Fungsi dan grafik

6,284 views
6,057 views

Published on

Published in: Education
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
6,284
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
125
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Fungsi dan grafik

  1. 1. 2.1 Fungsi Secara intuitif, kita pandang y sebagai fungsi dari x jika terdapat aturan dimana nilai y (tunggal) mengkait nilai x. Contoh: 1. a. b. Definisi: Suatu fungsi adalah suatu himpunan pasangan terurut (x,y) dimana himpunan semua nilai x disebut daerah asal (domain ) dan himpunan semua nilai y = f(x) disebut daerah hasil (ko-domain) dari fungsi BAB 2. FUNGSI & GRAFIKNYA y = f(x)x f 2 2 5y x 2 9y x A B Notasi: f : A →B 1 Daerah hasilDaerah asal Untuk contoh 1.a. mendefinisikan suatu fungsi. Namakan fungsi itu f. Fungsi f adalah himpunan pasangan terurut (x,y) sehingga x dan y memenuhi: Fungsi f ini memuat pasangan terurut (0,5);(1,7);(-1,7); (2,13);(-2,13);(10,205) Dan f memuat tak berhingga banyak pasangan terurut. 2 {( , )/ 2 5}f x y x x 0 1 -1 2 -2 … 10 y 5 7 7 13 13 205
  2. 2. x y y = f(x) Wf y Catatan: 1. Himpunan A, B є 2. Fungsi: y = f(x) , x peubah bebas y peubah tak bebas, bergantung pada x 3. Daerah asal fungsi: Df = A = {x | fungsi f terdefinisi} 4. Daerah hasil fungsi: Wf = {y є B | y = f(x), x є Df } 5. Grafik fungsi: {(x,y) | x є Df , y = f(x)) } 2 x Df x Soal: Buatlah sketsa grafik fungsi berikut, kemudian tentukan daerah asal dan dan daerah hasilnya. a. y = 2x + 1 b. y = x2 - 1 Ada beberapa penyajian fungsi yaitu a. Secara verbal : dengan uraian kata-kata. b. Secara numerik : dengan tabel c. Secara visual : dengan grafik d. Secara aljabar : dengan aturan/rumusan eksplisit
  3. 3. Contoh: 1. Secara verbal Biaya pengiriman surat tercatat seberat w ons adalah B(w). Aturan yang digunakan Kantor Pos adalah sebagai berikut. Biaya pengiriman adalah Rp 1.000,00 untuk berat sampai satu ons, ditambah Rp 250,00 untuk setiap ons tambahan sampai 5 ons. 2. Secara numerik Biaya pengiriman surat tercatat ditunjukkan tabel berikut. Berat w (ons) Biaya B(w) (rupiah) 0 < w ≤ 1 1.000 1< w ≤ 2 1.250 2 < w ≤ 3 1.500 3 < w ≤ 4 1.750 3 3 < w ≤ 4 1.750 4 < w ≤ 5 2.000 3. Secara visual Biaya pengiriman surat tercatat ditunjukkan grafik berikut. 0 1 2 3 4 5 1.000 1.500 2.000 w B Ons R u p i a h
  4. 4. 4. Secara aljabar Biaya pengiriman surat tercatat dinyatakan oleh fungsi berikut. 1.000, jika 0 1 1.250, jika 1 2 ( ) 1.500, jika 2 3 1.750, jika 3 4 2.000, jika 4 5 w w B w w w w 2.2 Jenis-jenis Fungsi 1. Fungsi linear Bentuk umum: y = f(x) = ax + b, a dan b konstanta a = kemiringan garis b = perpotongan garis dengan sumbu-y Daerah asal dan daerah hasil: Df = , Wf = Grafik: y 4 2.2 Jenis-jenis Fungsi 1. Fungsi linear Bentuk umum: y = f(x) = ax + b, a dan b konstanta a = kemiringan garis b = perpotongan garis dengan sumbu-y Daerah asal dan daerah hasil: Df = , Wf = Grafik: y x b y = ax + b 2. Polinomial Bentuk umum: y = P(x) = an xn + an-1 xn-1 + … + a2 x2 + a1 x + a0 dimana: an, an-1, …, a1, a0 = konstanta, n = derajat polinom ( an 0) Daerah asal: Df =
  5. 5. Grafik: Polinom derajat 2: y = P(x) = ax2 + bx + c, D = b2 - 4ac x y c a < 0, D > 0 a < 0, D = 0 a < 0, D < 0 y = P(x) y c y = P(x) y c y = P(x) x x x y c a > 0, D > 0 a > 0, D = 0 a > 0, D < 0 y = P(x) y c y = P(x) y c y = P(x) x x Soal : Tentukan daerah asal dan daerah hasil dari fungsi berikut. a. y = x2 + 2x - 1 b. y = -2x2 + 2x - 4 5 Soal : Tentukan daerah asal dan daerah hasil dari fungsi berikut. a. y = x2 + 2x - 1 b. y = -2x2 + 2x - 4 3. Fungsi pangkat Bentuk umum: y = f(x) = xn , n є Daerah asal: Df = Grafik: y y = x y y = x2 0 0 xx y y = x3 0 x
  6. 6. 4. Fungsi akar Bentuk Umum: Daerah asal dan daerah hasil: Df = [0,∞), Wf = [0, ∞), jika n genap Df = , Wf = , jika n ganjil Grafik: ( ) , 2,3,4,...n y f x x n y 0 x y 0 x 2 y x 3 y x Soal : Tentukan daerah asal dan daerah hasil dari fungsi berikut a. b.1y x 2 2 2y x x 6 Soal : Tentukan daerah asal dan daerah hasil dari fungsi berikut a. b.1y x 2 2 2y x x 1 y x 1 , 0y x x y 0 x 5. Fungsi kebalikan Bentuk umum: Daerah asal dan daerah hasil: Df = - {0}, Wf = - {0} Grafik:
  7. 7. 6. Fungsi rasional Bentuk umum: dimana: P, Q adalah polinom Daerah asal: Df = - { x | Q(x) = 0} Contoh: Tentukan daerah asal dari fungsi rasional berikut a. b. ( ) ( ) P x y Q x 1 1 x y x 2 2 1 x y x 7. Fungsi aljabar Definisi: Fungsi f disebut fungsi aljabar jika fungsi tersebut dapat dibuat dengan menggunakan operasi aljabar, yaitu: penambahan, pengurangan, perkalian, pembagian dan penarikan akar, yang dimulai dengan polinom. Contoh: a. b. Catatan: Fungsi linear, polinom, fungsi pangkat, fungsi akar, fungsi balikan dan fungsi rasional adalah fungsi aljabar. 7 7. Fungsi aljabar Definisi: Fungsi f disebut fungsi aljabar jika fungsi tersebut dapat dibuat dengan menggunakan operasi aljabar, yaitu: penambahan, pengurangan, perkalian, pembagian dan penarikan akar, yang dimulai dengan polinom. Contoh: a. b. Catatan: Fungsi linear, polinom, fungsi pangkat, fungsi akar, fungsi balikan dan fungsi rasional adalah fungsi aljabar. 1 ( ) 1 x f x x 3 2 2 ( ) ( 2) 1 1 x f x x x x
  8. 8. 8. Fungsi trigonometri 8.1 Fungsi sinus Bentuk umum: y = f(x) = sin x, x dalam radian Daerah asal dan daerah hasil: Df = , Wf = [-1,1] Grafik: 0-π -1 1 x y y = sin x 8.2 Fungsi cosinus Bentuk umum: y = f(x) = cos x, x dalam radian Daerah asal dan daerah hasil: Df = , Wf = [-1,1] Grafik: y -2π 2ππ 8 8.2 Fungsi cosinus Bentuk umum: y = f(x) = cos x, x dalam radian Daerah asal dan daerah hasil: Df = , Wf = [-1,1] Grafik: 0 -1 1 y y = cos x x -2π -π π 2π 8.3 Fungsi tangen Bentuk umum: Daerah asal : Df = - {π/2 + nπ | n є } Daerah hasil: Wf = sin ( ) tan , dalam radian cos x y f x x x x
  9. 9. Grafik: 0- -1 1 x y y = tan x 8.4 Fungsi trigonometri lainnya Bentuk umum: -π π 2π-2π 9 8.4 Fungsi trigonometri lainnya Bentuk umum: 1 ( ) sec , dalam radian cos 1 ( ) cosec , dalam radian sin 1 ( a. b. c. ) cot , dalam radian tan y f x x x x y f x x x x y f x x x x 8.5 Beberapa sifat fungsi trigonometri a. -1≤ sin x ≤ 1 b. -1 ≤ cos x ≤ 1 c. sin x = sin (x + 2π) d. cos x = cos (x + 2 π) e. tan x = tan (x + π)
  10. 10. x y 0 1 1 y = ax , a > 1 x y 0 1 1 y = ax , 0 < a < 1 10. Fungsi logaritma Bentuk umum : y = f(x) = loga x, a > 0 Daerah asal dan daerah hasil: Df = (0, ) , Wf = Grafik: 9. Fungsi eksponensial Bentuk umum: y = f(x) = ax, a > 0 Daerah asal dan daerah hasil: Df = , Wf = (0, ) Grafik: 10 10. Fungsi logaritma Bentuk umum : y = f(x) = loga x, a > 0 Daerah asal dan daerah hasil: Df = (0, ) , Wf = Grafik: y 0 1 1 y = loga x x
  11. 11. Contoh: Golongkan fungsi-fungsi berikut berdasarkan jenisnya. 11. Fungsi transenden Definisi: Fungsi transenden adalah fungsi yang bukan fungsi aljabar. Himpunan fungsi transenden mencakup fungsi trigonometri invers trigonometri, eksponensial dan logaritma. 4 2 10 5 2 10 10 2 ( ) 1 ( ) tan 2 6 ( ) 10 ( ) 6 ( ) log ( ) 2 log 1. 2. 3. 4. 5. 6. ( ) 27. . ( )8 2 x f x x f x x x f x f x x x f x x f x x x x f x t t f x x x x 11 4 2 10 5 2 10 10 2 ( ) 1 ( ) tan 2 6 ( ) 10 ( ) 6 ( ) log ( ) 2 log 1. 2. 3. 4. 5. 6. ( ) 27. . ( )8 2 x f x x f x x x f x f x x x f x x f x x x x f x t t f x x x x 12. Fungsi yang terdefinisi secara sepotong-sepotong (piecewise function) Definisi: Fungsi yang terdefinisi secara sepotong-sepotong adalah fungsi dengan banyak aturan, dimana setiap aturan berlaku pada bagian tertentu dari daerah asal. Contoh: 0 ( ) | | 0 1. x x f x x x x y 0 1 1 y = |x| x -1
  12. 12. 0 1 ( ) 2 1 2 0 2. 2 x x f x x x x y 0 1 y = f(x) x 2 3. Definisikan x = bilangan bulat terbesar yang lebih kecil atau sama dengan x. f(x) = x = 0 0 1 1 1 2 2 2 3 3 3 4 x x x x 0 1 2 3 1 2 3 x y 4 y = f(x) Catatan: 1. f(x) = |x| , f disebut fungsi nilai mutlak 2. f(x) = x , f disebut fungsi bilangan bulat terbesar 12 Catatan: 1. f(x) = |x| , f disebut fungsi nilai mutlak 2. f(x) = x , f disebut fungsi bilangan bulat terbesar 13. Fungsi genap dan fungsi ganjil Definisi: [Fungsi genap] Jika fungsi f memenuhi f(-x) = f(x) untuk setiap x di dalam daerah asalnya, maka f disebut fungsi genap. x y f(x) -x x y = f(x) Catatan: Grafik fungsi genap simetri terhadap sumbu-y.
  13. 13. Definisi: [Fungsi ganjil] Jika fungsi f memenuhi f(-x) = -f(x) untuk setiap x di dalam daerah asalnya, maka f disebut fungsi ganjil. Catatan: Grafik fungsi ganjil simetri terhadap titik asal. x y f(x) -x x y = f(x) -f(x) Soal: Periksa apakah fungsi berikut adalah fungsi genap atau fungsi ganjil atau bukan kedua-duanya. a. f(x) = 1 - x4 b. f(x) = x + sin x c. f(x) = x2 + cos x d. f(x) = 2x - x2 13 Soal: Periksa apakah fungsi berikut adalah fungsi genap atau fungsi ganjil atau bukan kedua-duanya. a. f(x) = 1 - x4 b. f(x) = x + sin x c. f(x) = x2 + cos x d. f(x) = 2x - x2 14. Fungsi naik dan fungsi turun Definisi: 1. Fungsi f disebut naik pada selang I jika f(x1) < f(x2) untuk setiap x1 < x2 di I. 2. Fungsi f disebut turun pada selang I jika f(x1) > f(x2) untuk setiap x1 < x2 di I. x1 y f(x1) x y = f(x) x2 f(x2) Fungsi f naik x1 y f(x2) x y = f(x) x2 f(x1) Fungsi f turun
  14. 14. Soal: Periksa apakah fungsi f berikut adalah fungsi naik atau fungsi turun pada selang I. a. f(x) = x2 I = [0, ) b. f(x) = sin x I = [ , 2] 15. Fungsi Baru dari Fungsi Lama Dari fungsi dasar dapat dibentuk fungsi baru dengan cara: 1. Transformasi fungsi: pergeseran, peregangan dan pencerminan 2. Operasi aljabar fungsi: penambahan, pengurangan, perkalian dan pembagian 3. Komposisi fungsi Transformasi fungsi a. Pergeseran (translasi) Misalkan c > 0, diperoleh 4 macam grafik: 1. y = f(x) + c, geser y = f(x) sejauh c satuan ke atas 14 15. Fungsi Baru dari Fungsi Lama Dari fungsi dasar dapat dibentuk fungsi baru dengan cara: 1. Transformasi fungsi: pergeseran, peregangan dan pencerminan 2. Operasi aljabar fungsi: penambahan, pengurangan, perkalian dan pembagian 3. Komposisi fungsi Transformasi fungsi a. Pergeseran (translasi) Misalkan c > 0, diperoleh 4 macam grafik: 1. y = f(x) + c, geser y = f(x) sejauh c satuan ke atas y = f(x) c y x c c c y = f(x-c)y = f(x+c) y = f(x) - c y = f(x) + c
  15. 15. b. Peregangan (dilatasi) Misalkan c > 1. Untuk memperoleh grafik: 1. y = cf(x), regangkan grafik y = f(x) secara tegak dengan faktor c. 2. y = (1/c)f(x), mampatkan grafik y = f(x) secara tegak dengan faktor c. 3. y = f(cx), mampatkan grafik y = f(x) secara mendatar dengan faktor c. 4. y = f(x/c), regangkan grafik y = f(x) secara medatar dengan faktor c. 2. y = f(x) - c, geser grafik y = f(x) sejauh c satuan ke bawah 3. y = f(x - c) , geser y = f(x) sejauh c satuan ke kanan 4. y = f(x + c) , geser y = f(x) sejauh c satuan ke kiri 15 b. Peregangan (dilatasi) Misalkan c > 1. Untuk memperoleh grafik: 1. y = cf(x), regangkan grafik y = f(x) secara tegak dengan faktor c. 2. y = (1/c)f(x), mampatkan grafik y = f(x) secara tegak dengan faktor c. 3. y = f(cx), mampatkan grafik y = f(x) secara mendatar dengan faktor c. 4. y = f(x/c), regangkan grafik y = f(x) secara medatar dengan faktor c. 0 π 2π -1 1 y y = cos x 2 -2 y = 2 cos x y = ½ cos x x 0 π 2π -1 1 y y = cos x 2 -2 x y = cos ½ x y = cos 2x
  16. 16. c. Pencerminan Untuk memperoleh grafik: 1. y = -f(x), cerminkan grafik y = f(x) terhadap sumbu-x 2. y = f(-x), cerminkan grafik y = f(x) terhadap sumbu-y y x y = f(x) y = -f(x) x y = f(x)y = f(-x) y x-xx f(x) f(x) -f(x) Contoh: Gambarkan grafik fungsi berikut dengan menggunakan sifat transformasi fungsi. 1. f(x)= |x-1| 2. f(x) = x2+2x+1 3. f(x)= sin 2x 4. f(x) = 1 - cos x 16 Contoh: Gambarkan grafik fungsi berikut dengan menggunakan sifat transformasi fungsi. 1. f(x)= |x-1| 2. f(x) = x2+2x+1 3. f(x)= sin 2x 4. f(x) = 1 - cos x
  17. 17. OPERASI FUNGSI ALJABAR Definisi: [Aljabar fungsi] Misalkan f dan g adalah fungsi dengan daerah asal Df dan Dg. Fungsi f+g, f-g, fg dan f/g didefinisikan sebagai berikut 1. (f + g)(x) = f(x) + g(x) Df+g = Df Dg. 2. (f - g)(x) = f(x) - g(x) Df-g = Df Dg. 3. (fg)(x) = f(x) g(x) Dfg = Df Dg. 4. (f/g)(x) = f(x)/g(x) Df/g = {Df Dg.} – {x | g(x)= 0} Contoh: Tentukan f+g, f-g, fg dan f/g beserta daerah asalnya, jika 17 2 ( ) ( ) ( ) 1 1. 2 ). ( 1 f x x g x x f x x g x x Komposisi fungsi Definisi: [Komposisi fungsi] Misalkan f dan g adalah fungsi dengan daerah asal Df dan Dg. Fungsi komposisi f o g didefinisikan sebagai berikut: (f o g)(x) = f(g(x)) di mana Df o g = {x є Dg | g(x) є Df }
  18. 18. Soal : Tentukan f o g, g o f dan f o f beserta daerah asalnya, jika 2 1. 2. ( ) ( ) 1 ( ) ( ) 1 f x x g x x f x g x x x Dfg f WfWg Dg x g(a) f(g(x)) a g(x) f ° g 18

×