Your SlideShare is downloading. ×
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Números proporcionais, porcentagem, funções
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Números proporcionais, porcentagem, funções

1,308

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,308
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Questões de Matemática – Aula 2 Emerson Marcos Furtado1 Tópicos abordados: Funções Porcentagem Números proporcionais 1. (FCC) – Uma cafeteira automática aceita apenas moedas de 5, 10 ou 25 centavos e não devolve troco. Se, feito nessa máquina, cada cafezinho custa 50 centavos, de quantos modos podem ser usadas essas moedas para pagá-lo? a) 13 b) 12 c) 11 d) 10 e) 9 Solução: Sejam: x quantidade de moedas de 5 centavos y quantidade de moedas de 10 centavos z quantidade de moedas de 25 centavos Se o cafezinho custa 50 centavos, então o pagamento deve satisfazer: 5 . x + 10 . y + 25 . z = 50 Dividindo todos os termos por 5, temos: x + 2y + 5z = 10 1 Mestre em Métodos Nu- méricos pela Universidade Federal do Paraná (UFPR). Licenciado em Matemáti- ca pela UFPR. Professor do Ensino Médio de colégios nos estados do Paraná e Santa Catarina desde 1992; professor do Curso Positivo de Curitiba desde 1996; pro- fessor da Universidade Posi- tivo, de 2000 a 2005; autor de livros didáticos, destinados a concursospúblicos,nasáreas de Matemática, Matemática Financeira, Raciocínio Lógico e Estatística; sócio-diretor do Instituto de Pesquisas e Pro- jetos Educacionais Práxis, de 2003 a 2007; sócio-professor do Colégio Positivo de Join- ville desde 2006; sócio- diretor da empresa Teorema – Produção de Materiais Didáticos Ltda. desde 2005; autor de material didático para o Sistema de Ensino do Grupo Positivo, de 2005 a 2009; professor do CEC – Concursos e Editora de Curi- tiba, desde 1992, lecionando as disciplinas de Raciocínio Lógico, Estatística, Matemá- tica e Matemática Financeira; consultor da empresa Result – Consultoria em Avaliação de Curitiba, de 1998 a 2000; consultor em Estatística Aplicada com projetos de pesquisa desenvolvidos nas áreas socioeconômica, qua- lidade, educacional, indus- trial e eleições desde 1999; membro do Instituto de Promoção de Capacitação e Desenvolvimento (IPRO- CADE) desde 2008; autor de questões para concursos pú- blicos no estado do Paraná desde 2003. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 2. 2 Questões de Matemática – Aula 2 Observe que não pode ocorrer z 2, pois, nesse caso, o valor pago ultra- passaria o preço do cafezinho (5z 10). Se z = 2, temos: x + 2y + 5z = 10 x + 2y + 5 . 2 = 10 x + 2y + 10 = 10 x + 2y = 10 – 10 x + 2y = 0 A única possibilidade de solução seria x = y = 0. Se z = 1, temos: x + 2y + 5z = 10 x + 2y + 5 . 1 = 10 x + 2y + 5 = 10 x + 2y = 10 – 5 x + 2y = 5 x = 5 – 2y As possibilidades são: y = 0 x = 5 – 2 . 0 = 5 – 0 = 5 y = 1 x = 5 – 2 . 1 = 5 – 2 = 3 y = 2 x = 5 – 2 . 2 = 5 – 4 = 1 Se z = 0, temos: x + 2y + 5z = 10 x + 2y + 5 . 0 = 10 x + 2y + 0 = 10 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 3. Questões de Matemática – Aula 2 3 x + 2y = 10 x = 10 – 2y As possibilidades são: y = 0 x = 10 – 2 . 0 = 10 – 0 = 10 y = 1 x = 10 – 2 . 1 = 10 – 2 = 8 y = 2 x = 10 – 2 . 2 = 10 – 4 = 6 y = 3 x = 10 – 2 . 3 = 10 – 6 = 4 y = 4 x = 10 – 2 . 4 = 10 – 8 = 2 y = 5 x = 10 – 2 . 5 = 10 – 10 = 0 Organizando as possibilidades de pagamento em uma tabela, temos: Moedas de R$ 0,05 (x) Moedas de R$ 0,10 (y) Moedas de R$ 0,25 (z) Quantia paga (centavos) 0 0 2 0 . 5 + 0 . 10 + 2 . 25 = 50 5 0 1 5 . 5 + 0 . 10 + 1 . 25 = 50 3 1 1 3 . 5 + 1 . 10 + 1 . 25 = 50 1 2 1 1 . 5 + 2 . 10 + 1 . 25 = 50 10 0 0 10 . 5 + 0 . 10 + 0 . 25 = 50 8 1 0 8 . 5 + 1 . 10 + 0 . 25 = 50 6 2 0 6 . 5 + 2 . 10 + 0 . 25 = 50 4 3 0 4 . 5 + 3 . 10 + 0 . 25 = 50 2 4 0 2 . 5 + 4 . 10 + 0 . 25 = 50 0 5 0 0 . 5 + 5 . 10 + 0 . 25 = 50 Portanto, existem 10 modos possíveis de o pagamento ser realizado. Resposta : D 2. (Cesgranrio) – Em uma empresa, a razão do número de empregados homens para o de mulheres é 3/7. Portanto, a porcentagem de homens empregados nessa empresa é: a) 30% b) 43% Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 4. 4 Questões de Matemática – Aula 2 c) 50% d) 70% e) 75% Solução: Sejam: H percentual de homens da empresa M percentual de mulheres da empresa Então: H 3 M 7 = Utilizando uma propriedade das proporções, temos: H 3 M 7 = = H+M 3+7 = 100% 10 = 10% Assim, podemos escrever: H 3 = 10% H = 3 . 10% = 30% M 7 = 10% M = 7 . 10% = 70% Portanto, a porcentagem de homens empregados nessa empresa é igual a 30%. Resposta: A 3. (FCC) – Sabe-se que 10 máquinas, todas com a mesma capacidade operacional, são capazes de montar 100 aparelhos em 10 dias, se fun- cionarem ininterruptamente 10 horas por dia. Nessas condições, o número de aparelhos que poderiam ser montados por 20 daquelas máquinas, em 20 dias de trabalho e 20 horas por dia de fun- cionamento ininterrupto, é: Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 5. Questões de Matemática – Aula 2 5 a) 100 b) 200 c) 400 d) 600 e) 800 Solução: As informações podem ser organizadas segundo quatro grandezas: aparelhos máquinas dias horas por dia 100 10 10 10 x 20 20 20 A grandeza que possui a incógnita é “aparelhos”. Vamos comparar cada uma das outras três grandezas com“aparelhos”, duas as duas, a fim de verifi- car se são diretamente ou inversamente proporcionais: Comparando a grandeza“máquinas”com“aparelhos”: aparelhos máquinas dias horas por dia 100 10 10 10 x 20 20 20 Quanto maior for o número de máquinas, maior também será o número de aparelhos fabricados. Logo, as grandezas “máquinas” e “aparelhos” são diretamente proporcionais. Vamos representar tal fato por duas setas no mesmo sentido. O sentido pode ser para cima ou para baixo, não importa. Caso as grandezas fossem inversamente proporcionais, representaríamos por duas setas em sentidos contrários. Comparando a grandeza“dias”com“aparelhos”: aparelhos máquinas dias horas por dia 100 10 10 10 x 20 20 20 Quanto maior for o número de dias de produção, maior também será o númerodeaparelhosproduzidos.Assim,asgrandezas“aparelhos”e“dias”sãodi- retamente proporcionais. As setas no mesmo sentido indicam a relação direta. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 6. 6 Questões de Matemática – Aula 2 Comparando a grandeza“horas por dia”com“aparelhos”: aparelhos máquinas dias horas por dia 100 10 10 10 x 20 20 20 Quanto maior for o número de horas por dia de produção, maior também será o número de aparelhos produzidos. Logo, as grandezas “aparelhos”e“horas por dia”também são diretamente proporcionais. Se uma grandeza é diretamente proporcional a duas ou mais gran- dezas, também será diretamente proporcional ao produto delas, então a razão entre as quantidades de aparelhos produzidos na 1.ª e na 2.ª situação é igual ao produto das outras razões: 100 x = . . 10 20 10 20 10 20 Caso uma das grandezas fosse inversamente proporcional à grande- za“aparelhos”a razão seria invertida. Resolvendo, temos: 100 x = . . 1 2 1 2 1 2 100 x = 1 8 1 . x = 8 . 100 x = 800 Portanto, 800 aparelhos poderiam ser montados por 20 daquelas máquinas, em 20 dias de trabalho e 20 horas por dia de funcionamento ininterrupto. Resposta: E 4. (FCC) – Certo dia, Celeste e Haroldo, agentes de fiscalização finan- ceira, foram incumbidos de analisar 51 solicitações de usuários de uma unidade do Tribunal de Contas do Estado de São Paulo. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 7. Questões de Matemática – Aula 2 7 Decidiram, então, dividir o total de solicitações entre si, em partes que eram, ao mesmo tempo, diretamente proporcionais aos seus respec- tivos tempos de serviço no Tribunal e inversamente proporcionais às suas respectivas idades. Sabe-se também que, na ocasião, Celeste tra- balhava no Tribunal há 15 anos e tinha 36 anos de idade, enquanto que Haroldo lá trabalhava há 10 anos. Assim, se coube a Celeste analisar 34 solicitações, a idade de Haroldo: a) era superior a 50 anos. b) estava compreendida entre 45 e 50 anos. c) estava compreendida entre 40 e 45 anos. d) estava compreendida entre 35 e 40 anos. e) era inferior a 40 anos. Solução: Se haviam 51 solicitações e Celeste foi responsável pela análise de 34, então Haroldo ficou responsável por 17: C + H = 51 34 + H = 51 H = 51 – 34 H = 17 Organizando as informações, temos: Análises Idade Tempo Celeste 34 36 15 Haroldo 17 x 10 Assim, se x é a idade de Haroldo e a quantidade de análises é diretamente proporcional ao tempo de serviço e inversamente proporcional à idade de cada funcionário, então: Análises Idade Tempo Celeste 34 36 15 Haroldo 17 x 10 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 8. 8 Questões de Matemática – Aula 2 34 17 = . x 36 15 10 34 . 36 . 10 = x . 15 . 17 34 . 36 . 10 15 . 17 = x 2 . 36 . 2 3 . 1 = x 2 . 12 . 2 = x x = 48 Portanto, a idade de Haroldo estava compreendida entre 45 e 50 anos. Resposta: B 5. (FCC) – No vestiário de um hospital há exatamente 30 armários que são usados por exatamente 30 enfermeiros. Curiosamente, certo dia em que todos os armários estavam fechados, tais enfermeiros entra- ram no vestiário um após o outro, adotando o seguinte procedimen- to: O primeiro a entrar abriu todos os armários; O segundo fechou todos os armários de números pares (2, 4, 6, ..., 30) e manteve a situação dos demais; O terceiro inverteu a situação a cada três armários (3.º, 6.º, 9.º, ..., 30.º), ou seja, abriu os que estavam fechados e fechou os que estavam abertos, man- tendo a situação dos demais; O quarto inverteu a situação a cada quatro armários (4.º, 8.º, 12.º, ... 28.º), mantendo a situação dos demais; Da mesma forma, ocorreu sucessivamente o procedimento dos demais enfermeiros. Com certeza, após a passagem de todos os enfermeiros pelo vestiário, os armários de números 9, 16 e 28 ficaram, respectivamente: Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 9. Questões de Matemática – Aula 2 9 a) aberto, aberto e fechado. b) aberto, fechado e aberto. c) fechado, aberto e aberto. d) aberto, aberto e aberto. e) fechado, fechado e fechado. Solução: A solução dessa questão está relacionada à divisibilidade. Como exemplo vamos considerar o armário de número 10. Quais enfermeiros abririam ou fechariam o armário de número 10? O 1.º enfermeiro abriria o armário de número 10, pois o encontraria fechado. O 2.º enfermeiro fecharia o armário de número 10, pois o encontraria aberto. O 5.º enfermeiro abriria o armário de número 10, pois o encontraria fechado. O 10.º enfermeiro fecharia o armário de número 10, pois o encontraria aberto. Os demais enfermeiros não mexeriam no armário de número 10. Assim, o armário de número 10 ficaria fechado. Os enfermeiros que mexeram no armário de número 10 foram os de números 1, 2, 5 e 10. Que característica em comum os números 1, 2, 5 e 10 apresentam? Todos são divisores positivos de 10. Divisores de 10 1 2 5 10 Início do Armário 10: F A F A F Pensando da mesma maneira podemos descobrir como ficariam os armá- rios de número 9, 16 e 28. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 10. 10 Questões de Matemática – Aula 2 Armário 9: Divisores de 9 1 3 9 Início do Armário 9: F A F A O armário 9 ficaria aberto. Armário 16: Divisores de 16 1 2 4 8 16 Início do Armário 16: F A F A F A O armário 16 ficaria aberto. Armário 28: Divisores de 28: 1 2 4 7 14 28 Início do Armário 28: F A F A F A F O armário 28 ficaria fechado. Logo, os armários 9, 16 e 28 ficariam, respectivamente, aberto, aberto e fechado. Resposta: A Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 11. Questões de Matemática – Aula 2 11 6. (FCC) – Um comerciante comprou 94 microcomputadores de um mes- mo tipo e, ao longo de um mês, vendeu todos eles. Pela venda de 80 desses micros ele recebeu o que havia pago pelos 94 que havia com- prado e cada um dos 14 micros restantes foi vendido pelo mesmo pre- ço de venda de cada um dos outros 80. Relativamente ao custo dos 94 micros, a porcentagem de lucro do comer- ciante nessa transação foi de: a) 17,5% b) 18,25% c) 20% d) 21,5% e) 22% Solução: Sejam: x o preço de custo de cada um dos 94 computadores y o preço de venda de cada um dos 80 computadores Se o valor obtido com a venda dos 80 computadores é igual ao preço gasto com a compra dos 94 computadores, então: 80 . y = 94 . x 94 . x 80 y = O valor obtido com a venda dos 94 computadores, cada um ao preço de y reais, é dado por: 94 . x 80 94 . y = 94 . = 94 . 94 80 . x O lucro obtido na venda dos 94 computadores é igual à diferença entre o valor obtido na venda e o correspondente custo destes 94 computadores: Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 12. 12 Questões de Matemática – Aula 2 L = 94y – 94x 94 . 94 80 L = . x - 94x 94 . 94 . x - 94 . 80 . x 80 L = 94 . (94 - 80) . x 80 L = 94 . (14) . x 80 L = = 14 . 94 80( (. x O resultado indica que o lucro é de exatamente 14 vezes o valor de custo de um computador. Assim, o lucro em relação ao custo é dado por: 14 . 94 80( (. x 14 . 94 80( (. x 94 . x L C .= = = 1 94 . x 14 80 = 7 40 = 0,175 = 17,5% Portanto, o lucro em relação ao custo é igual a 17,5%. Resposta: A 7. (Cesgranrio) – As tabelas a seguir relacionam a numeração de roupas e calçados femininos no Brasil, nos Estados Unidos da América (EUA) e na Europa. Roupas Femininas Brasil EUA Europa 36 2 34 38 4 36 40 6 38 42 8 40 44 10 42 46 12 44 48 14 46 Calçados Femininos Brasil EUA Europa 34 5,5 36 35 6 37 36 7 38 37 7,5 39 38 8,5 40 39 9 41 40 10 42 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 13. Questões de Matemática – Aula 2 13 Observando essas tabelas, conclui-se que: a) numeração de calçados femininos no Brasil pode ser expressa em função da numeração nos EUA e na Europa por meio de funções afim. b) a numeração de roupas femininas no Brasil pode ser expressa em função da numeração nos EUA e na Europa por meio de funções lineares. c) a função que exprime a numeração de roupas femininas na Europa em termos da numeração no Brasil é f(x) = x – 2. d) a função que exprime a numeração de calçados em termos da nu- meração das roupas femininas no Brasil é f(x) = x + 2. e) as relações entre a numeração das roupas e dos calçados femini- nos na Europa em função da respectiva numeração no Brasil po- dem ser estabelecidas pela mesma expressão algébrica. Solução: a) Falsa, pois para acréscimos de uma unidade na numeração de cal- çados femininos no Brasil, a correspondente numeração nos EUA pode sofrer acréscimos de 0,5 ou de 1,0. b) Falsa, pois a razão entre as numerações do Brasil e das correspon- dentes numerações nos EUA e Europa não é constante. c) Verdadeira, pois a numeração das roupas na Europa é duas unida- des menor do que a numeração no Brasil. d) Falsa, pois a numeração dos calçados é menor do que a numera- ção das roupas. e) Falsa, pois as numerações das roupas e dos calçados femininos na Europa são distintas. Resposta: C 8. (Esaf) – Marco e Mauro costumam treinar natação na mesma piscina e no mesmo horário. Eles iniciam os treinos simultaneamente, a partir de lados opostos da piscina, nadando um em direção ao outro. Marco vai de um lado a outro da piscina em 45 segundos, enquanto Mauro Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 14. 14 Questões de Matemática – Aula 2 vai de um lado ao outro em 30 segundos. Durante 12 minutos, eles nadam de um lado para outro, sem perder qualquer tempo nas vira- das. Durante esses 12 minutos, eles podem encontrar-se quer quando estão nadando no mesmo sentido, quer quando estão nadando em sentidos opostos, assim como podem encontrar-se quando ambos estão fazendo a virada no mesmo extremo da piscina. Dessa forma, o número de vezes que Marco e Mauro se encontram durante esses 12 minutos é: a) 10 b) 12 c) 15 d) 18 e) 20 Solução: Se Marco demora 45 segundos para percorrer uma piscina, então em 90 segundos terá percorrido duas piscinas. Nesse mesmo tempo, Mauro per- corre 3 piscinas, pois seu tempo é de 30 segundos por piscina. Logo, a cada 90 segundos, ou seja, 1 minuto e 30 segundos, irão se encontrar exatamen- te 3 vezes, pois esse é o número de piscinas que percorrerá o mais lento (Marco). Isto ocorre somente quando ambos partem de lados opostos da piscina. Caso partissem do mesmo lado, no prazo de 1 minuto e 30 segun- dos, ocorreria um encontro a menos, ou seja, seriam apenas 2 encontros. Em 12 minutos, temos 8 períodos de 1 minuto e 30 segundos. No 1.º, 3.º, 5.º e 7.º períodos, seriam 4 . 3 = 12 encontros. No 2.º, 4.º, 6.º e 8.º períodos, 4 . 2 = 8 encontros. Logo, ao todo, seriam 12 + 8 = 20 encontros. Resposta: E 9. (Funrio) – Seja f uma função que tem como domínio o conjunto A = {Ana, José, Maria, Paulo, Pedro} e como contradomínio o conjunto B = {1, 2, 3, 4, 5}. A função f associa a cada elemento x em A o número de letras distintas desse elemento x. Com base nessas informações, pode- se afirmar que Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 15. Questões de Matemática – Aula 2 15 a) elementos distintos no domínio estão associados a distintos ele- mentos no contradomínio. b) todo elemento do contradomínio está associado a algum elemen- to do domínio. c) f não é uma função. d) f (Maria) = 5. e) f (Pedro) = f (Paulo). Solução: Pela definição da função, temos: f(Ana) = 2; f(José) = 4; f(Maria) = 4; f(Paulo) = 5 e f(Pedro) = 5 a) Falsa Observe, por exemplo, que f(José) = f(Maria) = 4 b) Falsa Observe que existem elementos y B, que não estão associados a quais- quer elementos de x A. Por exemplo, não existe x tal que f(x) = 3. c) Falsa A cada elemento x A existe um único y B tal que y = f(x). d) Falsa f(Maria) = 4 e) Verdadeira f(Paulo) = f(Pedro) = 5 Resposta: E 10. (Cesgranrio) – Um fabricante de leite estabelece a seguinte promoção: 3 caixas vazias do leite podem ser trocadas por uma caixa cheia des- se mesmo produto. Cada caixa contém 1 litro. Comprando-se 11 caixas desse leite, a quantidade máxima, em litros, que pode ser consumida é Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 16. 16 Questões de Matemática – Aula 2 a) 13 b) 14 c) 15 d) 16 e) 17 Solução: Temos 11 caixas – destas onze, 9 podem ser trocadas por mais 3, ou seja, bebemos as 11 e temos duas de saldo que somadas as 3 novas, somam cinco caixas. Até agora temos (11+3=14). Destas cinco, três podem ser trocadas por mais uma (14+1=15) que somadas as duas restantes de cinco possibili- tam mais uma troca (15+1=16). Inclusive o gabarito oficial da prova traz o 16 como resposta correta. Resumindo: 11 possibilitam a troca por mais 3. Saldo anterior 2 + 3 possibilitam a troca por mais 1 Saldo anterior 2+1 possibilitam a troca por mais 1 Temos 11 iniciais + troca 3 + troca 1 + troca 1 = 16 Resposta: D 11. (Funrio) – Se IR denota o conjunto dos números reais e f (x) = 2x + 7 e g(x) = x2 − 2x + 3 são funções de IR em IR, então a lei de definição da função composta f o g é dada por a) x2 − 3x +1 b) 2x2 − 4x +13 c) x4 − 3x2 + 9 d) 2x4 − 5x2 + 36 e) x4 − x2 + x −1 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 17. Questões de Matemática – Aula 2 17 Solução: A função composta (f o g)(x) é definida como sendo (f o g)(x) = f(g(x)), para todo x pertencente ao domínio de g. Logo, calcula–se a imagem de x pela função g e, em seguida, a imagem de g(x) pela função f. Assim, temos: (f o g)(x) = f(g(x)) = 2 . g(x) + 7 = 2 . (x2 – 2x + 3) + 7 = 2x2 – 4x + 13 Resposta: B 12. (Esaf) – Lúcio faz o trajeto entre sua casa e seu local de trabalho cami- nhando, sempre a uma velocidade igual e constante. Neste percurso, ele gasta exatamente 20 minutos. Em um determinado dia, em que haveria uma reunião importante, ele saiu de sua casa no preciso tem- po para chegar ao trabalho 8 minutos antes do início da reunião. Ao passar em frente ao Cine Bristol, Lúcio deu-se conta de que se, daque- le ponto, caminhasse de volta à sua casa e imediatamente reiniciasse a caminhada para o trabalho, sempre à mesma velocidade, chegaria atrasado à reunião em exatos 10 minutos. Sabendo que a distância entre o Cine Bristol e a casa de Lúcio é de 540 metros, a distância da casa de Lúcio a seu local de trabalho é igual a: a) 1 200m b) 1 500m c) 1 080m d) 760m e) 1 128m Solução: A velocidade média é definida como sendo o quociente entre o desloca- mento e o tempo. Sendo S o deslocamento entre a casa de Lúcio e o seu local de trabalho, temos: S m 20 min v= Em outra situação, ele teve que gastar, além dos 20 minutos que normal- mente gasta para percorrer o trajeto, mais 8 minutos que perdeu para chegar ao horário e mais 10 minutos em função do atraso. Entretanto, nessa hipóte- Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 18. 18 Questões de Matemática – Aula 2 se, a distância percorrida aumentou em 540 metros, pois esta era a distância entre o Cine Bristol e a casa de Lúcio. Logo, a velocidade constante também pode ser escrita por: (S + 2 . 540) m (20 + 8 + 10) min v= Como as velocidades são iguais, temos: (S + 2 . 540) m (20 + 8 + 10) min = S m 20 min v= S + 1 080 38 = S 20 38S = 20S + 21 600 38S – 20S = 21 600 18S = 21 600 S = 1 200m Resposta: A 13. (Cesgranrio) – “Essa semana, o Banco Central lançou campanha para que a população use mais moeda e aprenda a identificar notas falsas. Este ano, até agosto, foram apreendidas 251 mil notas falsas, totalizan- do R$12.386.000,00. Desse valor, cerca de 10% correspondiam a notas de 20 reais.”O globo, 24 out (Adaptado.). De acordo com essas informações, quantas notas falsas de 20 reais foram apreendidas até agosto desse ano? a) Menos de 20 mil. b) Entre 20 mil e 40 mil. c) Entre 40 mil e 60 mil. d) Entre 60 mil e 80 mil. e) Mais de 80 mil. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 19. Questões de Matemática – Aula 2 19 Solução: Se 10% das 251 mil notas eram falsas e no valor de R$20,00, então a quan- tidade de notas falsas de 20 reais foi: 0,10 . 251 000 = 25 100 Logo, tal quantidade está entre 20 mil e 40mil. Resposta: B 14. (Esaf) – Durante uma viagem para visitar familiares com diferentes há- bitos alimentares, Alice apresentou sucessivas mudanças em seu peso. Primeiro, ao visitar uma tia vegetariana, Alice perdeu 20% de seu peso. A seguir, passou alguns dias na casa de um tio, dono de uma pizzaria, o que fez Alice ganhar 20% de peso. Após, ela visitou uma sobrinha que estava fazendo um rígido regime de emagrecimento. Acompanhando a sobrinha em seu regime, Alice também emagreceu, perdendo 25% de peso. Finalmente, visitou um sobrinho, dono de uma renomada confei- taria, visita que acarretou, para Alice, um ganho de peso de 25%. O peso final de Alice, após essas visitas a esses quatro familiares, com relação ao peso imediatamente anterior ao início dessa sequência de visitas, ficou: a) exatamente igual. b) 5% maior. c) 5% menor. d) 10% menor e) 10% maior. Solução: Para aumentar uma quantidade x em 20%, por exemplo, basta multiplicar o valor de x por 1,20, observe: x + 0,20 . x = x . (1 + 0,20) = x . 1,20 Para reduzir uma quantidade x em 20%, por exemplo, basta multiplicar o valor de x por 0,80: x – 0,20 . x = x . (1 – 0,20) = x . 0,80 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 20. 20 Questões de Matemática – Aula 2 De forma análoga, para aumentar em 25% uma quantidade, bastaria mul- tiplicar tal quantidade por 1,25 e, para reduzir em 25% uma quantidade, bas- taria multiplicar por 0,75. Desta forma, supondo que o peso de Alice fosse igual a A, no início da viagem, e que ela tivesse apresentado as variações informadas no enunciado, teríamos: A . (0,80) . (1,20) . (0,75) . (1,25) = 0,90 . A Observando que 0,90A – 1A = –0,10A, conclui–se que ela ficou com um peso 10% menor do que o apresentado no início das visitas. Resposta: D 15. (Funrio) – Um comerciante, em uma promoção relâmpago, concedeu 15% de desconto sobre certa mercadoria. Para uma cliente que apro- veitou a promoção, ele concedeu mais 5% de desconto sobre o valor de promoção, a título de pagamento à vista. Tendo comprado a mer- cadoria à vista, a cliente recebeu um desconto total, com respeito ao valor inicial sem promoção, de a) 19% b) 19,25% c) 19,50% d) 20% e) 20,25% Solução: Para reduzir uma quantidade x em 15% basta multiplicar o valor de x por 0,85: x – 0,15 . x = x . (1 – 0,15) = x . 0,85 Para reduzir uma quantidade x em 5% basta multiplicar o valor de x por 0,95: x – 0,05 . x = x . (1 – 0,05) = x . 0,95 Logo, se uma mercadoria custava x reais e sofreu dois descontos sucessi- vos de 15% e 5%, respectivamente, teríamos: x . (0,85) . (0,95) = x . 0,8075 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 21. Questões de Matemática – Aula 2 21 O desconto total foi de 0,8075x – 1x = –0,1925x, ou seja, 19,25% sobre x. Resposta: B 16. (Esaf) – Os ângulos de um triângulo encontram-se na razão 2:3:4. O ângulo maior do triângulo, portanto, é igual a: a) 40° b) 70° c) 75° d) 80° e) 90° Solução: Supondo que os três ângulos internos do triângulo tenham medidas iguais a α, β e γ, respectivamente, temos: α + β + γ = 180º Se tais ângulos encontram–se na razão 2:3:4, temos: α 2 β 3 γ 4 = = = α + β + γ 2 + 3 + 4 = 180º 9 = 20º Logo: α 2 = 20º α = 2 . 20º = 40º β 3 = 20º β = 3 . 20º = 60º γ 4 = 20º γ = 4 . 20º = 80º Assim, o maior ângulo do triângulo mede 80.º. Resposta: D Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 22. 22 Questões de Matemática – Aula 2 17. (Funrio) – Cada torneira enche um tanque em 3 horas e um ralo leva 4 horas para esvaziá-lo. Estando o tanque inicialmente vazio e duas torneiras e o ralo abertos, em quanto tempo o tanque ficará cheio? a) 2h b) 2h12min c) 2h36min d) 2h24min e) 2h48min Solução: Vamos supor que a medida do tanque seja unitária, ou seja, igual a 1. Cada torneira enche um terço do tanque em uma hora. O ralo esvazia um quarto do tanque em uma hora. Logo, sendo x o tempo, em horas, em que o tanque ficará cheio, sendo abertas duas torneiras e um ralo, temos: 1 3 1 3 1 4 1 x =+ - 4 + 4 -3 12 1 x = 5 12 1 x = 5x = 12 x = 2,4 horas x = 2h + (0,4 . 60)min x = 2h + 24min Resposta: D Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 23. Questões de Matemática – Aula 2 23 18. (Esaf) – Um avião XIS decola às 13h00 e voa a uma velocidade constante de x quilômetros por hora. Um avião YPS decola às 13h30 e voa na mesma rota de XIS, mas a uma velocidade constante de y quilômetros por hora. Sabendo que y x, o tempo, em horas, que o aviãoYPS, após sua decolagem, levará para alcançar o avião XIS é igual a a) 2 / (x+y) horas. b) x / (y-x) horas. c) 1 / 2x horas. d) 1/ 2y horas. e) x / 2 (y-x) horas. Solução: Vamos supor que as decolagens tenham ocorrido no mesmo dia. O avião YPS, por ter decolado meia hora depois do avião XIS, precisará percorrer a mesma distância em meia hora a menos. Assim, se a velocidade do avião YPS é y (em km/h) e, supondo, que o des- locamento seja igual S (em km) e que o tempo até o encontro seja igual a t (em horas), temos: y = S = yt S t Se a velocidade do avião XIS é x (em km/h), o deslocamento é igual a S (em km) e que o tempo até o encontro seja igual a t + 1 2 , temos: x = S = x . S t + 1 2 t + 1 2 (( Como os deslocamentos devem ser iguais, temos: x . = ytt + 1 2 (( x . = yt 2t + 1 2 (( Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 24. 24 Questões de Matemática – Aula 2 2xt + x = 2yt x = 2yt – 2xt x = 2t . (y – x) t = x 2 . (y - x) Resposta: E 19. (Cesgranrio) – Manter uma televisão ligada três horas por dia, durante 30 dias, consome 9,9 kWh de energia. Quantos kWh de energia serão consumidos por uma TV que permanecer ligada quatro horas por dia, durante 20 dias? a) 6,6 b) 6,8 c) 7,2 d) 8,8 e) 9,2 Solução: Vamos relacionar as grandezas e resolver o problema por meio de uma regra de três composta: Dias Horas kWh 30 3 9,9 20 4 x As grandezas dias e kWh são diretamente proporcionais, pois aumen- tando-se uma delas, a outra aumentará na mesma proporção, bem como as grandezas horas e kWh. Logo, podemos escrever: 3 4 . = 9,9 x 30 20 90 80 = 9,9 x Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 25. Questões de Matemática – Aula 2 25 9 8 = 9,9 x 9x = 8 . 9,9 x = 8 . 1,1 x = 8,8 Logo, 8,8 kWh de energia serão consumidos por uma TV que permanecer ligada quatro horas por dia, durante 20 dias. Resposta: D 20. (Esaf) – Em um certo aeroporto, Ana caminhava à razão de um me- tro por segundo. Ao utilizar uma esteira rolante de 210 metros, que se movimenta no mesmo sentido em que ela caminhava, continuou andando no mesmo passo. Ao chegar ao final da esteira, Ana verificou ter levado exatamente 1 minuto para percorrer toda a extensão da es- teira. Se Ana não tivesse continuado a caminhar quando estava sobre a esteira, o tempo que levaria para ser transportada do início ao fim da esteira seria igual a a) 1 minuto e 20 segundos. b) 1 minuto e 24 segundos. c) 1 minuto e 30 segundos. d) 1 minuto e 40 segundos. e) 2 minutos. Solução: Velocidade de Ana: VA = 210 m 210 s = 1,0 m/s Velocidade de Ana + esteira: VA+E = 210 m 60 s = 3,5 m/s Velocidade da esteira: VE = VA+E - VA = 3,5m/s - 1,0 m/s = 2,5 m/s Logo, para percorrer 210 metros sem caminhar sobre a esteira, gastaria um tempo dado por: Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 26. 26 Questões de Matemática – Aula 2 2,5 m 1 s = x = = 84 s = 60 s + 24 s = 1 minuto e 24 segundos 210 m x s 210 m 2,5 Resposta: B 21. (Cesgranrio) – Um comerciante aumentou em 20% o preço de suas mercadorias. Com isso, as vendas diminuíram, e ele resolveu oferecer aos clientes um desconto de 30% sobre o preço com aumento. Desse modo, qual é, em reais, o preço com desconto de uma mercadoria que inicialmente custava R$200,00? a) 144,00 b) 168,00 c) 180,00 d) 188,00 e) 196,00 Solução: Para aumentar uma quantidade x em 20%, por exemplo, basta multiplicar o valor de x por 1,20, observe: x + 0,20 . x = x . (1 + 0,20) = x . 1,20 Para reduzir uma quantidade x em 30%, por exemplo, basta multiplicar o valor de x por 0,70: x – 0,30 . x = x . (1 – 0,30) = x . 0,70 Logo, após um aumento de 20% e uma redução de 30%, uma quantidade x será dada por: x . (1,20) . (0,70) = x . 0,84 Se a mercadoria custava R$200,00 no início, então após o aumento e a redução custará: 0,84 . R$200,00 = R$168,00 Resposta: B Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 27. Questões de Matemática – Aula 2 27 22. (Esaf) – Se Y é diferente de zero, e se X Y = 4 , então a razão de 2X – Y para X, em termos percentuais, é igual a: a) 75% b) 25% c) 57% d) 175% e) 200% Solução: Se X Y = 4 , então X = 4Y, logo: 2 . (4Y) - Y 4Y = = = 1,75 = = 175% 2X - Y X 7Y 4Y 175 100 Resposta: D 23. (Cesgranrio) – Uma máquina produz 1 200 peças em 4 horas. Quantas máquinas iguais a essa devem funcionar juntas, durante 3 horas, para que sejam produzidas 8 100 peças no total? a) 5 b) 6 c) 7 d) 8 e) 9 Solução: Se uma máquina produz 1 200 peças em 4 horas, então ela produz 300 peças em 1 hora. Logo, 1 máquina, em 3 horas, produzirá 3 . 300 = 900 peças. Se cada máquina, em 3 horas, produz 900 peças, então para que sejam pro- duzidas 8 100 peças, serão necessárias 8100 900 = 9 máquinas. Resposta: E Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 28. 28 Questões de Matemática – Aula 2 24. (Esaf) – A receita bruta total de uma empresa é diretamente propor- cional ao quadrado da terça parte das quantidades vendidas. Sabe-se que quando são vendidas 6 unidades, a receita total bruta é igual a 40. Assim, quando se vender 3 unidades, a receita bruta será igual a: a) 10 b) 20 c) 30 d) 40 e) 50 Solução: Supondo que a quantidade vendida seja representada por Q e a receita bruta correspondente por R, temos: = k R Q 3 (( 2 em que k é a constante de proporcionalidade. A constante k pode ser obtida substituindo-se Q = 6 e R = 40: = k = k = k k = 10 40 6 3 (( 2 40 (2)2 40 4 Desta forma, podemos escrever: = 10 R = 10 . R Q 3 (( 2 Q 3 (( 2 Logo, para Q = 3, temos: R = 10 . = 10 . (1)2 = 10 . 1 = 10 3 3 (( 2 Resposta: A Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 29. Questões de Matemática – Aula 2 29 25. (Cesgranrio) – Ao receber seu décimo terceiro salário, Mário o dividiu em duas partes, diretamente proporcionais a 4 e a 7. Ele depositou a menor parte na poupança e gastou o restante em compras de Natal. Se Mário depositou R$560,00 na poupança, quanto ele recebeu de dé- cimo terceiro salário, em reais? a) 800,00 b) 960,00 c) 1.200,00 d) 1.400,00 e) 1.540,00 Solução: Sejam P a quantia depositada na poupança, N a quantia gasta nas com- pras de Natal e S o valor do 13.º salário. Se P é diretamente proporcional a 4 e N é diretamente proporcional a 7, então: P 4 N 7 = = P + N 4 + 7 = S 11 Se P = R$560,00, então: 560,00 4 S 11 = S = . 560,00 = 1.540,00 11 4 Resposta: E 26. (Esaf) – Em uma escola de música, exatamente 1/4 do número total de vagas é destinado para cursos de violino, e exatamente 1/8 das vagas para os cursos de violino são destinadas para o turno diurno. Um pos- sível valor para o número total de vagas da escola é: a) 160 b) 164 c) 168 d) 172 e) 185 Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  • 30. 30 Questões de Matemática – Aula 2 Solução: Seja V o número total de vagas da escola, V IN. Se 1/4 do número total de vagas é destinado para cursos de violino, então: V 4 vagas são destinadas ao curso de violino Se 1/8 das vagas para os cursos de violino são destinadas para o turno diurno, então: V 4 8 V 4 = . = 1 8 V 32 vagas são destinadas ao turno diurno ComoV é um número natural a quantidade total de vagas deve ser neces- sariamente um número divisível por 32. Dentre as alternativas apresentadas apenas 160 é divisível por 32. Resposta: A Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br

×