A
PRESENTATION

ON
“A Wideband Low Noise Amplifier Using
Pseudomorphic High Electron Mobility Transistor.”

By : Suman Sha...
Introduction
Low Noise Amplifier.
Radio Frequency.
Noise Figure.
Gain.

Stability.
2
Objectives
Design a low noise amplifier with a minimum

noise figure and high gain for a desired
frequency band.

3
Block Diagram Of LNA
From
Antenna

Input
Matching
Network

Gain

Output
Matching
Network

To
Subsequent
Stages

Figure: Fu...
Application Of LNA
From Satellite

Down-Convertor

BPF

Low Noise
Amplifier
(LNA)

RF

IF

Mixer

BPF

Demodulator

Baseba...
Methodology
Design of biasing networks (DC Biasing).
Designing LNA with ideal component.
Designing LNA with real compon...
Simulation Results:

Figure: DC tracing with FET Biasing and its curve versus bias.
7
Designing LNA with ideal component

Figure: LNA with ideal component, input and output reflection coefficient with
Stabili...
Designing LNA with real component

Figure: Low Noise Amplifier with real component
9
Comparison when L= 1 and 0.3 nH

Figure: Stability and Gain when L=1 nH and 0.3 nH respectively

10
Input and Output Matching Network

Figure: Input and Output Matching Network
11
Overall Block of Low Noise Amplifier

Figure: LNA with input and output matching network
12
Noise and Gain Circle

Figure: Noise and Gain Circle

13
Stability of LNA

Figure: Stability measurement in entire range of LNA

14
Noise Figure

Figure: Noise Figure
15
Gain

Figure: showing maximum and minimum gain
16
Return Loss

Figure: Input and Output Return Loss
17
Figure: Stability Region for 2 GHz frequency

18
Review of Previous Result
Author

Year

Noise Figure(dB)

Gain(dB)

Power (mW)

Frequency (GHz)

Rofougaran Et Al[3]

1996...
Conclusion
There were three main goals:
 Obtaining the correct S-parameters of the Agilent ATF54143 pHEMT over a wide fre...
References
1.

M. E. Nozahi, A. A. Helmy, E. S. Sinencio, and K. Entesari, “An inductor-less noise-cancelling broadband lo...
Thank You.
22
Upcoming SlideShare
Loading in …5
×

Low_Noise_Amplifier_2_to_4GHz

798
-1

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
798
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
84
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Low_Noise_Amplifier_2_to_4GHz

  1. 1. A PRESENTATION ON “A Wideband Low Noise Amplifier Using Pseudomorphic High Electron Mobility Transistor.” By : Suman Sharma Roll No: 069/MSI/619 1
  2. 2. Introduction Low Noise Amplifier. Radio Frequency. Noise Figure. Gain. Stability. 2
  3. 3. Objectives Design a low noise amplifier with a minimum noise figure and high gain for a desired frequency band. 3
  4. 4. Block Diagram Of LNA From Antenna Input Matching Network Gain Output Matching Network To Subsequent Stages Figure: Functional Block Diagram of LNA 4
  5. 5. Application Of LNA From Satellite Down-Convertor BPF Low Noise Amplifier (LNA) RF IF Mixer BPF Demodulator Baseband Out RF Microwave Generator Figure: Low Noise Amplifier application  Reference: A book in “Satellite Communication” by Dharma Raj Cheruku 5
  6. 6. Methodology Design of biasing networks (DC Biasing). Designing LNA with ideal component. Designing LNA with real component. Input and Output Matching Network. 6
  7. 7. Simulation Results: Figure: DC tracing with FET Biasing and its curve versus bias. 7
  8. 8. Designing LNA with ideal component Figure: LNA with ideal component, input and output reflection coefficient with Stability and Gain measurement. 8
  9. 9. Designing LNA with real component Figure: Low Noise Amplifier with real component 9
  10. 10. Comparison when L= 1 and 0.3 nH Figure: Stability and Gain when L=1 nH and 0.3 nH respectively 10
  11. 11. Input and Output Matching Network Figure: Input and Output Matching Network 11
  12. 12. Overall Block of Low Noise Amplifier Figure: LNA with input and output matching network 12
  13. 13. Noise and Gain Circle Figure: Noise and Gain Circle 13
  14. 14. Stability of LNA Figure: Stability measurement in entire range of LNA 14
  15. 15. Noise Figure Figure: Noise Figure 15
  16. 16. Gain Figure: showing maximum and minimum gain 16
  17. 17. Return Loss Figure: Input and Output Return Loss 17
  18. 18. Figure: Stability Region for 2 GHz frequency 18
  19. 19. Review of Previous Result Author Year Noise Figure(dB) Gain(dB) Power (mW) Frequency (GHz) Rofougaran Et Al[3] 1996 3.5 22 27 0.9 K.S. and Thomas[3] 1997 3.5 22 30 1.5 F.B. Eric A.M kim[4] 2004 Above 3 13.5 below 25 1.6 J.B. Seo. J H Kim[5] 2008 14 1.8 3.1-10.6 K.E. Art nd AH[7] 2009 3.6-4.9 10 21 over 16 E.A. Sobhy[2] 2011 1.85-2 23 2.8 1.77 Table: Previous Result of LNA parameters 19
  20. 20. Conclusion There were three main goals:  Obtaining the correct S-parameters of the Agilent ATF54143 pHEMT over a wide frequency range.  Calculating the noise parameters of ATF-54143 at 1 GHz to 3 GHz.  Improving the LNA design for better noise performance and high gain.  Minimum Noise Figure is 0.7 dB and gain is 14 dB at 2.46 GHz frequency. 20
  21. 21. References 1. M. E. Nozahi, A. A. Helmy, E. S. Sinencio, and K. Entesari, “An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology,” IEEE, May 2011. 2. E. A. Sobhy, A. A. Helmy, K. Entesari, and E. S. Sinencio, “A 2.8-mW Sub-2-dB Noise Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback,” IEEE , August 2011. 3. D. K. Shaeffer, and Thomas,” A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE, May 1997. 4. F. Bruccoleri, E. A. Klumperink, and B. Nauta,”Wide-band CMOS low noise amplifier exploiting thermal noise canceling,” IEEE, February 2004. 5. J. B. Seo, J. H. Kim, H. Sun, and T. Y. Yun, “A Low-Power and Hign-Gain Mixer for UWB Systems,” IEEE, December 2008. 6. C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “ A 10-40 GHz Broadband Subharmonic Monolithic Mixer in 0.18 µm CMOS Technology,” IEEE, February 2009. 7. K. Entesari, A. R. Tavakoli, and A. A. Helmy, “CMOS Distributed Amplifier with Extended Flat Bandwidth and Improved Input Matching Using Gate Line with Coupled Inductors,” IEEE, December 2009. 8. M. Lashsaini, L. Zenhouar, and S. Bri, “Design of Broadband Low Noise Amplifier Based on HEMT Transistor in the X-Band,” IJET, Feb-Mar 2013. 9. S. E. Shin, W. R. Deal, D. M. Yamauchi, W. E. Sutton, W. B. Luo, Y. Chen, L. P. Smorchkova, B. Heying, M. Wojtowicz, and M. Siddiqui, “Design and Analysis of Ultra Wideband GaN Dual-Gate HEMT Low-Noise Amplifiers,” IEEE, December 2009. 21
  22. 22. Thank You. 22
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×