Topic Modeling<br />Writing for People and Search Bots<br />Gillian Muessig<br />Co-founder and President, SEOmoz<br />OMS...
Today’s Menu<br /><ul><li> Topic modeling
 Vector space models
SEOmoz’ primary research on Latent Dirichlet Allocation
 Relationship & applications to SEO  </li></li></ul><li>Search Ranking Factors<br />Link Signals<br />LanguageSignals<br />
Topic Modeling<br />Topic models provide a simple way to analyze large volumes of unlabeled text. <br />
Topic Modeling<br />Topic:A cluster of words that frequently occur together.<br />http://neoformix.com/archive.html<br />
What Topic Modeling Does<br /><ul><li>Use contextual clues
Connect words w/similar meanings
Distinguish between uses of words w/multiple meanings.</li></ul>http://www.stanford.edu/~kaisa/research.html<br />
Why Engines Need Topic Modeling<br />
Term & Inverse Documents Frequency<br />
Co-Occurence<br />
Topic Modeling<br />
Content-related signals require the ability to determine INTENT<br />Rock or baseball?<br />Are you SURE?<br />
If Your Response Is…<br />
Simplistic Term Vector Model<br />
Correlation Is Strong<br />
Correlation Is Strong<br />Standard Deviation<br />
Causation? Not So Fast!<br /><ul><li>Are good links are more likely to point more "relevant” pages?
Do other aspects of Google's algorithm naturally bias toward these results?
Correlation is NOT causation!</li></li></ul><li>It’s Relative<br /><ul><li>Don't presume that getting a 15% or a 20% is a ...
Some queries simply won't produce results that fit remarkably well with given topics</li></li></ul><li>Out of the SERPs!<b...
Compare Your Friends<br />
There’s Still Lots of Work to Do<br /><ul><li>Correlations are good, butdon’t get carried away – we haven’t reversed the algo
We have built a tool to help grade & improve page content
YOUR in-field results will tell us whether it can really help improve rankings</li></li></ul><li>The Whole PictureWhat to ...
How to Build Your Keyword List<br />OMS Los Angeles June, 2011<br />
Salespeople & Customers<br />
Keyword Research<br />Google Wonder Wheel<br />http://www.googlewonderwheel.com/google-wonder-wheel-step-by-step<br />
Keyword Research<br />Google Wonder Wheel<br />http://www.googlewonderwheel.com/google-wonder-wheel-step-by-step<br />
Google AdWords Tool<br />Be Wary of<br />Match Type<br />https://adwords.google.com/select/KeywordToolExternal<br />
Bing AdCenter Excel Plug-In<br />www.seomoz.org/blog/using-the-adcenter-excel-plugin-for-keyphrase-research<br />
Google Trends<br />Sign In for Y-Axis Numbers<br />Not Very Accurate<br />
Internal Site Search Stats<br />
Competitive Keyword Research<br />Restrict query<br />to competitor’s<br />domain<br />
Choose the “Best” Words/Phrases to Target<br />
The Long Tail of Keyword Demand<br />
Predict the Effort Required to Rank Well<br />
How to Write It<br />OMS Denver | June, 2011<br />
The Era of In-Your-Face Marketing Is Officially Over<br />
Now You Know Page Copy Is About More Than Keyword Frequency<br />
Upcoming SlideShare
Loading in...5
×

2011 06 OMS Denver Gillian Muessig - Topic Modeling; Writing for Search Bots and Conversions

863

Published on

Content signals are second in importance only to link related signals when search engine determine where to rank your pages. Learn how to write to attract and please both readers and search bots.

Published in: Technology, Design
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
863
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
6
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "2011 06 OMS Denver Gillian Muessig - Topic Modeling; Writing for Search Bots and Conversions"

  1. 1. Topic Modeling<br />Writing for People and Search Bots<br />Gillian Muessig<br />Co-founder and President, SEOmoz<br />OMS Denver| June, 2011<br />
  2. 2. Today’s Menu<br /><ul><li> Topic modeling
  3. 3. Vector space models
  4. 4. SEOmoz’ primary research on Latent Dirichlet Allocation
  5. 5. Relationship & applications to SEO </li></li></ul><li>Search Ranking Factors<br />Link Signals<br />LanguageSignals<br />
  6. 6. Topic Modeling<br />Topic models provide a simple way to analyze large volumes of unlabeled text. <br />
  7. 7. Topic Modeling<br />Topic:A cluster of words that frequently occur together.<br />http://neoformix.com/archive.html<br />
  8. 8. What Topic Modeling Does<br /><ul><li>Use contextual clues
  9. 9. Connect words w/similar meanings
  10. 10. Distinguish between uses of words w/multiple meanings.</li></ul>http://www.stanford.edu/~kaisa/research.html<br />
  11. 11. Why Engines Need Topic Modeling<br />
  12. 12. Term & Inverse Documents Frequency<br />
  13. 13. Co-Occurence<br />
  14. 14. Topic Modeling<br />
  15. 15. Content-related signals require the ability to determine INTENT<br />Rock or baseball?<br />Are you SURE?<br />
  16. 16.
  17. 17. If Your Response Is…<br />
  18. 18. Simplistic Term Vector Model<br />
  19. 19. Correlation Is Strong<br />
  20. 20. Correlation Is Strong<br />Standard Deviation<br />
  21. 21. Causation? Not So Fast!<br /><ul><li>Are good links are more likely to point more "relevant” pages?
  22. 22. Do other aspects of Google's algorithm naturally bias toward these results?
  23. 23. Correlation is NOT causation!</li></li></ul><li>It’s Relative<br /><ul><li>Don't presume that getting a 15% or a 20% is a terrible result
  24. 24. Some queries simply won't produce results that fit remarkably well with given topics</li></li></ul><li>Out of the SERPs!<br />Keyword spamming might improve your LDA score, <br />…but not your rankings<br />
  25. 25. Compare Your Friends<br />
  26. 26. There’s Still Lots of Work to Do<br /><ul><li>Correlations are good, butdon’t get carried away – we haven’t reversed the algo
  27. 27. We have built a tool to help grade & improve page content
  28. 28. YOUR in-field results will tell us whether it can really help improve rankings</li></li></ul><li>The Whole PictureWhat to Write and How to Write It<br />OMS Denver | June, 2011<br />
  29. 29. How to Build Your Keyword List<br />OMS Los Angeles June, 2011<br />
  30. 30. Salespeople & Customers<br />
  31. 31. Keyword Research<br />Google Wonder Wheel<br />http://www.googlewonderwheel.com/google-wonder-wheel-step-by-step<br />
  32. 32. Keyword Research<br />Google Wonder Wheel<br />http://www.googlewonderwheel.com/google-wonder-wheel-step-by-step<br />
  33. 33. Google AdWords Tool<br />Be Wary of<br />Match Type<br />https://adwords.google.com/select/KeywordToolExternal<br />
  34. 34. Bing AdCenter Excel Plug-In<br />www.seomoz.org/blog/using-the-adcenter-excel-plugin-for-keyphrase-research<br />
  35. 35. Google Trends<br />Sign In for Y-Axis Numbers<br />Not Very Accurate<br />
  36. 36. Internal Site Search Stats<br />
  37. 37. Competitive Keyword Research<br />Restrict query<br />to competitor’s<br />domain<br />
  38. 38. Choose the “Best” Words/Phrases to Target<br />
  39. 39. The Long Tail of Keyword Demand<br />
  40. 40.
  41. 41.
  42. 42.
  43. 43. Predict the Effort Required to Rank Well<br />
  44. 44. How to Write It<br />OMS Denver | June, 2011<br />
  45. 45. The Era of In-Your-Face Marketing Is Officially Over<br />
  46. 46. Now You Know Page Copy Is About More Than Keyword Frequency<br />
  47. 47. Query Deserves Diversity (QDD)<br />
  48. 48. Avoid Duplicate Content / Use Canonicalization<br />
  49. 49. Duplicate Content & Canonicalization<br />
  50. 50. LDA Tool in the Labs<br />URL input box<br />
  51. 51. Thank You <br />Gillian Muessig<br />President | Co-founder, SEOmoz<br />OMS Denver | June, 2011<br />
  52. 52. No… REALLY thank-you!<br />Use code: OMS2011<br />Try SEOmoz PRO free for 45 days<br />OMS Denver| June, 2011<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×