.Reynoldson, F. (2001). Looking at Energy: Geothermal and Bio-Energy. Hodder Wayland, London.Snedden, R. (2010). Essential Energy: Energy Transfer. Heinemann, Oxford.Scieszka, J. & Smith, L. (2004). Science Verse. Viking. New York. 14

×