Your SlideShare is downloading.
×

×
Saving this for later?
Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.

Text the download link to your phone

Standard text messaging rates apply

Like this presentation? Why not share!

- Fundamentals of-engineering-economics by reyanthonybasa 3666 views
- Basics of engineering economy by ngduyquang1001 41499 views
- 1 introduction to engineering econ... by Mohsin Siddique 377 views
- Intro to engineering economy by Kwesi Kissiedu 18220 views
- INTRODUCTION - ENGINEERING ECONOMIC... by SRI SAIRAM INSTIT... 2793 views
- Engineering economy -_sixth_edition6 by Nour Dagher 2815 views

No Downloads

Total Views

371

On Slideshare

0

From Embeds

0

Number of Embeds

0

Shares

0

Downloads

19

Comments

0

Likes

2

No embeds

No notes for slide

- 1. Engineering Economics 4-1 Cash Flow Cash flow is the sum of money recorded as receipts or disbursements in a project’s financial records. A cash flow diagram presents the flow of cash as arrows on a time line scaled to the magnitude of the cash flow, where expenses are down arrows and receipts are up arrows. Year-end convention ~ expenses occurring during the year are assumed to occur at the end of the year. Example (FEIM): A mechanical device will cost $20,000 when purchased. Maintenance will cost $1000 per year. The device will generate revenues of $5000 per year for 5 years. The salvage value is $7000. Professional Publications, Inc. FERC
- 2. Engineering Economics 4-2a1 Discount Factors and Equivalence Present Worth (P): present amount at t = 0 Future Worth (F): equivalent future amount at t = n of any present amount at t = 0 Annual Amount (A): uniform amount that repeats at the end of each year for n years Uniform Gradient Amount (G): uniform gradient amount that repeats at the end of each year, starting at the end of the second year and stopping at the end of year n. Professional Publications, Inc. FERC
- 3. Engineering Economics 4-2a2 Discount Factors and Equivalence NOTE: To save time, use the calculated factor table provided in the NCEES FE Handbook. Professional Publications, Inc. FERC
- 4. Engineering Economics 4-2b Discount Factors and Equivalence Example (FEIM): How much should be put in an investment with a 10% effective annual rate today to have $10,000 in five years? Using the formula in the factor conversion table, P = F(1 + i) –n = ($10,000)(1 + 0.1) –5 = $6209 Or using the factor table for 10%, P = F(P/F, i%, n) = ($10,000)(0.6209) = $6209 Professional Publications, Inc. FERC
- 5. Engineering Economics 4-2c Discount Factors and Equivalence Example (FEIM): What factor will convert a gradient cash flow ending at t = 8 to a future value? The effective interest rate is 10%. The F/G conversion is not given in the factor table. However, there are different ways to get the factor using the factors that are in the table. For example, (F/G,i%,8) = (P/G,10%,8)(F/P,10%,8) or = (16.0287)(2.1436) = 34.3591 (F/G,i%,8) = (F/A,10%,8)(A/G,10%,8) = (11.4359)(3.0045) = 34.3592 NOTE: The answers arrived at using the formula versus the factor table turn out to be slightly different. On economics problems, one should not worry about getting the exact answer. Professional Publications, Inc. FERC
- 6. Engineering Economics 4-3 Nonannual Compounding Effective Annual Interest Rate An interest rate that is compounded more than once in a year is converted from a compound nominal rate to an annual effective rate. Effective Interest Rate Per Period Effective Annual Interest Rate Example (FEIM): A savings and loan offers a 5.25% rate per annum compound daily over 365 days per year. What is the effective annual rate? m 365 " r % " 0.0525 % ie = $1+ ' ( 1= $1+ ' m& 365 & # # ( 1= 0.0539 Professional Publications, Inc. ! FERC
- 7. Engineering Economics 4-4 Discount Factors for Continuous Compounding The formulas for continuous compounding are the same formulas in the factor conversion table with the limit taken as the number of periods, n, goes to infinity. Professional Publications, Inc. FERC
- 8. Engineering Economics 4-5a Comparison of Alternatives Present Worth When alternatives do the same job and have the same lifetimes, compare them by converting each to its cash value today. The superior alternative will have the highest present worth. Example (EIT8): Professional Publications, Inc. FERC
- 9. Engineering Economics 4-5b1 Comparison of Alternatives Capitalized Costs Used for a project with infinite life that has repeating expenses every year. Compare alternatives by calculating the capitalized costs (i.e., the amount of money needed to pay the start-up cost and to yield enough interest to pay the annual cost without touching the principal). NOTE: The factor conversion for a project with no end is the limit of the P/A factor as the number of periods, n, goes to infinity. Professional Publications, Inc. FERC
- 10. Engineering Economics 4-5b2 Comparison of Alternatives Example (EIT8): Professional Publications, Inc. FERC
- 11. Engineering Economics 4-5c Comparison of Alternatives Annual Cost When alternatives do the same job but have different lives, compare the cost per year of each alternative. The alternatives are assumed to be replaced at the end of their lives by identical alternatives. The initial costs are assumed to be borrowed at the start and repaid evenly during the life of the alternative. Example (EIT8): Professional Publications, Inc. FERC
- 12. Engineering Economics 4-5d Comparison of Alternatives Cost-Benefit Analysis Project is considered acceptable if B – C ≥ 0 or B/C ≥ 1. Example (FEIM): The initial cost of a proposed project is $40M, the capitalized perpetual annual cost is $12M, the capitalized benefit is $49M, and the residual value is $0. Should the project be undertaken? B = $49M, C = $40M + $12M + $0 B – C = $49M – $52M = –$3M < 0 The project should not be undertaken. Professional Publications, Inc. FERC
- 13. Engineering Economics 4-5e Comparison of Alternatives Rate of Return on an Investment (ROI) The ROI must exceed the minimum attractive rate of return (MARR). The rate of return is calculated by finding an interest rate that makes the present worth zero. Often this must be done by trial and error. Professional Publications, Inc. FERC
- 14. Engineering Economics 4-6a Depreciation Straight Line Depreciation The depreciation per year is the cost minus the salvage value divided by the years of life. Professional Publications, Inc. FERC
- 15. Engineering Economics 4-6b Depreciation Accelerated Cost Recovery System (ACRS) The depreciation per year is the cost times the ACRS factor (see the table in the NCEES Handbook). Salvage value is not considered. Professional Publications, Inc. FERC
- 16. Engineering Economics 4-6c Depreciation Example (FEIM): An asset is purchased that costs $9000. It has a 10-year life and a salvage value of $200. Find the straight-line depreciation and ACRS depreciation for 3 years. $9000 " $200 10 = $880 / yr Straight-line depreciation/year = ACRS depreciation First year ($9000)(0.1) = $ 900 ! Second year ($9000)(0.18) = $1620 Third year ($9000)(0.144) = $1296 Professional Publications, Inc. FERC
- 17. Engineering Economics 4-6d Depreciation Book Value The assumed value of the asset after j years. The book value (BVj) is the initial cost minus the sum of the depreciations out to the j th year. Example (FEIM): What is the book value of the asset in the previous example after 3 years using straight-line depreciation? Using ACRS depreciation? Straight-line depreciation $9000 – (3)($800) = $6360 ACRS depreciation $9000 – $900 – $1620 – $1296 = $5184 Professional Publications, Inc. FERC
- 18. Engineering Economics 4-7a Tax Considerations Expenses and depreciation are deductible, revenues are taxed. Example (EIT8): Professional Publications, Inc. FERC
- 19. Engineering Economics 4-7b Tax Considerations Tax Credit A one-time benefit from a purchase that is subtracted from income taxes. Example (EIT8): Professional Publications, Inc. FERC
- 20. Engineering Economics 4-7c Tax Considerations Gain or loss on the sale of an asset: If an asset has been depreciated and then is sold for more than the book value, the difference is taxed. Professional Publications, Inc. FERC
- 21. Engineering Economics 4-8 Bonds Bond value is the present worth of payments over the life of the bond. Bond yield is the equivalent interest rate of the bond compared to the bond cost. Example (EIT8): Professional Publications, Inc. FERC
- 22. Engineering Economics 4-9 Break-Even Analysis Calculating when revenue is equal to cost, or when one alternative is equal to another if both depend on some variable. Example (FEIM): How many kilometers must a car be driven per year for leasing and buying to cost the same? Use 10% interest and year-end cost. Leasing: $0.15 per kilometer Buying: $5000 purchase cost, 3-year life, salvage $1200, $0.04 per kilometer for gas and oil, $500 per year for insurance EUAC (leasing) = $0.15x, where x is kilometers driven EUAC (buying) = $0.04x + $500 + ($5k)(A/P,10%,3) – ($1.2k)(A/F,10%,3) = $0.04x + $500 + ($5k)(0.4021) – ($1.2k)(0.3021) = $0.04x + $2148 Setting EUAC (leasing) = EUAC (buying) and solving for x $0.15x = $0.04x + $2148 x = 19,527 km must be driven to break even Professional Publications, Inc. FERC
- 23. Engineering Economics 4-10 Inflation Inflation-Adjusted Interest Rate Professional Publications, Inc. FERC
- 24. Engineering Economics 4-11a Additional Examples Example 1 (FEIM): What is the uninflated present worth of $2000 in 2 years if the average inflation rate is 6% and i is 10%? d = i + f + if = 0.06 + 0.10 + (0.06)(0.10) = 0.166 P = ($2000)(P/F,16.6%, 2) = ($2000)(1 + d)–n = ($2000)(1 + 0.166)–2 = $1471 Professional Publications, Inc. FERC
- 25. Engineering Economics 4-11b Additional Examples Example 2 (FEIM): It costs $75 per year to maintain a cemetery plot. If the interest rate is 6.0%, how much must be set aside to pay for maintenance on each plot without touching the principal? (A) $1150 (B) $1200 (C) $1250 (D) $1300 P = ($75)(P/A,6%,∞) = ($75)(1/0.06) = $1250 Therefore, (C) is correct. Professional Publications, Inc. FERC
- 26. Engineering Economics 4-11c Additional Examples Example 3 (FEIM): It costs $1000 for hand tools and $1.50 labor per unit to manufacture a product. Another alternative is to manufacture the product by an automated process that costs $15,000, with a $0.50 per-unit cost. With an annual production rate of 5000 units, how long will it take to reach the break-even point? (A) 2.0 yr (B) 2.8 yr (C) 3.6 yr (D) never Cumulative cost (hand tools) = $1000 + $1.50x, where x is the number of units. Cumulative cost (automated) = $15,000 + $0.50x Set cumulative costs equal and solve for x. $1000 + $1.50x = $15,000 + $0.50x $1x = $14,000 x = 14,000 units tbreak-even = x/production rate = 14,000/5000 = 2.8 yr Therefore, (B) is correct. Professional Publications, Inc. FERC
- 27. Engineering Economics 4-11d Additional Examples Example 4 (FEIM): A loan of $10,000 is made today at an interest rate of 15%, and the first payment of $3000 is made 4 years later. The amount that is still due on the loan after the first payment is most nearly (A) $7000 (B) $8050 (C) $8500 (D) $14,500 loan due = ($10k)(F/P,15%,4) – $3000 = ($10k)(1 + 0.15)4 – $3000 = ($10k)(1.7490) – $3000 = $14,490 ($14,500) Therefore, (D) is correct. Professional Publications, Inc. FERC
- 28. Engineering Economics 4-11e Additional Examples Example 5 (FEIM): A machine is purchased for $1000 and has a useful life of 12 years. At the end of 12 years, the salvage value is $130. By straight-line depreciation, what is the book value of the machine at the end of 8 years? (A) $290 (B) $330 (C) $420 (D) $580 BV = $1000 – ($1000 – $130)(8/12) = $1000 – $580 = $420 Therefore, (C) is correct. Professional Publications, Inc. FERC
- 29. Engineering Economics 4-11f Additional Examples Example 6 (FEIM): The maintenance cost for an investment is $2000 per year for the first 10 years and $1000 per year thereafter. The investment has infinite life. With a 10% interest rate, the present worth of the annual disbursement is most nearly (A) $10,000 (B) $16,000 (C) $20,000 (D) $24,000 The costs or benefits for a cash flow that repeat should be broken into different benefits and costs that all start or finish at the time of interest. Take the $2000 cost that repeats for 10 years and break it into two $1000 costs to have one $1000 cost that goes on infinitely and one $1000 cost that goes on for 10 years. P = ($1000)(P/A,10%,10) + ($1000)(P/A,10%,∞) = ($1000)(6.1446) + ($1000)(1/0.10) = $6144.6 + $10,000 = $16,144.6 ($16,000) Therefore, (B) is correct. Professional Publications, Inc. FERC
- 30. Engineering Economics 4-11g Additional Examples Example 7 (FEIM): With an interest rate of 8% compounded semiannually, the value of a $1000 investment after 5 years is most nearly (A) $1400 (B) $1470 (C) $1480 (D) $1800 ie = (1 + r/m)m – 1= (1 + 0.08/2)2 – 1 = 0.0816 F = ($1000)(F/P,8.16%,5) = ($1000)(1 + 0.0816)5 = ($1000)(1.480) = $1480 Therefore, (C) is correct. Professional Publications, Inc. FERC
- 31. Engineering Economics 4-11h1 Additional Examples Example 8 (FEIM): The following data applies for example problems 8.1 through 8.3. A company is considering the purchase of either machine A or machine B. initial cost estimated life salvage value other costs machine A $80,000 20 years $20,000 $18,000 per year machine B $100,000 25 years $25,000 $15,000 per year for the first 15 years $20,000 per year for the next 10 years Example 8.1 (FEIM): The interest rate is 10%, and all cash flows may be treated as end-of-year cash flows. Assume that equivalent annual cost is the value of the constant annuity equal to the total cost of a project. The equivalent annual cost of machine B is most nearly (A) $21,000 (B) $21,500 (C) $23,000 (D) $26,500 Professional Publications, Inc. FERC
- 32. Engineering Economics 4-11h2 Additional Examples The $15,000 cost for 15 years and the $20,000 cost for the next 10 years can be broken into a $20,000 cost for the full 25 years and a $5000 benefit that is present for the first 15 years. The present worth of $20k for 25 years is P($20,25) = ($20k)(P/A,10%,25) = ($20k)(9.0770) = $181.54k The present worth of $5k for 15 years is P($5,15) = ($5k)(P/A,10%,15) = ($5k)(7.6061) = 38.03k Pother costs = $181.54 k + $38.03k = $143.51k Aother costs = Pother costs(A/P, 10%, 25) = ($143.51k)(0.1102) = $15,815 EUAC = ($100k)(A/P,10%,25) – ($25k)(A/F,10%,25) + $15,815 = ($100k)(0.1102) – ($25k)(0.0102) + $15,815 = $11,020 – $255 + $15,815 = $26,610 ($26,500) Therefore, (D) is correct. Professional Publications, Inc. FERC
- 33. Engineering Economics 4-11h3 Additional Examples Example 8.2 (FEIM): If funds equal to the present worth of the cost of purchasing and using machine A over 20 years were invested at 10% per annum, the value of the investment at the end of 20 years would be most nearly: (A) $548,000 (B) $676,000 (C) $880,000 (D) $1,550,000 P(A) = $80k + ($20k)(P/F,10%,20) – ($18k)(P/A,10%,20) = $80k + ($20k)(0.1486) – ($18k)(8.5136) = $80k + $2.972k – $153.245k = $230,273 F(A,10%,20) = ($230,273)(F/P,10%,20) = ($230,273)(6.7275) = $1,549,162 ($1,550,000) Therefore, (D) is correct. Professional Publications, Inc. FERC
- 34. Engineering Economics 4-11h4 Additional Examples Example 8.3 (FEIM): How much money would have to be placed in a sinking fund each year to replace machine B at the end of 25 years if the fund yields 10% annual compound interest and if the first cost of the machine is assumed to increase at a 6% annual compound rate? (Assume the salvage value does not change.) (A) $2030 (B) $2510 (C) $2540 (D) $4110 F = P(F/P,6%,25) – salvage value = ($100,000)(4.2919) – $25,000 = $404,190 A = F(A/F,10%,25) = ($404,190)(0.0102) = $4123 ($4110) Therefore, (D) is correct. Professional Publications, Inc. FERC

Be the first to comment