Pesquisas em materiais poliméricos: tendências internacionais para o setor industrial

969 views
825 views

Published on

Pesquisas em materiais poliméricos: tendências internacionais para o setor industrial / Polymeric material researches: internationaltrends for theindustry sector
Palestrante: Prof. Dr. Klaus Heinemann - Thuringian Institute of Textile and Plastics Research – TITK / Alemanha

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
969
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Pesquisas em materiais poliméricos: tendências internacionais para o setor industrial

  1. 1. 7o WORKSHOP INTERNACIONAL SENAI “MATERIAIS” 30 de ogosto 2012; Criciúma – SC – Brasil"Tendências de Pesquisa, Desenvolvimento e Inovação dos Materiais para Aplicações Industriais" „Pesquisas em materiais poliméricos: tendências internacionais para o setor industrial” Erich Meusel; Rüdiger Strubl; Wolfgang Müller; Ralf-Peter Gottlöber; Nicole Klose; Frances Stöckner; Anne Böhm; Klaus Heinemann Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. 07407 Rudolstadt - Schwarza; GERMANY http://www.titk.de; E-Mail: heinemann@titk.de Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Prof. Dr. Klaus Heinemann
  2. 2. Disposition „Polymer materials research: International highly topical trends for the industry sector” TITK – industrial polymeric materials research institute, in the Free State "Thuringia"; Germany Material design using native polymers, esp. Cellulosethe TITK Fibre reinforced materials for the lightweight constructionALCERU® high tech Nano-composites – polymer materials with uncommon properties Specialized additives aiming at "macromolecular engineering"Fibre reinforcement Reactive "lcp’s": Basic concept for „lc- PEIA”Nano- composites Selected results Functionalized Nano- layered silicates: PEIA- modified „nanoclays”Specialized additives antibacterial „nanoclays”- reactive lcp’s Additives enriched- PEIA-nanoclays at filament surface: Conception – basic idea- antibac- nanoclays Design and synthesis of the novel additives- additives enriched Filament properties – first results at the surface Résumé and outlookPOLYTRONIC Functional polymer systems and "POLYTRONIC" Fig. 02 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Prof. Dr. Klaus Heinemann
  3. 3. The TITK – 58 Years Industrial ResearchThüringisches Institutfür Textil- undKunststoff- Forschung e.V. Chemical Research Plastics Research Textile and Material Research Functional Polymer Innovation Competence Quality Systems and for a progressive productive small and medium-sized industry physical Research Dr.-Ing. Ralf-Uwe Bauer Managing Director of the TITK reg. assoc.
  4. 4. TITK – the Research Institute for Polymer Materials Innovation Competence Quality
  5. 5. ThuringianThuringian Institute and Plastics Research Rudolstadt/ Germany Institute for Textile for Plastics Research (TITK) Rudolstadt / Germany Department of Functional Polymers Systems “Technology triangle” Jena – Rudolstadt – Ilmenau Friedrich-Schiller University of Jena Erfurt Weimar Jena A4 B88 B85 A71 A9Ilmenau B88 RudolstadtUniversity ofTechnology Ilmenau Saalfeld / ICE ThuringiaCenter for Micro- andNanotechnology Rudolstadt
  6. 6. TITK - Network TITK OMPG Thuringian Institute for Textile and East Thuringian Material Testing Comp. Plastics Research reg. assoc. for Textiles and Plastics Employee: 133 Employee: 44 Member: 89 Budget: 10 million EURO Turnover: 5 million EURO Research & Development (100% subsidiary of TITK) regarding Materials, Materials Testing and Processing and Technologies Characterization Services 25,1 % 28 % 33 % 50 % 34 %Shanghai Lyocell AP®FIBRE Technologiegesell- Rubitherm Chemical Fibre GmbH schaft Thüringen Compound Engineering Rudolstadt mbG & Co. KG GmbHDevelopment Co., Ltd.Fig. 06 Thüringisches Institut für Textil- und Kunststoff-Forschung
  7. 7. Thüringisches Institut für Textil- und Kunststoff- Forschung e.V. Ostthüringische Materialprüfgesellschaft m. b. H. Accredited Testing of Plastics SERVICE Advisory Centre regarding Material Applications Analyses of Recycling Materials InvestigationsTESTINGS ANALYSES Thermical testings Identification of plastics Mechanical testings Optical testings Flammability testings Electrical testings OM Chemical Analyses Damage analyses Particle and Surface analyses Rheological testings PG „Co- Benefactor” of the endowed professorship „Plastics technology” at the "University of Technology Ilmenau" Fig. 07
  8. 8. TITK - Network Research & Development regarding Materials, Processing and Technologies East Thuringian Material Testing Company for Textiles and Plastics (100% subsidiary of TITK) Materials Testing and Characterization Services including: Production of applicators for the Cosmetic Industry by electrostatic coating using flock fibresFig. 08 Thüringisches Institut für Textil- und Kunststoff-Forschung
  9. 9. Thüringisches Institut für Textil- und Kunststoff-Forschung Strategic Research Orientation: Industrial Utilization Native Polymers and Textile and Chemical Research Material Research Functional Polymers – Composite Materials Structural Polymers – Plastics Processing Functional Polymer Plastics Research Systems Research Research Services, providing the Expertise and Potentials of the TITK to the small and medium-sized companies for their own developments Portfolio • Research and Development Services: Processes and Materials • Materials Testing and Characterization Services • Selling of Products and Materials resulting from previous Research and Development Activities and produced in small scale production • Selling of own Patents respectively Licences
  10. 10. Department: “Native Polymers and Chemical Research” Dr. Frank Meister – Head of the department Field of Research: Structural and functional materials based on “Native Polymers” Competences: - Characterization of polymers and polymer solutions - Shaping of native polymers into monofilaments, multifilaments, fibres, films and beads by means of “dry -wet” or “wet” techniques - Chemical modification of polysaccharides and proteins as well as their shaping for technical applications - Technologies for production of ceramic fibres and foilsFig. 10 Thüringisches Institut für Textil- und Kunststoff-Forschung
  11. 11. 1. “Native Polymers and Chemical Research” ALCERU® - products – an Overview ALCERU® duotherm ALCERU® piezoThüringisches Institutfür Textil- und ALCERU® beadsKunststoff- Forschung e.V. 0.45 0.4 Polymer/Solvent-System : Polystyrene/THF 34± 5 nm Pore surface/pore volume : 59 ± 10 m3/cm3 0.35 Water retention behaviour: 16 cm3/g Chemical 0.3 PSD (volume) 0.25 Research 0.2 0.15 0.1 0.05 ALCERU® ceramic 0 0 5 10 15 20 25 30 35 40 45 Information: PSS GmbH Mainz Transverse pore diameter [nm] Plastics Research ALCERU® supersorb 900 800 Destw asser 700 0.9% NaCl-Lösung Textile and 600 künstl. Blut Material R % WV[ ] 500 400 Research 300 ALCERU® 200 100 conductive ALCERU® exchange 0 0 10 20 30 40 50 SAP-Gehalt [%] Functional Polymer Systems and physical Research REM micrograph of ALCERU®-supersorb fibres + Ag+ 2µm Dr.-Ing. Ralf-Uwe Bauer Managing Director of the TITK reg. assoc. ALCERU® antibacterial
  12. 12. "Cell SolutionTM clima"– a high potential PCM micro-composite material –Composition: • a new textile micro-composite material with thermo regulating properties • PCM (Phase Change Material) is directly and permanently embedded in the fibre cross-section via dry-jet-wet spinning process • highest heat storage capacity (up to 40 Joules per gram of fibre) Yarn composition / Fibre characteristics - cellulose > 47 % - PCM component 30 - 40 % (absolute) - minerals about 7 % - humidity < 12 % - finishing agent < 2 % - fibre fineness 2.2 - 6.7 dtex (according to customers demands) - staple length 38 - 60 mm (according to customers demands) - tenacity > 16 cN/tex - fibre elongation > 10 % - typical phase change temperature* 28 - 35 CEffectivity: • proved washing permanence up to 50 washing cycles at 60 C • excellent textile processability and dyeable in all colour gradations • at least 10 % of Cell SolutionTM clima fibres in blended yarn (cotton, lyocell, viscose, wool, polyamide, polyester, ...) or fabric are recommended • outstanding wearing comfort and micro climate because of excellent skin temperature regulation in bed textiles & heat or cold protection clothesDr. Frank Meister, Head of Department Fig. 12
  13. 13. Permethrin - based Nanocomposite ALCERU®-Fiber Requirements: → increasing of blocking effect regarding blood-sucking insects → lower insecticide contamination of clothes wearer T- shirt made of yarns containing 7 % functional fibresEvaluation "Cell SolutionTM protection"of fibres and fabrics madefrom insect blocking fibresdemonstratethe functionalityeven after 50 washing cycles 3-Phenoxybenzyl(1RS)-cis,trans-3-(2,2-dichlorovinyl)-and their safety 2,2-dimethylcyclopropanecarboxylateat typical usage PermethrinFig. 13 Thüringisches Institut für Textil- und Kunststoff-Forschung
  14. 14. Flame- resistant melamine melt- blown fibre mats Scheme of modified meltblown process (mini plant at TITK): MER melamine resin granulate Constructional Catalyst Industry Crosslinking Hot air >180°C ° Meltblown Tempering, fibre jet + Finishing Consolidation (if needed) Conveying screen • typical value ranges: 10 µm ~1µm, 35 - 350 g/m², 30 cm width (pilot plant) • inherent flame resistance: LOI = 32 • don‘t shrink, melt or drip when exposed to a flame • excellent heat dimensional stability • high thermal & acoustic insulation properties • textile processability • self- bonded web • high filtration efficiency • Excellent chemical resistance especiallyagainst alkali and organics; fair acid - resistantFig. 14 Thüringisches Institut für Textil- und Kunststoff-Forschung
  15. 15. 2. “Textile and Material Research” Research Fields ► Fibre Reinforced Composites – materials and their production technologies ► Technical Textiles – textile composites, sandwich - structures (light- weight materials) and recycling as well as reutilization processes ► High Performance Fibres and Textile Fabrics – Usage as reinforcing materials and other technical applications – ► Materials Testing /CharacterizationDr. Renate Lützkendorf, Head of Department Fig. 15
  16. 16. 2. “Textile and Material Research” Fiber reinforced composites – New developments: Composites – reinforced with CARBON fibres Composites – reinforced with ARAMIDE fibres "Long fibres reinforced granulates" developments and result in ARAMIDE - Recycling fibres Thermoplastic Matrix fibres Long fibres reinforced granulates Matrix materials: PP; PA 6; PA 6.6 ARAMIDE - content: up to 70% Applications: - Compounding; - Injection moulding Industry: - Automobiles - TyresDr. Renate Lützkendorf, Head of Department Fig. 16
  17. 17. 3. “Plastics Research” Dr. Stefan Reinemann head of the department Focus of Research ActivitiesThüringisches Institut Compounding Injectionfür Textil- und ► Development of Formulations, MouldingKunststoff- Forschung e.V. Processing technologies and Processing methods Plastics Research ► Characterization of the Material Behaviour of thermoplastic polymers with the main topics: Chemical - Nanocomposites: Carbon Nano Tubes (CNT) Research expanded graphite Films and Sheets layered silicates Textile and - Compounds using el. conductive additives – EM- Shielding Material - Synthetic / Natural / Glass Fibre reinforced Compounds Research - Fire - retardant modification and testing - in-situ-Modification of Polyesters / Polyamides Functional - Catalysis of Polyesters / Polyamides Polymer - “Nanocapsules” with core - shell architectures Systems and physical by means of DENDRITIC POLYMERS Research ► Material specific Plastics Recycling – Dr.-Ing. Ralf-Uwe Bauer Conceptions, Processes, Products Managing Director ► Transfer Centre for Technologies of the TITK reg. assoc. of material specific Plastics Recycling Extrusion
  18. 18. 3. Department: “Plastics Research” Fibre reinforced Polypropylene – using “Synthetic fibres”, e.g. PET or PAN Results using PAN – fibres: - increase of the STRENGTH: up to 30% - enhancement of the STIFFNESS: up to 50% - improvement of the IMPACT TOUGTNESS: up to 500% "Falling-ball impact test" (- 30°C) 0% PAN 10% PAN 20% PAN 30% PANDr. Stefan Reinemann, Head of Department Fig. 18
  19. 19. 2. Department: “Plastics Research” Effect of "PA 6 / PP - OMMT - Nanocomposite" – BlendsFig. 19 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
  20. 20. 3. Department: “Plastics Research” Heat accumulating and Heat storing polymer granulates „accumulating“ process loaded „pull - out“ process unloaded • PCM – containing Polymer Granulate Material: • Melting temperatures of the PCMs used are determining the accumulating and the “pull - out” temperatures of the heat storage granul es, [e.g. (6 / 42 / 52 / 58 und 82) °C] Applications as buffer store for: - Thermal Solar Collectors - Heat Pumps (cold and/or warm site) REM Foto: Einlagerung des Wärmespeicher-Paraffins in der Polymermatrix - Solid - phase burning oven / oil or gas burner / air-conditioning systems, engine heatFig. 20 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
  21. 21. Heat accumulating and Heat storing polymer granulates Reference and Demonstration apparatus at TITK Station III : Floor heating zone • Heated area – office floor: ca. 60 m² • Collector area: ca. 52 m2 • 20 Sunlight Collectors: (BUDERUS® SKB4.0-w) • Installed Solar power: 26 – 31 KW • Phase Change Temperature: 42 °C • PCM - Granulate Mass: 1000 kg height of the granulate bed: 4 cm • Heat power Output: ca. 40 kW • Floor surface temperature: ca. 30 °C Fig. 1: Schematic Plan of the Solar – Thermal Floor Heating Fig. 2: Schematic Layout of the Floor 21Fig. 21
  22. 22. TITK- department: “Plastics Research” “Autoclave Technology”► Syntheses of POLYESTERS (PET, PTT, PBT and PEN)► Modification of polyesters using Co-monomers► "in-situ"- modification of polyesters using various additives► Evaluation of catalyzer systems for polyester syntheses► Equipment: 2L- Autoclave 10L- Autoclave - overpressure up to 15 bar - overpressure up to 20 bar - polymer yield up to 1 kg - polymer yield up to 6 kg► Syntheses of POLYAMIDES (PA 6, PA 6.6)► Modification of polyamides using Co-monomers► "in-situ"- modification of polyamides using additives► Equipment: 10L-Autoclave for (trans)esterification and polycondensation 5L- Autoclave 10L- Autoclave (t < 320 °C) - overpressure up to 20 bar - overpressure up to 25 bar - polymer yield up to 3 kg - polymer yield up to 5 kg► New equipment for "up-scaling" of polymer syntheses, including “Finisher” to increase the melt viscosity (mbatch ~ 30 kg)Dr. Stefan Reinemann; head of the department Fig. 22
  23. 23. Department: „Functional Polymer Systems and Physical Research” Head of the department: Prof. Dr. Klaus Heinemann consists of two Research Teams:Synthetic Functional Polymer Materials and – compositesOrganic Nano - Layers and – layer systems as well asMicro Structuring and – materials patterning technologiesfor POLYMER ELECTRONIC – (IC&M – Technologies),MICROSYSTEM–, MEDICINE– and TRANSPORT Applic.Chemical and physico - chemical modification oftechnical „High- Performance”- and „High- Tech” – polymersusing functional, migrating or reactive additives to thegeneration of specific surface or interface propertiesand/or special material functionalities,including their processing to films and filamentsfor the FIBRE– and POLYMER PROCESSING INDUSTRIE
  24. 24. N N C C „Synthesis Chemistry” O _ n LCP – modified polyamide and polyester resins and fibres _ Flame - retardant polyamide and polyester resins and fibres _ Surface - modified polymer films and fibres _ “reactive polymer blending” and fibres thereof _ Polymer modification by “reactive compounding” using "chain extender" or "reactive modifier" and fibres thereof _ Permanent hydrophobic modification of polyamides & polyesters _ Permanent hydrophilic modification of polyamides & polyesters _ Fluorescent polyamide and polyester fibres _ Functional polymer systems for smart fibres and smart textiles _ Bi- component – High temperature – melt spinning technology with velocities up to 6.000 m/min (LOY, POY,HOY, FOY)Fig. 24 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  25. 25. O O C C O O C C O OC CO OC CO n O O O ϑ = 250 °C m = 6,5 kg / h DZ = 200 / min + (2n + 2) H2N PA 6 COOH t = 2 min ZSK 25 Fa. Werner&Pfleiderer - ( 2 n + 2 ) H2O O O C CHOOC PA N N PA COOH C C O OC CO OC CO n O N N PA PA CO OH COOH Reaction of lc – poly (esterimide anhydrides) with PA 6 Fig. 25 in molten state to form graft - block - copolyesterimides
  26. 26. Mode of action in polyamide fibres UV- or light PA 6 – incompatible component stabilizer molecule (migration causing element)reactive lcp’sPEIA & in reality:Nanoclays“Antibac – FORMATIONNanoclays” OF AAdditives CONCENTRATIONenriched GRADIENT !at the surfaceconception may be expectedbasic ideaobjectives component with PA 6 – affinitysyntheses (anchoring segment) PA 6 – fibre surfaceprocessingresults Spontaneous migration of the stabilizer additives during the fibre forming processanalyses ➄ Enrichment of the stabilizer molecules nearby the boundary layer of PA fibrerésuméoutlook Immobilization of the complex additives molecule in the accomplished fibrethe TITK Improved light protection efficiency by accessibility of stabilizer molecules in the surface regionFig. 26 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Prof. Dr. Klaus Heinemann
  27. 27. „Reactive Complex- forming agent s – Biocides” Application of a novel Silver Salt – Complex in PA 6.6 Reference 250 ppm 750 ppm 1500 ppm 5000 ppmFig. 27 Thüringisches InstitutInstitut fürfür Textil- und Kunststoff-Forschung Thüringisches für Textil- und Kunststoff-Forschung Thüringisches Institut Textil- und Kunststoff-Forschung Steffi Sensfussund Team Dr. R. Strubl
  28. 28. “Modular multifunctional apparatus for additive syntheses”Fig. 28 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  29. 29. “Modular multifunctional apparatus for additive syntheses” Chemical syntheses in liquid media, also under explosion- protected conditions ► Batch- Volumes: 10 Litre (stainless steel) and 16 Litre (titanium) ► Reaction temperatures: up to 200 °C up to 300 °C ► Reaction pressures: up to 0,5 bar ► Reaction media: homogeneous and heterogeneous phases ► Isolation of products: vacuum distillation; evaporation; phase separation; Extraction; for: • alkylations; acylations • halogenations; nitrations; sulphonations; epoxidations • esterifications; transesterifications; amidations; saponification ► Online-IR-Spectroscopy for reaction analysis und -optimization ( 7 bar) ► Calorimetry of reactions, also in case of increased pressure (100 bar) Compound separations by vacuum distillation up to 15 kg/h (offer of service) Chemical syntheses at „Kilogram – scale“ (customer order)Fig. 29 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  30. 30. Department of FUNCTIONAL POLYMER SYSTEMS „Processing Equipment”Fig. 30 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  31. 31. Micro – twin- screw – melt compounder & spinning device Technical Parameters: - Polymer melt temperatures: ϑ ≤ 350 °C; - Melt volume – Polymer mass: v = 5,5 cm3; m ~ 8 g !!!; - Screw speed: n = (1 … 360) min-1 HAAKE „MiniLab” Thermo ELECTRON GmbH 76227 KarlsruheFig. 31 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  32. 32. Micro – melt spinning apparatus Micro – extrusion system „Minitruder” (Fa. Randcastle Inc.; USA) - Polymer melt temperatures: ϑmax ≤ 430 °C - throughputs: 10 - 120 g/h or 80 - 980 g/hFig. 32 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  33. 33. Bicomponent – High temperature – melt spinning device with winding speeds up to 6.000 m/min Bicomponent nozzle outer inner annular gap (sheath) (core) Quelle: EMPA & Fa. FournéFig. 33 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  34. 34. „POLYTRONIC” Focus: Generation of polymer-based electronic system components Functional Polymer Systems: „from Material – to System” Technology developments in the direction of „upscaling“ of explored microtechnologies of "polymer engineering" in favour of the scientific and technical prearrangement of the serial manufacturing of: – Polymer- based field effect transistors and integrated circuits, – Sensors, – Actuators, – Photovoltaic Cells und Modules as well as – Modules by using substances with „switchable“ electrochromic, photochromic and thermochromic properties; for applications regarding information-, communication- and media technology, microelectronics, microsystems-, medical- and traffic technology, including "Reel-to-Reel"- Technologies for - coating and - micro structuringFig. 34 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Rüdiger Strubl & Team
  35. 35. Department: “Functional Polymer Systems” I. Topic: Polymer Electronic Applications Schematic View of a PFET (Polymer-Field-Effect-Transistor) on a flexible polymer film2 mm metal or d: 100 - 3.000 nm Gate electrode conducting polymer Insulator (d: 400 nm – 1.000 nm (PANI, PEDOT:PSS) Semi conductor Poly(3-alkyl- (d: 5 nm – 50 nm) thiophenes) metal, ITO or drain conducting polymer source (PANI, 0,5 - 3 mm PEDOT:PSS) PET; PI; ABS; glass flexible polymer substrate – d: 100 - 200 µmFig. 35 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Mario Schrödner & Team
  36. 36. Department: “Functional Polymer Systems” II. Topic: Flexible Polymer Photovoltaic Possible Applications: • Solar cells on tents (esp. for aid organisations) • Solar cells on textiles [esp. for military and sport textiles (GPS)] • Solar cells on credit cards (credit cards – real „smart cards”)Fig. 36 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V. Dr. Mario Schrödner & Team
  37. 37. II. Topic: Flexible Polymer Photovoltaic P Possible Applications: Portable PV- Consumer Modules electronics intelligent electronic packaging textiles Modules on curved surfaces Building Integration Smart cards 80 1 .9 23 4 56 7 0 89 * 0# (BIPV)Fig. 37 Thüringisches Institut für Textil- und Kunststoff-Forschung (TITK) e. V.Frau Dr. Steffi Sensfuß & Team
  38. 38. department: „Functional Polymer Systems” – "POLYTRONIC" I. Topic: II. Topic: Polymer Solar Cell Applications: Polymer-Field-Effect-Transistors Schematic Drawing PFET III. Topic: Micro- and Nanometre-thin Functional Layers by „Reel - to - Reel” – Technology Coating Equipment "LBA 200"Fig. 38 Dr. Schrödner & Team
  39. 39. Reel – to – Reel coating equipment „LBA 200” Antrag Lösungsmittel IR-Feld Beschich- tungsmittel T Trocknung-/ Erstarrungsstrecke Corona Abwicklung Aufwicklung Steuerung PC Rolle - zu - Rolle Parameters: Width of the substrate tape: ≤ 20 cm Speed of the tape: ≤ 10 m/min Corona Activation: 2.5 kW Infrared – dryer: 3.4 kW Hot air – dryer: 80 – 120 ° C Continuous wet coating using diluted polymer- solutions/ -dispersions by means of „Reel- to- Reel– Technology”Fig. 39 Thüringisches Institut für Textil- und Kunststoff-Forschung Frau DP K. Schultheis; Dr. L. Blankenburg
  40. 40. Roll-to-Roll (R2R) Coating Technology processing flexible Polymer Solar Cells Spin coating Doctor blading continuous coating R2R Processing parameters R2R Materials - Substrate: PET/ITO (175 µm) - Baytron PH (~100 nm) - P3HT/PCBM (1:1) 1.2% in Chlorobenzene (~60 - 150 nm) Technology parameters - Corona – pre- treatment: 200 W - Velocity of the band: 1 - 2 m/min 20 - Width of the slot: 3 - 5 cm dark illuminated - Dosing rate: 1 - 5 ml/min 15 - Circulating air drying: 80 °C (Baytron) ISC: 6.13 mA/cm2 10 VOC: 618 mV current [mA/cm ] 2 FF: 0.46 Completing of the Cells - discontinuous ηAM1.5: 1.74 % 5 - Vapour deposition of the Al- electrode - Annealing: 5 min at 100°C 0 -0,5 0 0,5 1 Measuring conditions – Cell characterisation -5 - AM 1.5 - Cell dimension: 5x5 mm² -10 bias [V] - environmental conditions Efficiencies: „Spincoating” = 5,4 % → „R2R” = 1,7 % → 4,5 %Fig. 40 Thüringisches Institut für Textil- und Kunststoff-Forschung Frau DP K. Schultheis; Dr. L. Blankenburg

×