Your SlideShare is downloading. ×
0
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Centre Especial de Recerca Planta de Tecnologia dels Aliments
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Centre Especial de Recerca Planta de Tecnologia dels Aliments

578

Published on

Dr Buenaventura Guamis_UAB

Dr Buenaventura Guamis_UAB

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
578
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Centre Especial de Recerca Planta de Tecnologia dels Aliments AB Biotics Felnuti Ypsicon CERPTA www.cerpta.com
  • 2. AB-BIOTICSüProject Management R&D projects for companies. üIn company R&D for development of functionalMain clients belong to the Food Functional and Food ingredients, mainly probiotics for application insupplements. functional foods and food supplements.üHistoric 5 years in operation and constant growth.üCompany subsidiary dedicated to the development of üSubsidiary dedicated to developing a braking approachadvanced genetic tools for Medical Diagnosis (SNP, in oncology: membrane-lipid therapy.CNV) üPartnerships with laboratories at Drug Discovery toüThe company has appropriate human and technical ensure the inclusion of new molecules in the future.resources to conducting genetic analysis.
  • 3. YPSICONProcess-Plant Design, Installation & Maintenance
  • 4. CERPTAThe main research area at CERPTAis the application of newtechnologies, nanotechnologiesand technofunctionality for theimprovement of food safety, foodnutritional value and the designand production of functional foods.
  • 5. Centre Especial de Recerca Planta de Tecnologia dels Aliments Fundamentos de alta pressäo:aplicaçöes e equipamento para a indústria de alimentos www.cerpta.com
  • 6. Origin of European Projects of HP-La Grande-Motte Congress Montpellier- FranceSeptember of 1992
  • 7. High Pressures• Hydrostatic High Pressures• Dynamic High Pressures (UHPH)
  • 8. Hydrostatic High Pressures Abismo Challenger 120 MPa11 MPa = 9,869 atm = 10 bar = 10,197 kg/cm2
  • 9. Hydrostatic High Pressures11 MPa = 9,869 atm = 10 bar = 10,197 kg/cm2 Paul Regnard 1891
  • 10. HISTORY* Hite y col. (1899), Bacterial inactivation in foods(milk, meat products and fruit juices).* Giddings y col. (1929), Viruses inactivation.* Timson y Short (1965), raw milk bacteriainactivation.* Inorganic materials (ceramics, metals, steels,sintetics mat.) 70th.
  • 11. HHP Biochemical and Biophysical. Conclusions• HP induces changes in the size, number, hydration, composition and light-scattering properties of casein micelles in HP-treated milk.• Dairy whey hydrolysates obtained by pepsin and trypsin in combination with HP treatment could be used as a source of peptides in hypo-allergenic infant formulae.• HP induces the association of whey proteins with casein micelles which positively affects rennet properties of milk
  • 12. HHP Biochemical and Biophysical. Conclusions• The amount of milk protein associated with the milk fat globules was increased by HP treatment. HP-induced aggregation and denaturation of agglutinins and lipoproteins are likely to have significant effects on HP- induced changes in the creaming characteristics of milk• High pressure treatment induces tertiary structural changes of BSA, but no effect the secondary structure. We concluded that the pressure-induced elimination of BSA allergenicity seemed to be related to the tertiary structural change of BSA.• The pressure-induced solubilisation of αS1- and αS2-caseins, essentially located in the core of the micelles, suggests that high pressure destabilised micelles including their internal structure.• Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40°C.
  • 13. HHP Biochemical and Biophysical. Conclusions• Treatments of 500 MPa combined with storage at 4 ± 1 °C produce high stability of lycopene when tomato puree was pressurized.• In egg white proteins, pressure induces an increase in turbidity, surface hydrophobicity, exposed SH content and susceptibility to enzymatic hydrolysis, while it results in a decrease in protein solubility, total SH content, denaturation enthalpy and trypsin inhibitory activity.• Pressures of 300 MPa and above cause denaturation of β-conglycinin (7S) and glycinin (11S) in soy milk. High pressure induces the formation of tofu gels that have gel strength and a cross-linked network microstructure.
  • 14. HHP Biochemical and Biophysical. Conclusions• The solubility of dietary fibre in white cabbage can be affected by high pressure temperature treatment, which may be of importance when producing foods with specific health effects.• The effect of high-pressure processing (HPP) on cell wall polysaccharides in berries was investigated.• Compared to treatment at atmospheric pressure, pectic polysaccharides were degraded to a larger extent when HPP was used.
  • 15. HHP Enzyme Conclusions• Carrot PME is much more thermostable and pressure-stable in carrot pieces than in carrot juice or purified form• The catalytic activity of carrot PME was highly dependent on the temperature and pressure applied. In model and food systems (shredded carrots), optimal PME activity was registered at 50 °C in combination with pressures of about 300–500 MPa• Soybean whey proteins hydrolysed at high pressure could be used as sources of peptides with low antigenicity when incorporated as food ingredients.• High pressure combined with suitable enzymatic activity could be a useful tool for obtaining hydrolysates with low immunoreactivity to be used in special foods (hypoallergenic foods).
  • 16. HHP Enzyme Conclusions• High pressure-induced inactivation of the indigenous milk enzymes alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and phosphohexoseisomerase (PHI) was studied in the pressure range 400- 800 MPa at temperatures between 5 and 40°C. With respect to pressure stability the following ranking was observed: ALP>GGT>PHI.• Combined thermal and high pressure inactivation of tomato lipoxygenase occurs at pressures in the range of 100-650MPa combined with temperatures from 10-60°C, and followed first-order kinetics. In the high-temperature/low-pressure range, (T50°C and P300MPa) an antagonistic effect is observed• Individual and total carotenoids, and provitamin A carotenoids, were significantly higher in HP tomato e than in the untreated and other treated tomato es• High pressure processing constitutes an effective technology to inactivate the enzymes in fruit juices. Pressures higher than 400 MPa can be combined with mild heat (<50 °C) to accelerate enzyme inactivation.
  • 17. Microorganisms
  • 18. B. cereus ATCC 9139Tratamientos AP Código300 MPa / 15 min / 30ºC 300400 MPa / 15 min / 30ºC 40060 MPa / 210 min / 30ºC G60 MPa / 210 min / 30ºC + 300 MPa / 15 min / 30ºC G+30060 MPa / 210 min / 30ºC + 400 MPa / 15 min / 30ºC G+400
  • 19. B. cereus ATCC 9139 3 2,5Reducción Log(No/N) 2 Sin aditivos 1,5 Nisina 1 Nisina 2 1 Lisozima 0,5 0 300 400 G G+300 G+400 Tratamientos AP
  • 20. Evolución de recuentos de B. Cereus, 15 días a 8ºC. Serie N2 7 CRecuentos de B. Cereus 6 300 (log ufc/g) 400 5 G 4 G+300 G+400 3 0 5 10 15 días
  • 21. Lethality in CIN of three strains of Y. enterocolitica inoculated in model cheese and pressurized at 20ºC for 10 min at day 0. Treatment Lethality (log No – log N) Serotype (MPa) Mean† CI‡ 0 - - 300 ³3.36b ±0.41 O:1 400 ³3.36b ±0.41 500 ³3.36b ±0.41Log (No/N) 0 - - 300 1.94c ±0.45 O:3 400 ³5.03a ±0.17 500 ³5.03a ±0.17 0 - - 300 3.48b ±0.17 O:8 400 ³4.28a ±0.40 500 ³4.28a ±0.40
  • 22. Behaviour of Y. enterocolitica in model cheese after highhydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c) serotype O:8. a 10 CIN Control TALControl 9 CIN 300 MPa TAL 300 MPa 8 CIN 400 and 500 MPa TAL 400 and 500 MPa 7 log (CFU/g) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (Days) of storage at 8ºC
  • 23. Behaviour of Y. enterocolitica in model cheese after highhydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c) serotype O:8. b 10 CIN Control TAL Control 9 CIN 300 MPa TAL 300 MPa 8 CIN 400 and 500 MPa TAL 400 and 500 MPa 7 log (CFU/g) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (Days) of storage at 8ºC
  • 24. Behaviour of Y. enterocolitica in model cheese after highhydrostatic treatment (a) serotype O:1, (b) serotype O:3 and (c) serotype O:8. c 10 CIN Control TAL + CIN 9 CIN 300 MPa TAL 300 MPa 8 CIN 400 and 500 MPa TAL 400 and 500 MPa 7 log (CFU/g) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (Days) of storage at 8ºC
  • 25. Lethality and counts in Sorbitol Mac Conkey agar of E. coliO157:H7 inoculated in model cheese and pressurized at 12ºC for 10 min at day 0. Counts log (CFU/g) Lethality (log No – log N) Treatment (MPa) Mean† CI‡ Mean† CI‡ 7.30 0 0.22 - - 300 3.71 0.88 3.59a 1.08 400 n.d - ³6.30b 0.22 500 n.d - ³6.30b 0.22
  • 26. Behaviour of E. coli O157:H7 inoculated in model cheese after HHP treatments at 300, 400 and 500 MPa. 10 Control TAL Control Sorbitol 9 300 MPa TAL 300 MPa Sorbitol 8 400 MPa TAL 500 MPa TAL 7 400 and 500 MPa Sorbitol Log (CFU/g) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (Days)
  • 27. HHP Effects on Microorganisms Conclusions• For the inactivation of spores of B. subtilis and Clostridium sporogenes,, the addition of nisin to the plating medium appeared to be synergistic in some instances when combined with pressurization at elevated temperatures and reduced pH. The adition of 0.1% sucrose laurate, may be dramatic synergistic effects.• HHP treatments at 5 degrees C induced more E. coli inactivations than those at 25 degrees C in liquid whole egg, from results of approximately 3 log reductions of E. coli and over 5 log reductions of Pseudomonas and Paenibacillus, HHP treatment of LWE (liquid whole egg) at 5 degrees C is regarded to be as effective as conventional thermal pasteurization• In skim milk suplemented with the lactoperoxidase-hydrogen peroxide- thiocianate (LP) system considerable further inactivation of food borne bacteria occurred in the first hours after pressure treatment.
  • 28. HHP Effects on Microorganisms Conclusions• In minced chicken, vacuum packaging favour the growth of lactic acid bacteria allowing the generation of desirable organisms as well as the growth of spoilage indicators. High pressure treatment combined with vacuum packaging and effective cold storage proved to be a very effective tool for enhancing the microbial quality.• Reduction of microorganisms increase when the rate of pressurization and depressurization is increased.• The high pressure pasteurisation processes are capable to inactivate more than 5 log decades of the viable microorganisms present originally in raw juice and product is free of coli-form bacteria, yeast, moulds and salmonella during 30 days of storage at the chilled room temperature conditions (temperature up to 5 °C). The high-pressure treated broccoli juices are comparable in sulforaphane content and anti-mutagenic activity with frozen version.
  • 29. HHP Effects on Microorganisms Conclusions• The addition of nisin to cell suspensions after HP treatment, produce irreversible effects in sublethal damages.• Pressure inactivation of L. lactis is strongly temperature dependent, baroprotection by sucrose occurs at any temperature but the baroprotective effects of NaCl is temperature dependent.• Whit combination of PEF and HHP processes, the non-treated spores gradually turned into phase-dark spores and finally germinated and changed into vegetative cells, while the spores subjected to PEF/HHP treatment did not transfer to the phase-dark stage, meaning no germination
  • 30. HHP Effects on Microorganisms Conclusions• As expected, the rate of spore inactivation increased with increasing pressure and temperature.• A small fraction of the spore populations survives conditions of up to 120°C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure- temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or non growth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment
  • 31. Hydrostatic High Pressure Machinery HP Cylinder Heating/Cooling circuit ProductWater exit Pressure intensifierDecompression valve Water entry Low pressure pump
  • 32. STANSTED-INMAPA
  • 33. STANSTED
  • 34. Industrial MachineryDiscontinuous Industrial Machine from EMBUTIDOS ESPUÑA (OLOT, GIRONA)
  • 35. AVURE
  • 36. Hyperbaric
  • 37. Semi-continuous Equipment
  • 38. Treatment Cost of HHPâ Se debe considerar – Costes amortización (relacionado con Pmáx del equipo) – Mantenimiento y personal – Consumo energía Coste de inversión equipo AP para alimentos a 600 MPa 0,6-3 millones € Tratamiento de 6000 L/h a 600 MPa, con un factor de eficiencia de volumen del 50%, puede costar entre =0,0 5-0,25 €/L según sea la productividad. El coste estimado está basado en una amortización a 5 años, con un 15% de interés, e incluye costes de tratamiento y mantenimiento del equipo.
  • 39. ESPUÑA (Spain): El pionero• Primer producto cárnico HPP en el mundo.• Lanzó en 1998 el primer jamón cocido loncheado tratado por HPP.
  • 40. MARTIKO (España) Wave 6000/55para productos de pato
  • 41. ABRAHAM - ALEMANIA Hiperbaric 150Proscuitto alemán exportado a USA
  • 42. KRAFT FOODS (Ameriqual) - USA Wave 6000/300 Loncheado Natural
  • 43. MAPLE LEAF (Canadá)Wave 6000/300 para platos precocinados
  • 44. Hiperbaric 55 MRM (España)
  • 45. Moira Macs (Australia) Hiperbaric 135
  • 46. Vegetable products• Higienización y aumento de la vida útil• Conservación del color, sabor y vitaminas.• Reducción de la actividad de la PPO• Reducción de la retrogradación del arroz Pa is Año Producto Japan 1990 Mermeladas y salsas de frutas y verduras. Japan 1994 Arroz pre-cocido e hipoalergénico. USA 1997 Productos derivados del aguacate: guacamole y salsas. Italy 2001 Mermeladas de frutas. USA 2002 Productos derivados del aguacate. Mexico 2003 Productos derivados del aguacate.. Mexico 2003 Productos derivados del aguacate. Mexico 2003 Productos derivados del aguacate. USA 2003 Aros de cebolla. Canada 2003 Productos a base de manzana: mermeladas y salsas. USA 2004 Tofu. Spain 2005 Productos vegetales RTE. USA 2006 Salsa de tomate. USA 2007 Ensaladas Australia 2008 Puré de frutas
  • 47. Guacamole HPP
  • 48. VERFRUCO (Mexico) Hiperbaric 55Guacamole y productos de aguacate
  • 49. Hiperbaric 420Sandridge (USA)Para “wet salads” - PP
  • 50. SANDRIDGE FOODS (USA)Nuevo producto “premium” en 2011
  • 51. SimplyFresco (USA) Salsas Stand Up Resealable Doy pack
  • 52. CHIC FOODSHiperbaric 55 - PP
  • 53. LEAHY ORCHARD: CANADA • Puré de frutas• Estable a temperatura ambientehttp://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/nf- an108decdoc-eng.php
  • 54. Drink and Juices• Higienización y aumento de la vida útil• Conservación del color, sabor y vitaminas.• Reducción del amargor en el zumo de pomelo. Compañia País Año Producto Pokka Japan 1991 Zumo de uva. Wakayama Japan 1992 Zumo de mandarina Ulti France 1994 Zumos de cítricos. Jumex Mexico 2000 Zumos de cítricos y smoothies Ksun Lebanon 2001 Zumo s de frutas. Lovitt Farms USA 2001 Zumo de manzana. Frubaça Portugal 2001 Mezcla de zumos de manzana y cítricos. Ata Italy 2001 Zumos de frutas y vegetales. Avomex USA 2002 Zumos de naranja y limón y smoothies Beskyd Czech Republic 2004 Zumos de remolacha, broccoli, manzana y zanahoria.
  • 55. Preshafruit – Donny Boy (Australia) con sus zumos HPP ganó:- Premio al mejor zumo- Premio a mejor concepto de bebidasAt Beverage Innovation Awards ceremony, Drinktec 2009
  • 56. Preshafruit – Donny Boy (Australia)
  • 57. Coldpress (England) - PET
  • 58. PET Felixia-PET FRUBAÇA (Portugal) – PET/HDPE
  • 59. Macè (Italy)Hiperbaric 55 - Zumos & smoothies
  • 60. EVOLUTION FRESH (USA) Hiperbaric 420 en zumos - HDPE
  • 61. Dairy Productsü Destrucción de los microorganismos patógenosü Incremento de la productividad y reducción de costes.ü Higienización y aumento de la vida útilü Estabilización de productos sin aditivosü Conservación de las emulsiones País Año Producto España 2007 Rellenos de sandwich con queso EEUU 2007 Jerky cheese N Zelanda 2009 Calostro
  • 62. www.hiperbaric.com RODILLA (España)Rellenos para sándwich basado en queso o mayonesa y con ingredientes Wave 6000/120 PET
  • 63. NEW IMAGE Natural Health (NZ) Hiperbaric 55Bebida a base de calostro - HDPE
  • 64. Fish Productsü Extracción de la carne cruda de mariscos y crustáceos, procesada pero no cocida.ü Desarrollo de nuevos productos.ü Incremento de la productividad y reducción de costes.ü Higienización (inactivación de Vibrio)ü Incremento de la vida útil. País Año Producto USA 1999 O stras USA 2001 O stras USA 2001 O stras USA 2001 O stras Canada 2004 Pescado Canada 2004 Langosta N. Zealand 2004 Mejillones en mitades. Italy 2004 Bacalao desalado. Spain 2004 Salmón, atún y merluza RTE USA 2005 Langosta Korea 2006 Mariscos Canada 2006 Pescado Japón 2007 Mariscos Nota : letra azul = equipos de NC Hyperbaric
  • 65. Supermarket in USA
  • 66. High Pressure High Temperature (HPHT or PATS):Vasija de 55 litros - 630 MPa - hasta +120ºC bajo presión HIPERBARIC 55HT ü Diseño horizontal:gradiente de temperatura reducido ü Control independientre de temperatura del agua de presión ü Sistema de carga y descarga automática ü Control de temperatura de la vasija de presión ü Sistema de calentado/enfriado
  • 67. Ultra High Pressure Homogenization
  • 68. 1900. First Homogenizers
  • 69. 1902. Gaulin
  • 70. Aims of Conventional Homogenizers• Emulsion Stabilization• Improved Taste• Improved Texture• Milk, Cream and Ice creams• Pressures up to 50 MPa
  • 71. 1980 High Pressure Homogenization is Born (HPH)
  • 72. HPH
  • 73. HPHUp to 150 MPa
  • 74. HPH Conclusions• More Stable Emulsions• Improved Texture in Yogurts• Microbial Counts Reduction
  • 75. 1990 First Prototypes of Ultra High Pressure Homogenization 200-250 MPa
  • 76. 2003. First Valves and Prototypes ofUHPH with Double Intensifier Capable of Working up to 350 MPa
  • 77. Destrucción de microorganismos HPH- UHPH (a) (b) TEM Listeria monocytogenes inoculate in PBS (0.01 M, pH 7.2) (a) Untreated cells (b, c, d) Treated Cells at 100, 200 and 300 MPa at 25ºC (Vachon et al., 2002) (c) (d)
  • 78. UHPH Effects on colloidal foodsØ Particle size reduction Ø Microbial reductionØ Modification of colloidal Ø Enzymatic activity structures reduction Increasing physical stability Food preservation Without treatment 100 MPa 200 MPa 300 MPa (Vachon et al., 2002)
  • 79. UHPH and Milk and Dairy Products
  • 80. Microbial inactivation by UHPH Microbiological quality of goat milk for making cheese treated by UHPH (log cfu/ml) TreatmentMicrobiota RA 100 200 300Total bacteria 6.41 ± 1.38 a 5.54 ± 0.57 b 1.80 ± 0.52 c 1.39 ± 0.15 cPsychrotrophicbacteria 6.49 ± 1.36 a 5.62 ± 0.67 b 1.34 ± 0.21c 1.21 ± 0.36 cEnterobacteriaceae 2.01± 0.85 a 0.96 ± 0.40 b ND NDLactobacilli 3.64 ± 0.38 a 3.12 ± 0.22 b ND NDLactococci 6.35 ± 1.46 a 5.41 ± 0.54 b 1.62 ± 0.56 c 0.95 ± 0.15 dND: not detected (under detection limit) Quevedo et al. (2011)
  • 81. Milk fat globule disruption UHPH Conventional homogenization 200 MPa 15-20 MPa RAX30.000 Particle size (µm)
  • 82. Milk fat globule membrane Transmission electron microscopy
  • 83. Rennet coagulation aptitude Quevedo et al. (2011)
  • 84. Rennet coagulationConfocal microscopy
  • 85. Fresh cheese from UHPH milkCheesemaking UH PA HP Zamora et al. (2011)
  • 86. Yogurt from UHPH milk Yogurt making Treatment Storage Time (days) Firmness (N) 1 7 14 21 28 HT+SMP 1.42a 1.42a 1.43a 1.37a 1.42a 200 MPa 1.83b 1.79b 1.81b 1.86b 1.87b 300 MPa 1.99c 2.13c 2.27c 2.33c 2.23c• Yogurts from UHPH-treated milkare firmer than those from HT+SMP HT+SMP 200 MPa 200 MPa 200 MPa•UHPH gels are morehomogeneous, compact and lessporous than HT+SMP gels•The fat fraction is much moredipersed in UHPH gels and so, it iscompletely incorporated into thenetwork 10µ 1010µ 10 µ 10µ µ
  • 87. Yogurt from UHPH milkYogurt making ü Good aptitude of milk to acid coagulation without needing to add skim milk powder ü Great firmness and water retention capacity during storage at cold temperatures ü Low acidity and excellent sensory characteristics Serra et al. (2007, 2008, 2009)
  • 88. Effects of UHPH on milkü Similar microbial quality to high pasteurized milk (90ºC for 15 s) with atreatment of 200-300 MPa and Ti = 30ºC or possibility to sterilization with 300Mpa and Ti=75ºC compared to UHT milk.ü Great physical stability against creaming during storage at cold temperaturesü Whey protein denaturation and aggregation (UHPH at 300 MPa: 37%; PA at90ºC for 15 s: 47%; b-Lg)ü Slight reduction of micelle casein sizeü Slight mineral equilibrium alteration (transfer of soluble calcium andphosphate to colloidal phase)ü Fat globule disruption and composition of milk fat globule membrane alteredü No lipolysis phenomena due to LPL inactivation by UHPH (200-300 MPa)ü Good technologic aptitude to rennet and acid coagulations Pereda et al. (2006, 2007, 2008, 2009) and Zamora et al. (2007)
  • 89. UHPH and Vegetable Milks
  • 90. Composition of vegetable milks % w/w Almond milk Soy milk Dry matter 5.18±0.01 6.53±0.39 Protein 1.15±0.04 2.68±0.17 Fat 1.93±0.07 1.92±0.18carbohydrates 1.99±0.02 1.35±0.05 ashes 0.11±0.04 0.18±0.05
  • 91. Microbiological analysis Almond milk Soy milk Treatment Total counts* Spores* Total counts* Spores* Control 4.4 ± 0.5 4.21 ± 0.07 4.21 ± 0.16 3.18 ± 0.06 UHT ND ND ND NDPasteurized 4.0 ± 0.18 3.60 ± 0.20 3.27 ± 0.17 2.27 ± 0.01 (1) 200, 55 3.21 ± 0.16 3.20 ± 0.03 3.06 ± 0.05 2.05 ± 0.07 200, 65 2.03 ± 0.07 1.83 ± 0.01 1.76 ± 0.17 1.02 ± 0.01 200, 75 ND ND ND ND 300, 55 ND ND ND ND 300, 65 ND ND ND ND 300,75 ND ND ND ND(1) MPa, ºC: inlet temperature of UHPH-treated samples* cfu/ml
  • 92. Temperatures in UHPH UHPH Inlet Outlettreatments temperature T in the high temperature of sample pressure of sample (ºC) valve (ºC) (ºC) (MPa) 200 55±0.5 105.7 ± 0.58 27.1 ± 1.0 300 55±0.5 128.3 ± 1.53 27.3 ± 1.1 200 65±0.5 111.7 ± 1.15 27.0 ± 1.0 300 65±0.5 130.7 ± 1.15 26.2 ± 0.8 200 75±0.5 117.0 ± 2.00 25.6 ± 2.7 300 75±0.5 135.7 ± 1.53 26.2 ± 2.2 Time less than 0.3 sec.
  • 93. Sterility Study Samples were taken aseptically into sterilized bottles and then incubated at 30ºC for 20 days.Treatment—Ti Tm-less 0.5sg Day 2 Day 7 Day 20200 MPa 65ºC 111,7 coagulated200 MPa 75ºC 130,7 coagulated300 MPa 65ºC 117,0 - 3.97 ± 0.08 coagulated300 MPa 75ºC 135,7 - - -UHT (142ºC- 6 sec.) - - -
  • 94. Sediment formation measured by turbiscan
  • 95. Particle size analysis Particle size (mm) of vegetable milks: SauterParticle size distribution in soymilk Diameter (d3,2) 1,4 300 MPa 1,2 1 200 MPa 0,8 Pasteurized 0,6 Almond milk UHT Soymilk 0,4 Raw 0,2 0 eu T 75 l 20 5 30 5 20 5 75 65 20 d ro UH 6 5 5 e 0, nt riz 0, 0, 0, 0, 0, 30 Co 30 st Pa
  • 96. Stability index by centrifugation (% w/w of sedimented particles)1098765 Almond milk4 Soymilk3210 Co UH Pa 20 20 20 30 30 30 nt T st 0, 0, 0, 0, 0, 0, ro eu 55 65 75 55 65 75 l riz ed
  • 97. Oxidation (meq/L hydroperoxides) 0,45 0,4 0,35 0,3 0,25 0,2 Almond milk 0,15 Soymilk 0,1 0,05 0 T l 75 ed 55 65 75 55 65 ro UH nt 0, riz 0, 0, 0, 0, 0, Co 30 eu 20 20 20 30 30 st Pa
  • 98. Reasons for applying UHPH to vegetable milksØ Alternative to dairy milkØ Health benefits: fat fraction composition, rich in antioxidants, balanced nutritional profileØ Processed by conventional heat treatments, specially UHT, which implies heat damageØ Stability problems, specially sedimentation of solid particles and creaming of fat globules
  • 99. UHPH and Juices
  • 100. TEMPERATURES DURING PROCESSING Effect on temperature in apple juice during UHPH treatment at different inlet temperature (Ti). Temperatures (ºC) Ti Pressures T1 T2 To (ºC) (MPa) 0 6.5 0.2 14.2 2.5 15.5 2.3 100 6.4 0.5 38.5 2.6 19.5 0.8 4 200 6.9 0.3 63.8 1.6 22.3 3.1 300 7.9 0.5 85.8 2.1 29.5 3.7 0 19.5 0.9 20.3 1.6 21.3 1.2 100 19.3 0.5 45.5 0.5 27.8 1.3 20 200 20.0 0.6 72.5 1.9 30.8 1.7 300 20.4 0.5 90.7 4.2 31.5 1.5 Mean Standard Deviation of three independent experiments (n=3) . (T1) temperature just before the high-pressure valve, (T2) temperature just after the high-pressure valve, (To) the outlet temperature. ~0.5 s
  • 101. PHYSICOCHEMICAL ANALYSIS Apple Juice • BI • HMF 2,5 0,20 2,0 0,18 HMF mg/L) 1,5 0,16 ( 0,14 1,0 0,12Browning Index 0,10 0,5 0,08 20º C 0,0 4º C 0,06 Ctrl Past 0,04 100 MPa 200 MPa 300 MPa 0,02 0,00 20º C 4º C PA>>UHPH=R Ctrl Past 100 MPa 200 MPa 0,040 300 MPa 0,035 0,030 HMF ( g/L) 0,025 m 0,020 0,015 PA<R=100=200=300 0,010 0,005 20º C 0,000 4º C Ctrl 100 MPa 200 MPa 300 MPa
  • 102. Microbial analysis 8 . Log (cfu/mL) 6 4 2 0 1 15 30 45 60 DaysFigure 1. Microbial population (log cfu/mL) of raw and treated apple juice during storage at 4 ºC.The present data are the mean value of three experiments standard deviation (n=6). WhereA)Total Count B)Psichrotrophs C)Mould and Yeast D)Lactobacilli E)Enterobacteria and F)FaecalColiforms at differents treatments. Raw(¨), 100 MPa at Ti=4 ºC (¡), 100 MPa at Ti=20 ºC (•),200M Pa at Ti=4 ºC ( ), 200 MPa at Ti=20 ºC (*), 300 MPa at Ti=4 ºC ( ), 300 MPa at Ti=20 ºC (+).
  • 103. Enzymes 100 MPA 200 MPA 300 MPA PA 14.4/7.8 20.9/43.1PME % ND ND %PPO 30% 40% ND ND 0,20 0,18 0,16 0,14Browning Index 0,12 0,10 0,08 0,06 0,04 0,02 20º C 0,00 4º C Ctrl Past 100 MPa 200 MPa 300 MPa
  • 104. VitaminsTreatment Ascorbic Acid Vit C Total b-Carotene (mg/L) (mg/L) (mg/L)R 0.22 0.03 a 6.77 1.10 b 11.38 0.59 d100 at 4ºC 0.23 0.03 a 6.08 0.33 b 9.71 1.00 cd200 at 4ºC 0.23 0.04 a 6.17 0.71 b 9.11 0.81 bc300 at 4ºC 0.23 0.03 a 6.29 0.76 b 7.46 0.85 ab100 at 20ºC 0.23 0.03a 6.56 0.96 b 7.75 1.00 ab200 at 20ºC 0.23 0.02 a 6.47 0.88 b 7.48 0.09 ab300 at 20ºC 0.24 0.03 a 6.49 0.88 b 7.67 0.35 abPA 0.23 0.04 a 0.76 0.14 a 6.82 0.43 a R=UHPH=PA R=UHPH>>PA
  • 105. ANTIOXIDANT CAPACITY Antioxidan Capacity (ORAC) Antioxidant Capacity (TEAC) Antioxidant Capacity (FRAP) Antioxidant Capacity (DPPH) 2000 Total phenolics (Folin-Ciocalteau) 60 -1)Antioxidant Capacity ( mM TE) Total phenolics (mg GAE L c 1750 b b b b a ab ab 1500 55 * 1250 . 1000 ** 50 750 500 45 250 0 40
  • 106. Day: 0 Evolution Day: 15 Control 150 MPa 225 MPa 300 MPa Control 150 MPa 225 MPa 300 MPa Evolution Day: 30 ControlEvolution Day: 30 225 MPa Control 150 MPa 225 MPa 300 MPa
  • 107. It is possible to produce long life apple juice byUHPH processing coupled with aseptic packaging.UHPH treatment (300 MPa and Ti=5ºC) was selectedto preserve apple juice and was successfully coupledto aseptic package technology. The UHPH-treatedjuice could exhibe microbiological, nutritional,physicochemical, biochemical and organolepticstability for about 21 months at 4 ºC (refrigerationtemperature).
  • 108. UHPH and Orange Juice
  • 109. Orange Juice IT 10ºC/HT 30 sec IT 10ºC IT 20ºC - PME activity as a 1,60 function of the applied 1,20 UHPH treatment.UPE/ml 0,80 - For comparing also 0,40 control and thermal 0,00 pasteurization treatment Control 100 MPa 200 MPa 300 MPa 90ºC/1min data are shown. Treatments
  • 110. Orange Juice- Counts of mainmicrobial groupsbefore and afterUHPH and thermalpasteurizationtreatments
  • 111. Orange Juice Antioxidant capacity Ascorbic acid Treatments *FRAP (mmol Trolox (mg/100 ml) equivalent/l)Control (Fresh juice) 9,20 ± 1,26 a 51,06 ± 1,18 a100 (IT 10 ºC/HT 30sec) 8,41 ± 1,23 a 50,48 ± 1,82 a100 (IT 10 ºC) 7,88 ± 0,79 a 47,47 ± 0,40 c -Antioxidant power and100 (IT 20 ºC) 8,23 ± 2,44 a 45,06 ± 0,35 de total content of ascorbic200 (IT 10 ºC/HT 30sec) 8,42 ± 1,35 a 48,73 ± 0,70 b acid in the samples before200 (IT 10 ºC) 7,78 ± 1,10 a 46,58 ± 0,35 c and after UHPH and200 (IT 20 ºC) 7,91 ± 1,71 a 47,62 ± 0,45 c thermal pasteurization treatments.300 (IT 10 ºC/HT 30sec) 7,78 ± 0,99 a 46,87 ± 1,43 c300 (IT 10 ºC) 7,60 ± 0,88 a 44,21 ± 1,67 e300 (IT 20 ºC) 8,06 ± 1,73 a 45,51 ± 0,42 dPasteurized (90ºC/1min) 8,66 ± 1,15 a 45,87 ± 0,42 de
  • 112. Submicroencapsulation
  • 113. Submicroencapsulation UHPH up to 400 MPa
  • 114. Results Casein (2,5%) + β-Carotene (0,01%)Control 300 MPa
  • 115. TurbiscanUNSTABLE DISPERSIONS STABLE DISPERSIONS
  • 116. TEM Casein submicrocapsules
  • 117. UHPH System 15 Prototype.
  • 118. UHPH System 100 Prototype.
  • 119. Acknowledgments: Ultra high pressure homogenization UAB team:Buenaventura Guamis Martín BuffaVictoria Ferragut Ramón GervillaToni Trujillo Jordi SaldoArtur Xavier Roig Maria del Mar SerraManoli Fernández Ana ZamoraJoan Miquel Quevedo Angela SuarezTomás López Roger Escriu
  • 120. Acknowledgments: Funentech EU Project Stansted Fluid Powert ABBiotics Nectina UAB UMPII Max Rubner-Institut (MRI)Thank you for your attention

×