• Save
G. Martinelli, Flavor Physics after the Higgs Discovery
Upcoming SlideShare
Loading in...5
×
 

G. Martinelli, Flavor Physics after the Higgs Discovery

on

  • 340 views

Balkan Workshop BW2013

Balkan Workshop BW2013
Beyond the Standard Models
25 – 29 April, 2013, Vrnjačka Banja, Serbia

Statistics

Views

Total Views
340
Views on SlideShare
303
Embed Views
37

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 37

http://bw2013.seenet-mtp.info 37

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

G. Martinelli, Flavor Physics after the Higgs Discovery G. Martinelli, Flavor Physics after the Higgs Discovery Presentation Transcript

  • Flavor  Physics  a.er  the    Higgs  Discovery      Guido MartinelliSISSA Trieste &INFN RomaBW2013April 27th 2013
  • 1) Precision Flavor Physics2) CKM analysis and CP violation in the SM3) B τ ν & Bs µ µ4) ΔF = 2 transitions5) Conclusionsmany thanks to M. Bona,M. Ciuchini & L. Silvestrinifor discussionsI also borrowedfrom them a few slides
  • The  Higgs  Par5cle  has  been  discovered  MH    ≈  125  GeV   View slide
  • But  that’s  all:    Higgs    only    Higgs!!  Mass scale [TeV]-110 1 10 210OtherExcit.ferm.NewquarksLQVCIExtradimensionsjjmColor octet scalar : dijet resonance,µem,µ)=1) : SS eµe→L±±(DY prod., BR(HL±±Hllm),µµll)=1) : SS ee (→L±±(DY prod., BR(HL±±H(LRSM, no mixing) : 2-lep + jetsRWMajor. neutr. (LRSM, no mixing) : 2-lep + jets,WZTmlll),νTechni-hadrons (LSTC) : WZ resonance (µµee/mTechni-hadrons (LSTC) : dilepton,γlmresonance,γExcited lepton : l-jjmExcited quarks : dijet resonance,jetγm-jet resonance,γExcited quarks :llqmVector-like quark : NC,qνlmVector-like quark : CC,)T2(dilepton, M0A0tt + A→Top partner : TTZbmZb+X,→New quark b : bbWtWt→)5/3T5/3generation : bb(Tth4WbWb→generation : ttth4jjντjj,ττ=1) : kin. vars. inβScalar LQ pair (jjνµjj,µµ=1) : kin. vars. inβScalar LQ pair (jjν=1) : kin. vars. in eejj, eβScalar LQ pair (µT,e/mW* :tbmtb, SSM) :→(RWtqm=1) :Rtq, g→W (µT,e/mW (SSM) :ττmZ (SSM) :µµee/mZ (SSM) :,missTEuutt CI : SS dilepton + jets +llm,µµqqll CI : ee &)jjm(χqqqq contact interaction :)jjm(χQuantum black hole : dijet, FTpΣ=3) : leptons + jets,DM/THMADD BH (ch. part.N=3) : SS dimuon,DM/THMADD BH (tt,boostedml+jets,→tt (BR=0.925) : tt→KKRS gνlν,lTmRS1 : WW resonance,llll / lljjmRS1 : ZZ resonance,/ llγγmRS1 : diphoton & dilepton,llmED : dilepton,2/Z1S,missTEUED : diphoton +/ llγγmLarge ED (ADD) : diphoton & dilepton,,missTELarge ED (ADD) : monophoton +,missTELarge ED (ADD) : monojet +Scalar resonance mass1.86 TeV, 7 TeV [1210.1718]-1=4.8 fbLmassL±±H375 GeV, 7 TeV [1210.5070]-1=4.7 fbL)µµmass (limit at 398 GeV forL±±H409 GeV, 7 TeV [1210.5070]-1=4.7 fbL(N) < 1.4 TeV)mmass (RW2.4 TeV, 7 TeV [1203.5420]-1=2.1 fbL) = 2 TeV)R(WmN mass (1.5 TeV, 7 TeV [1203.5420]-1=2.1 fbL))Tρ(m) = 1.1T(am,Wm) +Tπ(m) =Tρ(mmass (Tρ483 GeV, 7 TeV [1204.1648]-1=1.0 fbL)W) = MTπ(m) -Tω/Tρ(mmass (Tω/Tρ850 GeV, 7 TeV [1209.2535]-1=4.9-5.0 fbL= m(l*))Λl* mass (2.2 TeV, 8 TeV [ATLAS-CONF-2012-146]-1=13.0 fbLq* mass3.84 TeV, 8 TeV [ATLAS-CONF-2012-148]-1=13.0 fbLq* mass2.46 TeV, 7 TeV [1112.3580]-1=2.1 fbL)Q/mν=qQκVLQ mass (charge 2/3, coupling1.08 TeV, 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL)Q/mν=qQκVLQ mass (charge -1/3, coupling1.12 TeV, 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL) < 100 GeV)0(AmT mass (483 GeV, 7 TeV [1209.4186]-1=4.7 fbLb mass400 GeV, 7 TeV [1204.1265]-1=2.0 fbL) mass5/3b (T670 GeV, 7 TeV [ATLAS-CONF-2012-130]-1=4.7 fbLt mass656 GeV, 7 TeV [1210.5468]-1=4.7 fbLgen. LQ massrd3538 GeV, 7 TeV [Preliminary]-1=4.7 fbLgen. LQ massnd2685 GeV, 7 TeV [1203.3172]-1=1.0 fbLgen. LQ massst1660 GeV, 7 TeV [1112.4828]-1=1.0 fbLW* mass2.42 TeV, 7 TeV [1209.4446]-1=4.7 fbLW mass1.13 TeV, 7 TeV [1205.1016]-1=1.0 fbLW mass430 GeV, 7 TeV [1209.6593]-1=4.7 fbLW mass2.55 TeV, 7 TeV [1209.4446]-1=4.7 fbLZ mass1.4 TeV, 7 TeV [1210.6604]-1=4.7 fbLZ mass2.49 TeV, 8 TeV [ATLAS-CONF-2012-129]-1=5.9-6.1 fbLΛ1.7 TeV, 7 TeV [1202.5520]-1=1.0 fbL(constructive int.)Λ13.9 TeV, 7 TeV [1211.1150]-1=4.9-5.0 fbLΛ7.8 TeV, 7 TeV [ATLAS-CONF-2012-038]-1=4.8 fbL=6)δ(DM4.11 TeV, 7 TeV [1210.1718]-1=4.7 fbL=6)δ(DM1.5 TeV, 7 TeV [1204.4646]-1=1.0 fbL=6)δ(DM1.25 TeV, 7 TeV [1111.0080]-1=1.3 fbLmassKKg1.9 TeV, 7 TeV [ATLAS-CONF-2012-136]-1=4.7 fbL= 0.1)PlM/kGraviton mass (1.23 TeV, 7 TeV [1208.2880]-1=4.7 fbL= 0.1)PlM/kGraviton mass (845 GeV, 7 TeV [1203.0718]-1=1.0 fbL= 0.1)PlM/kGraviton mass (2.23 TeV, 7 TeV [1210.8389]-1=4.7-5.0 fbL-1~ RKKM4.71 TeV, 7 TeV [1209.2535]-1=4.9-5.0 fbL-1Compact. scale R1.41 TeV, 7 TeV [ATLAS-CONF-2012-072]-1=4.8 fbL=3, NLO)δ(HLZSM4.18 TeV, 7 TeV [1211.1150]-1=4.7 fbL=2)δ(DM1.93 TeV, 7 TeV [1209.4625]-1=4.6 fbL=2)δ(DM4.37 TeV, 7 TeV [1210.4491]-1=4.7 fbLOnly a selection of the available mass limits on new states or phenomena shown*-1= (1.0 - 13.0) fbLdt∫= 7, 8 TeVsATLASPreliminaryATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)Mass scale [TeV]-110 1 10RPVLong-livedparticlesEWdirect3rdgen.squarksdirectproduction3rdgen.sq.gluinomed.Inclusivesearches,missTE) : monojet +χWIMP interaction (D5, DiracScalar gluon : 2-jet resonance pairqqq : 3-jet resonance pair→g~ ,missTE: 4 lep +eνµ,eµνee→01χ∼,01χ∼l→Ll~,-Ll~+Ll~ ,missTE: 4 lep +eνµ,eµνee→01χ∼,01χ∼W→+1χ∼,-1χ∼+1χ∼,missTEBilinear RPV CMSSM : 1 lep + 7 js +resonanceτ)+µe(→τν∼+X,τν∼→LFV : ppresonanceµe+→τν∼+X,τν∼→LFV : pp+ heavy displaced vertexµ(RPV) :µqq→01χ∼τ∼GMSB : stable(full detector)γβ,βR-hadrons : lowt~Stable(full detector)γβ,βR-hadrons : lowg~Stable±1χ∼pair prod. (AMSB) : long-lived±1χ∼Direct,missTE: 3 lep +01χ∼)*(Z01χ∼)*(W→02χ∼±1χ∼ ,missTE) : 3 lep +νν∼l(Ll~ν∼), lνν∼l(Ll~νLl~→02χ∼±1χ∼ ,missTE: 2 lep +01χ∼νl→)ν∼(lνl~→+1χ∼,-1χ∼+1χ∼ ,missTE: 2 lep +01χ∼l→l~,Ll~Ll~ ,missTEll) + b-jet +→(natural GMSB) : Z(t~t~ ,missTE: 0/1/2 lep (+ b-jets) +01χ∼t→t~,t~t~ ,missTE: 1 lep + b-jet +01χ∼t→t~,t~t~ ,missTE: 2 lep +±1χ∼b→t~(medium),t~t~ ,missTE: 1 lep + b-jet +±1χ∼b→t~(medium),t~t~ ,missTE: 1/2 lep (+ b-jet) +±1χ∼b→t~(light),t~t~ ,missTE: 3 lep + js +±1χ∼t→1b~,b~b~ ,missTE: 0 lep + 2-b-jets +01χ∼b→1b~,b~b~ ,missTE) : 0 lep + 3 b-js +t~(virtual01χ∼tt→g~ ,missTE) : 0 lep + multi-js +t~(virtual01χ∼tt→g~ ,missTE) : 3 lep + js +t~(virtual01χ∼tt→g~ ,missTE) : 2 lep (SS) + js +t~(virtual01χ∼tt→g~ ,missTE) : 0 lep + 3 b-js +b~(virtual01χ∼bb→g~,missTEGravitino LSP : monojet +,missTEGGM (higgsino NLSP) : Z + jets +,missTE+ b +γGGM (higgsino-bino NLSP) :,missTE+ lep +γGGM (wino NLSP) :,missTE+γγGGM (bino NLSP) :,missTE+ 0-1 lep + js +τNLSP) : 1-2τ∼GMSB (,missTENLSP) : 2 lep (OS) + js +l~GMSB (,missTE) : 1 lep + js +±χ∼qq→g~(±χ∼Gluino med.,missTEPheno model : 0 lep + js +,missTEPheno model : 0 lep + js +,missTEMSUGRA/CMSSM : 1 lep + js +,missTEMSUGRA/CMSSM : 0 lep + js +M* scale < 80 GeV, limit of < 687 GeV for D8)χm(704 GeV, 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbLsgluon mass (incl. limit from 1110.2693)100-287 GeV, 7 TeV [1210.4826]-1=4.6 fbLmassg~666 GeV, 7 TeV [1210.4813]-1=4.6 fbLmassl~> 0)122λor121λ),τl~(m)=µl~(m)=el~(m) > 100 GeV,01χ∼(m(430 GeV, 8 TeV [ATLAS-CONF-2012-153]-1=13.0 fbLmass+1χ∼∼> 0)122λor121λ) > 300 GeV,01χ∼(m(700 GeV, 8 TeV [ATLAS-CONF-2012-153]-1=13.0 fbLmassg~=q~ < 1 mm)LSPτ(c1.2 TeV, 7 TeV [ATLAS-CONF-2012-140]-1=4.7 fbLmassτν∼=0.05)1(2)33λ=0.10,,311λ(1.10 TeV, 7 TeV [Preliminary]-1=4.6 fbLmassτν∼=0.05)132λ=0.10,,311λ(1.61 TeV, 7 TeV [Preliminary]-1=4.6 fbLmassq~decoupled)g~< 1 m,τ, 1 mm < c-510×< 1.5211,λ<-510×(0.3700 GeV, 7 TeV [1210.7451]-1=4.4 fbLmassτ∼ < 20)β(5 < tan300 GeV, 7 TeV [1211.1597]-1=4.7 fbLmasst~683 GeV, 7 TeV [1211.1597]-1=4.7 fbLmassg~985 GeV, 7 TeV [1211.1597]-1=4.7 fbLmass±1χ∼) < 10 ns)±1χ∼(τ(1 <220 GeV, 7 TeV [1210.2852]-1=4.7 fbLmass±1χ∼) = 0, sleptons decoupled)01χ∼(m),02χ∼(m) =±1χ∼(m(140-295 GeV, 8 TeV [ATLAS-CONF-2012-154]-1=13.0 fbLmass±1χ∼) as above)ν∼,l~(m) = 0,01χ∼(m),02χ∼(m) =±1χ∼(m(580 GeV, 8 TeV [ATLAS-CONF-2012-154]-1=13.0 fbLmass±1χ∼ )))01χ∼(m) +±1χ∼(m(21) =ν∼,l~(m) < 10 GeV,01χ∼(m(110-340 GeV, 7 TeV [1208.2884]-1=4.7 fbLmassl~) = 0)01χ∼(m(85-195 GeV, 7 TeV [1208.2884]-1=4.7 fbLmasst~) < 230 GeV)01χ∼(m(115 <310 GeV, 7 TeV [1204.6736]-1=2.1 fbLmasst~) = 0)01χ∼(m(230-465 GeV, 7 TeV [1208.1447,1208.2590,1209.4186]-1=4.7 fbLmasst~) = 0)01χ∼(m(230-560 GeV, 8 TeV [ATLAS-CONF-2012-166]-1=13.0 fbLmasst~) = 10 GeV)±1χ∼(m)-t~(m) = 0 GeV,01χ∼(m(160-440 GeV, 8 TeV [ATLAS-CONF-2012-167]-1=13.0 fbLmasst~) = 150 GeV)±1χ∼(m) = 0 GeV,01χ∼(m(160-350 GeV, 8 TeV [ATLAS-CONF-2012-166]-1=13.0 fbLmasst~) = 55 GeV)01χ∼(m(167 GeV, 7 TeV [1208.4305, 1209.2102]-1=4.7 fbLmassb~))01χ∼(m) = 2±1χ∼(m(405 GeV, 8 TeV [ATLAS-CONF-2012-151]-1=13.0 fbLmassb~) < 120 GeV)01χ∼(m(620 GeV, 8 TeV [ATLAS-CONF-2012-165]-1=12.8 fbLmassg~) < 200 GeV)01χ∼(m(1.15 TeV, 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbLmassg~) < 300 GeV)01χ∼(m(1.00 TeV, 8 TeV [ATLAS-CONF-2012-103]-1=5.8 fbLmassg~) < 300 GeV)01χ∼(m(860 GeV, 8 TeV [ATLAS-CONF-2012-151]-1=13.0 fbLmassg~) < 300 GeV)01χ∼(m(850 GeV, 8 TeV [ATLAS-CONF-2012-105]-1=5.8 fbLmassg~) < 200 GeV)01χ∼(m(1.24 TeV, 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbLscale1/2F eV)-4) > 10G~(m(645 GeV, 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbLmassg~) > 200 GeV)H~(m(690 GeV, 8 TeV [ATLAS-CONF-2012-152]-1=5.8 fbLmassg~) > 220 GeV)01χ∼(m(900 GeV, 7 TeV [1211.1167]-1=4.8 fbLmassg~619 GeV, 7 TeV [ATLAS-CONF-2012-144]-1=4.8 fbLmassg~) > 50 GeV)01χ∼(m(1.07 TeV, 7 TeV [1209.0753]-1=4.8 fbLmassg~> 20)β(tan1.20 TeV, 7 TeV [1210.1314]-1=4.7 fbLmassg~< 15)β(tan1.24 TeV, 7 TeV [1208.4688]-1=4.7 fbLmassg~))g~(m)+0χ∼(m(21) =±χ∼(m) < 200 GeV,01χ∼(m(900 GeV, 7 TeV [1208.4688]-1=4.7 fbLmassq~)01χ∼) < 2 TeV, lightg~(m(1.38 TeV, 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbLmassg~)01χ∼) < 2 TeV, lightq~(m(1.18 TeV, 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbLmassg~=q~1.24 TeV, 8 TeV [ATLAS-CONF-2012-104]-1=5.8 fbLmassg~=q~1.50 TeV, 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbLOnly a selection of the available mass limits on new states or phenomena shown.*theoretical signal cross section uncertainty.σAll limits quoted are observed minus 1-1= (2.1 - 13.0) fbLdt∫= 7, 8 TeVsATLASPreliminary7 TeV results8 TeV resultsATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012) View slide
  • Lquarks = Lkinetic + Lgauge + LYukawa Flavor physicsIn the SM, the quark mass matrix, from which theCKM matrix and CP violation originate, is determinedby the coupling of the Higgs boson to fermions.CP invariantCP and symmetry breakingare striclty correlatedEWSB has many accidentalsimmetries may violateaccidentalsimmetries
  • Two accidental symmetries:Absence of FCNC at tree level (& GIMsuppression of FCNC in quantum effects @loops)No CP violation @ tree levelFlavour Physics is extremely sensitiveto new physics
  • flavor physics can be used in two “modes”:1.  “NP Lagrangian reconstruction” mode-  an external information on the NP scale is required (i.e. LHC)-  the main tool are correlations among observables-  needs theoretical control on uncertainties of both SM and NP contributions2. “Discovery” mode-  looks for deviation from the SM whatever the origin-  needs theoretical control of the SM contribution only-  in general cannot provide precise information on the NP scale, but a positiveresult would be a strong evidence that NP is not too far (i.e. in the multi-TeVregion)flavor physics the path leading to TeV NP is narrower after the results of the LHC at 7 & 8 TeV in any case will be further explored in the next run
  • THECKMSee also -  CKMFitter (http:/ckmfitter/in2p3.fr/); -  Laiho & Lunghi & Van de Water (http://krone.physik.unizh.ch/˜lunghi/webpage/LatAves/page3/page3.html); -  Lunghi & Soni (1010.67069).
  • Unitarity Triangle Analysis in the Standard ModelCP invariantCP andsymmetrybreaking (or newphysics) areclosely related !-  provide the best determination of CKM parameters -  test the consistency of the SM (direct vs indirect) -  provide(d) predictions for SM observables (sin2β,Δms, ..)
  • N(N-1)/2 angles and (N-1)(N-2) /2 phases N=3 3 angles + 1 phase KMthe phase generates complex couplings i.e. CPviolation;6 masses +3 angles +1 phase = 10 parametersVud Vus VubVcd Vcs VcbVtb Vts Vtb
  • Vud Vus VubVcd Vcs VcbVtd Vts VtbQuark masses &GenerationMixingNeutronProtonνee-downupW| Vud | | Vud | = 0.9735(8) | Vus | = 0.2196(23) | Vcd | = 0.224(16) | Vcs | = 0.970(9)(70) | Vcb | = 0.0406(8) | Vub | = 0.00409(25) | Vtb | = 0.99(29) (0.999) β-decays
  • 1 - 1/2 λ2 λ A λ3(ρ - i η)- λ 1 - 1/2 λ2A λ2A λ3×(1- ρ - i η)-A λ21+ O(λ4)The Wolfenstein Parametrizationλ ~ 0.2 A ~ 0.8η ~ 0.2 ρ ~ 0.3Sin θ12 = λSin θ23 = A λ2Sin θ13 = A λ3(ρ-i η)Vtd Vub
  • For details see:UTfit Collaborationhttp://www.utfit.org
  • Classical Quantities used in theStandard UT Analysisbefore only a lower bound Inclusive vs Exclusive Opportunity for lattice QCD see later Vub/Vcb εK Δmd Δmd/Δmslevels @68% (95%) CLf+,FBKfBBB1/2 ξ
  • New Quantities used in theUT Analysissin2β cos2β α sin(2β+γ)B→J/ΨK0 B→J/ΨK*0 B→ππ,ρρ B→D(*)π,DργB→D(*)K
  • Marco Ciuchini Page 16KEK-FF 2013From Summer 2012 to Winter 2013* LHCb measurements for ϕs, ΔΓs, aSLs, Δms, UTangles included (updated HFAG averages)* Latest Belle measurement of BR(B → τν)included* (SUSY) B parameters updated* other minor updates(e.g. top mass, etc)detailed information at http://www.utfit.org
  • Marco Ciuchini Page 17KEK-FF 2013
  • Δmd = (0.507 ± 0.004) ps-1 Δms = (17.72 ± 0.04) ps-1
  • Vcb & Vub Vub (excl) = (3.28 ± 0.30) 10-3 Vub (inc) = (4.40 ± 0.31) 10-3 Vub (com) = (3.82 ± 0.56) 10-3 ~2.6σdifference Vcb (excl) = (39.5 ± 1.0) 10-3 Vcb (inc) = (41.7 ± 0.7) 10-3 Vcb (com) = (41.0 ± 1.0) 10-3 2.4% uncertainty AFTER EPS-HEP2011 15% uncertainty ~ 1.8 σ difference
  • Marco Ciuchini Page 20KEK-FF 2013
  • Marco Ciuchini Page 21KEK-FF 2013
  • Marco Ciuchini Page 22KEK-FF 2013
  • Marco Ciuchini Page 23KEK-FF 2013
  • Repeat with several fCP final states
  • Global Fit within theSMSM FitCKM matrix is the dominant source of flavour mixing and CP violationConsistence on anover constrained fitof the CKM parametersρ = 0.132 ± 0.021η = 0.350 ± 0.014In thehadronicsector, theSM CKMpatternrepresentstheprincipalpart of theflavorstructureand of CPviolationα = (88.7 ± 3.1 )0sin2β = 0.693 ± 0.021β = (21.95 ± 0.87 )0γ = (69.2 ± 3.2)0A = 0.827 ± 0.013 λ = 0.2254 ± 0.0007
  • εK 103 103 103 10-6 10-6 B(B τ ν) 0ld = (167 ± 30) 10-6
  • Marco Ciuchini Page 31KEK-FF 2013inclusives vs exclusives~0.9σsin2βUTfit = 0.76 ± 0.10 ← no semileptoniconlyinclusivevaluesonlyexclusivevalues~1.3σsin2βUTfit =0.723 ± 0.036~2.6σsin2βUTfit =0.781 ± 0.034courtesy of M. Bona
  • Marco Ciuchini Page 32KEK-FF 2013BK lattice = 0.733±0.029BK fit = 0.866±0.086~1.5 σA larger value of |Vcb| would reduce the deviation:|Vcb|excl: 1.5 σ → 1.1 σ
  • Marco Ciuchini Page 33KEK-FF 2013
  • Marco Ciuchini Page 34KEK-FF 2013* the theory error in sin2β from B → J/YK is small andunder control. A conservative bound obtained fromdata is included in the analysis* BR(B →τν) demands a large value of |Vub|.The theoretical uncertainty, due to fB, is controlledby the fit* The εK deviation is triggered by improvements in BKfrom the lattice and the inclusion of the ξ term àla Buras-Guadagnoli(+Isidori). Yet the εK formulais not under control at the few percent level* |Vub| from semileptonic decays is still not theoreticallysound as necessary (incl. vs excl., models, f.f.,…).Yet a simple shift of the central value alone cannotreconcile sin2β and BR(B →τν) (and εK )
  • Marco Ciuchini Page 35KEK-FF 2013
  • 1) Possible tensions in the present SM Fit ?2)  Fit of NP-ΔF=2 parameters in a Model “independent” way3)  “Scale” analysis in ΔF=2Is the present picture showing aModel Standardissimo ?An evidence, an evidence, my kingdom for an evidenceFrom Shakespeares Richard III
  • What for a ``standardissimo” CKMwhich agrees so well with theexperimental observations?New Physics at the EWscale is “flavor blind”-> MINIMAL FLAVORVIOLATION, namely flavouroriginates only from theYukawa couplings of the SMNew Physics introduces newsources of flavour, thecontribution of which, atmost < 20 % , should befound in the present data,e.g. in the asymmetries ofBs decays
  • …. beyond the Standard Model
  • CP VIOLATIONPROVEN IN THESM !!degeneracy ofγ broken byASLOnly tree level processes Vub/Vcb and B-> DK(*)
  • Main Ingredients and General ParametrizationsNeutral Kaon MixingFit simultaneously CKM and NP parameters(generalized Utfit)
  • Bd and Bs mixingCqPen and φqPen parametrize possible NP contributions to Γq12 from b -> s penguins
  • Physical observables
  • assumptions:three generationsno NP in tree level decaysno large NP EWP in B ππρ = 0.147 ± 0.048 (ρSM = 0.133 ± 0.021)η = 0.370 ± 0.057 (ηSM = 0.350 ± 0.014)
  • TESTING THE NEW PHYSICS SCALEEffective Theory Analysis ΔF=2 2( )( )jjjjCLF FCL= ⇒ Λ =ΛΛΛL is loop factor and should be :L=1 tree/strong int. NPL=α2s or α2W for strong/weakperturb. NPC(Λ) coefficients are extracted from dataF1=FSM=(VtqVtb*)2Fj=1=0 MFV|Fj | =FSMarbitrary phases NMFV|Fj | =1arbitrary phasesFlavour genericEffective Hamiltonian in the mixing amplitudes
  • 1)  CKM matrix is the dominant source of flavour mixing and CPviolation σ(ρ)~15% & σ(η) ~4%. SM analysis shows agood overall consistency2) There are tensions that should be understood : sin2β, Br(Bàτ ν)and to a lesser extent εK . A single value of Vub cannot resolvethe tensions. 3) In Bs some tension between aµµ and Bs in J/ψϕ which point todifferent, large values of ϕs (assuming SM Γ12)4) The suggestion of a large Bs mixing phase has not survived toLHCb measurements. Thus for the time being we have to remain with aSTANDARDISSIMO STANDARD MODEL but … CONCLUSIONS
  • b è s & τ èµγ in SUSY GUTS3A0 = 0 and the ratio x ⇤ m2˜g/m2˜q = 1. Taking these val-ues we scan over (⌅d23,13)RR and require fits to the valuesof ⌥q and ⌦NPq as described in the previous section.FIG. 1: Allowed parameter space for the mass insertionbounds. Therefore the present bounds have no impacton the allowed parameter space.FIG. 5: Predictions for BR(⇥ µ ) from constraints on Bsmixing. The red points conform to the Ms constraint whilegreen points show the additional constraint from ⇤s, both at95% C.L. The present experimental bound is shown by thesolid black horizontal line.The ratio of the branching fraction of ⇧ ⇤ µ andΔMs msq=500 GeV Φs Limits from Belle and Babar <4.5 & 6.8 10-8
  • We can consider simultaneously LFV, g-2e EDM,e.g. Isidori, Mescia, Paradisi, Temes in MSSM
  • FCNC in rare K decays
  • QUARK MASSES ARE GENERATEDBY DYNAMICAL SYMMETRYBREAKINGCharge -1/3∑i,k=1,N [ mui,k (uiL ukR ) +mdi,k (diL dkR) + h.c. ] Charge +2/3Lyukawa ≡ ∑i,k=1,N [ Yi,k (qiL HC ) UkR +Xi,k (qiL H ) DkR + h.c. ]
  • Diagonalization of the Mass Matrix Up to singular cases, the mass matrix can always bediagonalized by 2 unitary transformations uiL  UikL ukL uiR  UikR ukR M´= U†L M UR (M´)† = U†R (M)† UL Lmass ≡ mup (uL uR +uR uL ) +mch(cL cR +cR cL )+mtop(tL tR +tR tL )
  • Physical quantities correspond to invariantsunder phase reparametrization i.e.|a1 |, |a2 |, … , |e3 | and the area of theUnitary Trianglesa precise knowledge of themoduli (angles) would fix JVud*Vub+ Vcd* Vcb+Vtd* Vtb = 0 CP ∝ JJ = Im (a1 a2* ) = |a1 a2 | Sin βVud*Vub Vtd*Vtb Vcd*Vcb αγ βγ = δCKM
  • 57 VubVud+ VcbVcd+VtbVtd = 0* **
  • FromA. StocchiICHEP 2002
  • CP Violation is natural with three quark generations (Kobayashi-Maskawa) With three generations all CP phenomena are related to the same unique parameter ( δ ) NO Flavour Changing Neutral Currents (FCNC)at Tree Level (FCNC processes are good candidates for observingNEW PHYSICS)
  • sin 2β is measured directly from B J/ψ Ks decays at Babar & Belle Γ(Bd0 J/ψ Ks , t) - Γ(Bd0 J/ψ Ks , t) AJ/ψ Ks= Γ(Bd0 J/ψ Ks , t) + Γ(Bd0 J/ψ Ks , t) AJ/ψ Ks= sin 2β sin (Δmd t)
  • DIFFERENT LEVELS OF THEORETICALUNCERTAINTIES (STRONG INTERACTIONS)1)  First class quantities, with reduced or negligible theor.uncertainties 2) Second class quantities, with theoretical errors of O(10%)or less that can be reliably estimated 3) Third class quantities, for which theoretical predictionsare model dependent (BBNS, charming, etc.) In case of discrepacies we cannot tell whether is new physics or we must blame the model
  • εΚ -1.5 σ devationThree “news” ingredients(6)12ImsiniKMemεεφξε φ β% &= + (Δ* +K1)  Buras&Guadagnoli BG&Isidori correctionsà Decrease the SM prediction by 6%2)  Improved value for BKà BK=0.731±0.07±0.353) Brod&Gorbhan charm-top contribution at NNLOà enhancement of 3%(not included yet)
  • INCLUSIVE Vub = (43.1 ± 3.9) 10-4Model dependent in the threshold region(BLNP, DGE, BLL)But with a different modelling of thethreshold region [U.Aglietti et al.,0711.0860] Vub = (36.9 ± 1.3 ± 3.9) 10-4EXCLUSIVE Vub = (34.0 ± 4.0) 10-4Form factors from LQCD and QCDSR
  • |Vub/Vcb| εKΔms/ΔmdΔmdαβ2β+γγUnitarity Triangle analysis in the SMB τνMain goal:- determine the UTapex and the CKMmatrix parametersOverconstrained:- predict observables,hadronic parametersand constrains NP
  • Vincenzo Vagnoni ICHEP 06, Moscow, 28th July 2006The UT-angles fit does not depend ontheoretical calculations (treatement oferrors is not an issue)η = 0.340± 0.016 η = 0.404 ± 0.039ANGLES VS LATTICE 2011 ρ = 0.129 ± 0.027Still imperfectagreement in η dueto sin2β and VubtensionComparable accuracydue to the precise sin2βvalue and substantialimprovement due to thenew Δms measurementCrucial to improvemeasurements of theangles, in particular γ(tree level NP-freedetermination)UT-angles UT-lattice ρ = 0.155 ± 0.038
  • Vincenzo Vagnoni ICHEP 06, Moscow, 28th July 2006
  • SM predictionsof ΔmsSM expectationΔms = (18.3 ± 1.3 ) ps-1agreement between the predicted valuesand the measurements at better than :6σ5σ3σ4σ1σ2σLegendaΔms10Prediction “era” Monitoring “era”ExpΔms = (17.77 ± 0.12 ) ps-1
  • Theoretical predictions of Sin 2 βin the years predictions exist since 95 experiments sin 2 βUTA = 0.65 ± 0.12Prediction 1995 fromCiuchini,Franco,G.M.,Reina,Silvestrini
  • Compatibility plots They are a procedure to ``measure” the agreement of a singlemeasurement with the indirect determination from the fit αexp = (91 ± 6)0 γ exp = (76 ± 11)0
  • Vub incl = 4.40± 0.31 10-3 Vub excl = 3.26± 0.30 10-3 Vcb incl = 41.7± 0.7 10-3 Vcb excl = 39.5± 1.0 10-3
  • VUB PUZZLEInclusive: uses non perturbative parameters most not from lattice QCD (fitted from the lepton spectrum) Exclusive: uses non perturbative form factors from LQCD and QCDSR
  • sin2β(excl) = 0.706 ± 0.0410.8 σ from direct measurementsin2β(incl) = 0.791 ± 0.0412.6 σ from direct measurementno B → τν
  • Prediction Measurement σγ (69 ±3)° (79 ±10)° 0.9α (85 ± 4)° (91 ± 6)° 0.7sin2β 0.795±0.051 0.667±0.021 2.3Vub [103] 3.63±0.15 3.83 ±0.57 0.3Br(Bàll ) 10-9 3.55 ±0.28 18 ±11 +1.3ΒK [103] 0.88 ±0.09 0.731 ±0.036 1.4Br(Bàτ ν) 10-4 0.83±0.08 1.64±0.34 2.3Δms (ps-1) 19.1±1.5 17.70±0.08 1.0Summary Table of the Pulls
  • In general the mixing mass matrix of the SQuarks(SMM) is not diagonal in flavour space analogouslyto the quark case We may eitherDiagonalize the SMMz , γ , g QjL qjL FCNCor Rotate by the same matrices the SUSY partners of the u- and d- like quarks (QjL )´ = UijL QjL UjL UiL dkL g
  • In the latter case the Squark MassMatrix is not diagonal(m2Q )ij = m2average 1ij + Δmij2 δij = Δmij2 / m2average
  • New local four-fermion operators are generatedQ1 = (bLA γµ dLA) (bLBγµ dLB) SM Q2 = (bRA dLA) (bRB dLB) Q3 = (bRA dLB) (bRB dLA) Q4 = (bRA dLA) (bLB dRB) Q5 = (bRA dLB) (bLB dRA) + those obtained by L ↔ R Similarly for the squark e.g. (sRA dLA) (sRB dLB)
  • The recently measured direct CP asymmetries in the processes D0 → π+π−and D0 → K+K− show a significant deviation from the naive StandardModel expectation. Using a general parameterization of the decayamplitudes, Franco, Mishima and Silvestrini showed, the observedasymmetries are marginally compatible with the Standard Model. Improvingthe experimental accuracy could lead to an indirect signal of new physics.
  • Bs mixing , a road to New Physics (NP) ?The Standard Model contributionto CP violation in Bs mixing iswell predicted and rather smallThe phase of the mixing amplitudes can be extractedfrom Bs ->J/Ψ φ with a relatively small th.uncertainty. A phase very different from 0.04 impliesNP in Bs mixing2009
  • Experimental measurements
  • ρ , η Cd ϕd Cs ϕs CεK γ (DΚ) XVub/Vcb XΔmd X XACP (J/Ψ Κ) X XACP (Dπ(ρ),DKπ) X XASL X Xα (ρρ,ρπ,ππ) X XACH X X X Xτ(Βs), ΔΓs/Γs X XΔms XASL(Bs) X XACP (J/Ψ φ) ~X XεK X XTreeprocesses1↔3family2↔3family1↔2familiy0( , , , ..)( / , ) sin(2 2 ) ( , , )( , , )| | | |d dd dd dEXP SMd B d BCP B BEXP SMB BEXP SMK Km C m f C QCDA J K ffCερ ηβ φ ρ η φα α φ ρ η φε εΔ = ΔΨ = += −= ( , , , ..)( , , , ..)( / , ) sin(2 2 ) ( , , )...ss sEXP SMs B s BsCP s B Bf C QCDm C m f C QCDA J fερ ηρ ηφ β φ ρ η φΔ = ΔΨ = −ΔF=2 NP model independent Fit Parametrizing NP physics in ΔF=2 processes 2 2 22NP SMi B BSMBA AeAΔ = Δ =Δ =+=qC döCBqe2iφBq
  • η = 0.353 ± 0.014ρ = 0.132 ± 0.020η = 0.392 ± 0.054ρ = 0.129 ± 0.040SM analysis NP-ΔF=2 analysisρ,η fit quite precisely in NP-ΔF=2 analysis andconsistent with the one obtained on the SM analysis[error increases](main contributors tree-level γ and Vub)5 new free parameters Cs,ϕs Bs mixing Cd,ϕd Bd mixing CεK K mixing Today : fit is overcontrained Possible to fit 7 free parameters (ρ, η, Cd,ϕd ,Cs,ϕs, CεK)Please consider these numbers when you want to get CKM parametersin the
  • From Kaon sector @ 95% [TeV]Scenario Strong/tree αs loop αW loopMFVNMFV 107 11 3.2Generic ~470000 ~47000 ~14000From Bd&Bs sector @ 95% [TeV]Scenario Strong/tree αs loop αW loopMFVNMFV 8 0.8 0.25Generic 3300 330 100Main contribution to present lower bound on NP scale come fromΔΦ=2 chirality-flipping operators ( Q4) which are RG enhanced