Polymer based transistors & microfluidic devices for biosensor applications<br />Senaka Krishna Kanakamedala<br />Advisor ...
Introduction : Organic Electro Chemical Transistors (OECT) <br /><ul><li> OECT : Low operating voltages , Aqueous environm...
 Electrode materials : Gold, silver and platinum
 Channel: Conducting polymers
Electrolyte solution for electrochemical reactions</li></ul>Gate (G)<br />Electrolyte<br />Source (S)<br />Drain (D)<br />...
OECT with Optimized Dimensions<br />3<br /><ul><li>  Electrode & Channel material: PEDOT:PSS (conducting polymer)</li></ul...
OECT on Glass (left) & Polyester sheet (right)<br />4<br />Fabricated Transistors<br />
Film Thickness = 200 nm<br />5<br />Surface roughness of the patterned film<br />Fig: AFM image of the PEDOT:PSS film<br />
Transistors Characteristics<br />6<br />Vds  = Drain voltage, Ids  = Drain current, and Vgs  = Gate voltage<br />
Glucose Sensor Response<br />―<br />Normalized Response<br />I0 - IC<br />=<br />I0<br /><ul><li> I0 = Drain current befor...
Upcoming SlideShare
Loading in …5
×

Transistors and microfluidic devices for biosensor applications

1,931 views

Published on

Published in: Education, Technology, Business
1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total views
1,931
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Transistors and microfluidic devices for biosensor applications

  1. 1. Polymer based transistors & microfluidic devices for biosensor applications<br />Senaka Krishna Kanakamedala<br />Advisor : Dr. Mark A DeCoster<br />1<br />Louisiana Tech University, Ruston, LA, USA<br />
  2. 2. Introduction : Organic Electro Chemical Transistors (OECT) <br /><ul><li> OECT : Low operating voltages , Aqueous environments & Simplified structure
  3. 3. Electrode materials : Gold, silver and platinum
  4. 4. Channel: Conducting polymers
  5. 5. Electrolyte solution for electrochemical reactions</li></ul>Gate (G)<br />Electrolyte<br />Source (S)<br />Drain (D)<br />Polymer channel<br />2<br />
  6. 6. OECT with Optimized Dimensions<br />3<br /><ul><li> Electrode & Channel material: PEDOT:PSS (conducting polymer)</li></ul>Fig: Schematic diagram of the OECT (top view)<br />
  7. 7. OECT on Glass (left) & Polyester sheet (right)<br />4<br />Fabricated Transistors<br />
  8. 8. Film Thickness = 200 nm<br />5<br />Surface roughness of the patterned film<br />Fig: AFM image of the PEDOT:PSS film<br />
  9. 9. Transistors Characteristics<br />6<br />Vds = Drain voltage, Ids = Drain current, and Vgs = Gate voltage<br />
  10. 10. Glucose Sensor Response<br />―<br />Normalized Response<br />I0 - IC<br />=<br />I0<br /><ul><li> I0 = Drain current before adding glucose
  11. 11. IC = Drain current after adding glucose (concentration of interest) </li></ul>7<br />
  12. 12. Developed Field Effect Transistors<br />8<br /><ul><li> Two sensor devices on a single chip
  13. 13. Gold electrodes are separated by a narrow channel
  14. 14. Channel length = 50µm</li></ul>4.5 mm<br />4.6 mm<br />
  15. 15. 9<br />Outlet<br />Inlet 1<br />Inlet 2<br />Flexible disposable micromixer<br />Fig : Solid works model of the polymer micromixer (left), three layered polymer patterns constitute microchannel of the micromixer (right)<br />
  16. 16. Fabricated flexible microfluidic devices<br />10<br />

×