Effect Of Animal Manure Amendments On P H Of Soils

7,580 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
7,580
On SlideShare
0
From Embeds
0
Number of Embeds
14
Actions
Shares
0
Downloads
237
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Effect Of Animal Manure Amendments On P H Of Soils

  1. 1. Effect of Animal Manure Amendments on pH of Soils.
  2. 2. By: <ul><li>Shah, G.A. </li></ul>
  3. 3. INTRODUCTION <ul><li>Soil Acidity as a problem </li></ul><ul><li>Animal manure and soil acidity </li></ul><ul><li>Literature Survey </li></ul><ul><li>Proposed mechanisms (from literature) </li></ul><ul><li>How can we predict liming effect of manure? </li></ul>
  4. 4. Soil Acidity as a problem <ul><li>Sustainability of agricultural production systems (Nobel et al., 1996) </li></ul><ul><li>Nutritional disorders (Haynes and Mokolobate, 2001) </li></ul><ul><li>Nutrient toxicity / deficiency (Von and Mutert, 1995) </li></ul>
  5. 5. Animal manure and soil acidity <ul><li>Some people even think that manure in general lowers soil pH (Kirchmann et al., 2007; Shen et al., 2007) </li></ul><ul><li>But </li></ul><ul><li>Manure can increase soil pH (Whalen et al., 2000; Whalen et al., 2002; Walker et al., 2004). </li></ul><ul><li>The effect is greater at the higher rate of addition (Naramabuye and Haynes, 2006b) </li></ul><ul><li>Poultry manure application increases soil pH (Duruigbo et al., 2007; Tang et al., 2007; Naramabuye and Haynes, 2006ab &2007) </li></ul><ul><li>At heavy application it can cause an increase in salt concentration (Mokolobate and Haynes, 2002b). </li></ul>
  6. 6. Effects of manures composition on soil pH -do- -- 4.1->5.0 (+0.9) 4.1->4.7 (+0.6) 25 weeks 11 5.4 110.7 26.9 20.5 38.5 252 -do- Naramabuye and Haynes, 2007. -- 4. 10->6.55 (+2.45) 4.1->5.9 (+1.80) 7 weeks 11 5.4 110.7 26.9 20.5 38.5 252 (Layer) Ano and Ubochi, 2007. -- 4.60->6.49 (+1.89) -- 3 weeks 8.9 -- 12.4 -- -- 3.6 296.3 Tang et al., 2007 -- 4.30->4.61 (+0.31) -- 30 days 5.7 -- 27 29.3 43 32.8 131 Naramabuye and Haynes, 2006a. 4.1->6.3 (+2.20) -- -- 3 days 11 -- 110.7 26.9 20.5 39 252 Mokolobate and Haynes, 2002a. -- 4.2->5.4 (+1.20) 4.0->5.1 (+1.10) 6 weeks 5.7 2.6 77 20 21 63 239 Duruigbo et al., 2007. -- 4.7->5.8 (+1.10) 4.60->5.73 (+1.13) 3 weeks 19.5 2 69.5 5.2 13 13.7 211.5 -do- -- 4.0->5.0 (+1) 4.0->4.6 (+0.6) -do- 17 3.5 34.8 19 188 25 343 (Broiler) Naramabuye and Haynes, 2006b. -- 4.00->6.55 (+2.55) 4.0->6.5 (+2.50) 6 weeks 11 5.4 110.7 26.9 205 39 250 (Layer) Poultry manure pH CaCl 2 pH water pH KCl Mg Na Ca K P Total N Organic C References Soil pH change Time span Characteristics (gkg -1 DM) Type of manure
  7. 7. Cattle Manure References pHCaCl 2 pH Water pH KCl Time Span Mg Na Ca K P Total N Organic C Soil pH change Characteristics (gkg -1 DM) -do- -- stable 4.1->3.9 (-0.2) 25 weeks 0.8 0.1 2.4 4.8 3.8 16.3 194 Naramabuye and Haynes, 2007. -- 4.1->4.6 (+0.5) 4.1->4.3 (+0.2) 7 weeks 0.8 0.1 2.4 4.8 3.8 16.3 194 Ano and Ubochi, 2007. -- 4.60->5.91 (+1.31) -- 3 weeks 19.9 -- 11.2 -- -- 4.9 313 Whalen et al., 2002. 4.8->6.0 (+1.2) -- -- 25 weeks -- -- -- 22.7 7.0 22.8 249.3 Naramabuye and Haynes, 2006a. 4.1->4.6 (+0.5) -- -- 3 days 0.1 -- 0.3 0.6 1.8 10 114
  8. 8. Pig manure Soil pH change Characteristics (gkg-1DM) References pH CaCl 2 pH Water pH KCl Time Spane Mg Na Ca K P Total N Organic C Type of manure Shen, Q.R. and Shen, Z.G. 2001. -- 4.0->4.8 (+0.8) -- 8 weeks 9.97 -- 38.6 16.5 39 24.2 -- Ano and Ubochi, 2007. -- 4.60->6.44 (+1.84) -- 3 weeks 13 -- 13.7 -- -- 5.2 271.3 -do- -- 5.80->5.25 (-0.55) -- 120 days -- -- -- 1.12 0.78 30 -- -do- -do- -- 5.8->5.3 (-0.50) -- 28 days -- -- -- 1.12 0.78 30 -- Anearobi-cally Digested (liquid) -do- -- 5.8->5.2 (-0.60) -- 120 days -- -- -- 1.17 0.66 28.8 -- -do- Loria and Sawyer, 2005. -- 5.8->5.3 (-0.50) -- 28 days -- -- -- 1.17 0.66 28.8 -- Raw (liquid) -do- -- 4.10->4.25 (+0.15) stable 25 weeks 11.5 4 50.9 12.4 34.5 25.4 340 Naramabuye and Haynes, 2007. -- 4.1->5.0 (+0.9) 4.1->4.6 (+0.5) 7 weeks 11.5 4 50.9 12.4 34.5 25.4 340
  9. 9. Effect of slurry application on soil pH “ a” means in beginning there was an increase but as time passes it decreased and reached to initial soil pH. ‘ --’ means no data mentioned in the related paper. Plaza et al., 2004. 6.0->6.8 (+0.8) 90 4 years -- 31.52 27.04 -- 59.02 90.27 28.8 -do- -do- 90 -do- -- -- 43.07 3.07 166.15 240 32.5 Anaero-bically digested Chantigny et al., 2004. Stable a 90 9 days -- -- 35.35 1.68 112.79 163.29 59.4 Anaero-bically stored Pig Slurry Martyniuk et al., 2002 6.1->6.2 (+0.1) 100 10 years 24.95 43.87 19.35 -- -- 33.97 93 -do- 5.60->5.80 (+0.20) 100 -do- -- 40 20 -- -- 40 100 Potarzycki et al., 2004. 5.60->6.02 (+0.42) 50 20 years -- 40 20 -- -- 40 100 Cattle slurry CaO K Total-P NO - 3 -N NH + 4 -N Total N Dry matter contents (Kgm -3 ) Reference pH change Rate of application (m 3 ha -1 ) Time span Characteristics (gkg -1 DM) Types of slurry
  10. 10. Proposed mechanisms (from literature) <ul><li>Biological decarboxylation of organic anions (Barekzai and Mengel, 1993; Yan et al., 1996; Naramabuye and Haynes, 2006a). </li></ul><ul><li>Decreasing concentration of exchangeable Al (Naramabuye and Haynes, 2006b; Mokobate and Haynes, 2002b; Nobel et al., 1996). </li></ul><ul><li>Al complexation by solid phase organic matter (Haynes and Mokolobate, 2001). </li></ul><ul><li>Microbial decarboxylation of Ca-organic matter complex (Ano and Ubochi, 2007). </li></ul><ul><li>Increasing the base saturation of the soil by cations (Shen, Q.R. and Shen, Z.G. 2001). </li></ul><ul><li>Buffering from Ca-carbonate and Bicarbonate (Eghball, 1999. and Whalen et al., 2000). </li></ul>
  11. 11. HOW CAN WE PREDICT LIMING EFFECT OF MANURE <ul><li>By laboratory Analysis </li></ul><ul><li>CaCO 3 contents can be a good predictor (Mokolobate and Haynes, 2002a). </li></ul><ul><li>What is important in changing soil pH? </li></ul><ul><li>Soil buffering capacity (Ritchie and Dolling, 1985). </li></ul><ul><li>Soil type (Camberato and Martin, 2000). </li></ul>
  12. 12. Hypothesis and Research Questions
  13. 13. Outlines <ul><li>Research Questions </li></ul><ul><li>Background of hypothesis </li></ul><ul><li>Hypothesis </li></ul><ul><li>Expected results </li></ul><ul><li>Relevance of research </li></ul>
  14. 14. Research Questions <ul><li>Can animal manures be an alternative of lime? </li></ul><ul><li>Which typical manure composition is most efficient in amelioration of soil acidity? </li></ul><ul><li>What is the most effective level of manure application? </li></ul><ul><li>Is there any interaction between manures and soil types to increase pH? </li></ul>
  15. 15. Background information <ul><li>Types of Soil Acidity </li></ul><ul><li>Active Acidity </li></ul><ul><li>H + is measured by soil pH </li></ul><ul><li>Potential Acidity </li></ul><ul><ul><ul><ul><li>H + or Al +3 Adsorbed on Soil </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Produce H + and lower soil pH </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Potential to affect soil pH </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Not measured by soil pH </li></ul></ul></ul></ul>
  16. 16. <ul><li>Al +3 (potential) Al +3 + 3H 2 O </li></ul><ul><li>Al(OH) 3 + 3 H + (active) </li></ul><ul><li>Microbial Hydrolysis </li></ul><ul><li>Organic Manures Ca +2 Ca(OH) 2 </li></ul><ul><li>Decarboxylation </li></ul><ul><li>2 Ca(OH) 2 + Al +3 Al(OH) 3 + 2Ca +2 + OH - </li></ul><ul><li>H + + OH - H 2 O </li></ul><ul><li>(Ano and Ubochi, 2007). </li></ul>clay
  17. 17. <ul><li>H + + CaCO 3 Ca ++ + H 2 CO 3 - </li></ul><ul><li>H + </li></ul><ul><li>CO 2 + H 2 O </li></ul><ul><li>(Eghball, 1999) </li></ul><ul><li>Hypothesis 1: </li></ul><ul><li>Calcium rich manure Can increase the soil pH </li></ul>Soil collides Soil collides
  18. 18. <ul><li>C:N ratio and pH </li></ul><ul><li>General process: </li></ul><ul><li>microbial </li></ul><ul><li>R-CO-COO - + H + R-CHO + CO 2 --------- (1) </li></ul><ul><li>Decarboxylation </li></ul><ul><li>Mineralization Nitrification </li></ul><ul><li>Organic N NH + 4 NO - 3 + 2H + ------ (2) </li></ul><ul><li>Increase in pH is counterbalance by N mineralization </li></ul><ul><li>(K.mengel.et.al 1992) </li></ul><ul><li>If High C:N ratio , </li></ul><ul><li>More organic anions (pH increase) </li></ul><ul><li>Low C:N ratio, </li></ul><ul><li>Less organic anions (pH decrease) </li></ul><ul><li>Hypothesis 2 </li></ul><ul><li>Low N in manure can increase soil pH </li></ul>
  19. 19. Why ? <ul><li>Three types of soil : (sand, clay, peat (0-30cm) & (30-60cm) ) </li></ul><ul><li>Buffering capacity </li></ul><ul><li>Chemical properties </li></ul><ul><li>mineralization rate </li></ul><ul><li>Three types of manure: (poultry, slurry, FYM) </li></ul><ul><li>C:N ratio </li></ul><ul><li>Basic cations </li></ul><ul><li>Three levels of manure application: </li></ul><ul><li>Optimum level </li></ul><ul><li>Salinity </li></ul>
  20. 20. Expected Results <ul><li>Manures: </li></ul><ul><li>Poultry and low nitrogen slurry may increase the pH </li></ul><ul><li>Soils: </li></ul><ul><li>Interaction of manures with soil to increase pH may be stronger for sandy soil then peat and clay </li></ul>
  21. 21. Relevance of research <ul><li>Own Discipline </li></ul><ul><li>communication, acquired practical knowledge </li></ul><ul><li>For Society </li></ul><ul><li>Farmers: </li></ul><ul><li>Reduction of heavy metal toxicity </li></ul><ul><li>Manure management </li></ul><ul><li>Crop production & sustainability </li></ul>
  22. 22. Methodology <ul><li>Soil study </li></ul><ul><li>Organic Manures and analysis </li></ul><ul><li>Plant Analysis </li></ul><ul><li>Green House, Kortenoord </li></ul><ul><li>Work plan </li></ul>
  23. 23. Soil study <ul><li>Soil types </li></ul><ul><li>Sandy soil from Droevendaal Farm </li></ul><ul><li>Clay soil near Haarweg </li></ul><ul><li>Peat soil from Farm Spruit Zegveld, west of Utrecht </li></ul><ul><li>Pot filling </li></ul><ul><li>Clay 12 kg/pot </li></ul><ul><li>Sandy 15 kg/ pot </li></ul><ul><li>Peat (0-30 cm) 9 kg/pot </li></ul><ul><li>Peat (30-60 cm) 7.50 kg/pot </li></ul><ul><li>Soil analysis </li></ul><ul><li>pH, Organic matter </li></ul><ul><li>Total N </li></ul><ul><li>P , P 2 O 5 </li></ul><ul><li>K +1 , Na +1 and Mg +2 </li></ul><ul><li>Ca +2 </li></ul>
  24. 24. Organic Manures and analysis <ul><li>Types of manures </li></ul><ul><li>Farmyard manure </li></ul><ul><li>Poultry manure </li></ul><ul><li>Low N slurry </li></ul><ul><li>Application rates </li></ul><ul><li>Blank </li></ul><ul><li>40 kg N ha -1 </li></ul><ul><li>80 kg N ha -1 </li></ul><ul><li>120 kg N ha -1 </li></ul><ul><li>Manure analysis </li></ul><ul><li>NH 3 -N and Organic –N </li></ul><ul><li>Total N, P 2 O 5 and K +1 </li></ul><ul><li>Na +1 and Mg +2 </li></ul><ul><li>Ca +2 </li></ul><ul><li>4 types soil * 3 manures* 3appli. Rate + 1 control/soil* 3 replications = 120 pots </li></ul>
  25. 25. Plant Analysis <ul><li>Plant (rye grass) Cuttings </li></ul><ul><li>Two times (July and November) with cutting knife. </li></ul><ul><li>Nitrogen Recovery Efficiency (%) </li></ul><ul><li>=NF-NC/ NR x 100 </li></ul><ul><li>where </li></ul><ul><li>NF = N uptake in manure applied pot (kg N ha -I ) </li></ul><ul><li>NC = N uptake in control pot (kg N ha -I ) </li></ul><ul><li>NR = N rate applied (kg N ha -1 ) </li></ul>
  26. 26. Green House, Kortenoord <ul><li>Design </li></ul><ul><li>Completely randomized (CRD) </li></ul><ul><li>Temperature </li></ul><ul><li>Day temperature 18 0 C and night 14 0 C (average temperature 16 0 C) </li></ul><ul><li>Optimum temperature for rye grass is 15 0 C </li></ul><ul><li>Light </li></ul><ul><li>No artificial light (only sunlight) </li></ul><ul><li>Irrigation </li></ul><ul><li>Sprinkler irrigation </li></ul><ul><li>Manure application </li></ul><ul><li>Manually mixing of manure top 10 cm in each pot. </li></ul>
  27. 27. <ul><li>Sowing of Rye grass </li></ul><ul><li>Two days after manure incubation </li></ul><ul><li>Soil sampling </li></ul><ul><li>First two days after sowing </li></ul><ul><li>Second after first harvest (July) </li></ul><ul><li>Third after final harvest (November) </li></ul>
  28. 28. THANKS

×