Uploaded on

Marine fenders and bollards are one of our main products which are widely used in marine/oil&gas terminals and are integrated to make a premium package solution of vessel/tankers mooring and …

Marine fenders and bollards are one of our main products which are widely used in marine/oil&gas terminals and are integrated to make a premium package solution of vessel/tankers mooring and berthing.
And our company, Suzhou Lexxon Equipment Co.,Ltd is a lead manufacturer and distributor specialized in jetty equipment/products. Our founders are striving to make Lexxon to be the best made in china quayside products brands. Our products range from marine access gangway, quick release hooks to rubber fenders which are used in oil&gas terminals and marine terminals.
Our goals are long term---to build up good reputation in all fields, to support our customers like end users, EPC contractors and consultancies at every stage of their projects and build lasting relationships with trust and understanding.
We will position ourselves in this marine industry with our core value of sincerity, integrity and profession.

Our Value

Commitment to our customer
Commitment to our working team
Commitment to our delivering quality
Commitment to continuous added value

MARKETING
We survey and study the designated markets to identify potential projects, clients and network with agent in order to enter into the market. Participating in exhibitions, seminars, conduct meetings with clients, preparing catalogues, brochures and other promotional materials and other aspects of this activity.
SALES AND SALES PROCEDURES
This activity includes bid participation, arranging seminars, presentations, visiting clients for introducing capabilities and references together with all negotiations, clarifications, and maneuvering which result in securing contracts.
MANUFACTURING IMPLEMENTATION
Each and every product system is handled by a dedicated product manager whose responsibilities include all engineering and technical liaison activities required for the project along side its contractual and financial aspects. This ensures smooth progress during the inclusive period from design to hand over.
PROCUREMENT SERVICE
Apart from our product range, we also provide procurement service for relevant products that the clients require us to supply as a bidding package. This activity includes workshop survey, quality control monitoring and expedition of the delivery.
Please contact us for enquiries and related technical and budgeting support.
Suzhou Lexxon Equipment Co.,Ltd
Tel: +86(0)512 65086496
Fax: +86(0)512 65086496
Email: info@lexxonco.com

More in: Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
1,057
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
50
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. MARINE FENDER SYSTEM & MOORING BO LLARD
  • 2. WWW.LEXXONCO.COM 65
  • 3. CONTENTSFENDER 1 Super Cell Rubber Fender 2 Super Cone Rubber Fender 5 Super Arch Rubber Fender 8 Cylindrical Rubber Fender 12 D Type Rubber Fender 14 Wing-D Rubber Fender 16 Dock Corner Rubber Fender 17 Leg Rubber Fender 18 ∏ Type Rubber Fender 19 Ladder Rubber Fender 26 Tugboat Rubber Fender 27 Roller Rubber Fender 29 Wheel Rubber Fender 30 Floating Rubber Fender 31 Pneumatic Rubber Fender 33FENDER DESIGN 35 Fender System Design 35 Fender System Selection 41 Front Panel Design 49 Face Pads Design 50 Chain Design 50 Rubber Performance 51 Fender Performance Testing 52 The Tolerance of Fender Dimension 53 Sampling 53BOLLARD 57 Bollard Types and Selection 57 Installation 58 Coatings 58 Load Angle Recommendation 59 Dimensions and Capacities 60
  • 4. COMPANY PROFILEBase on decade-expertise and understanding of quayside solutions, LEXXON foundersdesire to integrate our manufacturing resources and create this brand with the vision toprovide the best "Made-in-China" quayside products to the world.LEXXON’s quayside products range from Fender System, Eminent™ Quick ReleaseHook, Bollard to Access Gangway System, which are widely used in LNG and oil terminals,container quays, RoRo berths and bulk cargo facilities. LEXXON is capable to meet allkinds of requirements from the international clients.Our goals are long term---to build up good reputation in all fields, to support our customerslike end users, EPC contractors and consultancies at every stage of their projects andbuild lasting relationships with trust and understanding.We will position ourselves in this marine industry with our core value of sincerity, integrityand profession.OUR VALUEcommitment to our customercommitment to our working teamcommitment to our delivering qualitycommitment to continuous added value
  • 5. FENDERLEXXON marine fenders are found in applications ranging from piers, docks, dolphins and other harborstructures, to tugs, barges, ferries and similar hard working vessels subject to frequent and severe impact.LEXXONs well-designed marine fender system, tailored to specific vessel requirements, will protect a berthingfacility and vessels for many years with minimal upkeep and/or future modification. LEXXON marine fendersare available in a range of rubber compounds to meet the most demanding service conditions. All are designedto provide an excellent combination of tensile strength, resilience and energy absorption.Applications: Container berth General cargo berth Oil terminal LNG & LPG terminal Ore berth Shipyard RoRo berth Bridge protectionLEXXON Fender types: Super Cell Rubber Fender Super Cone Rubber Fender Super Arch Rubber Fender Cylindrical Rubber Fender D Type Rubber Fender Wing-D Rubber Fender Dock Corner Rubber Fender Leg Rubber Fender ∏Type Rubber Fender Tugboat Rubber Fender Ladder Rubber Fender Wheel Rubber Fender Roller Rubber Fender Pneumatic Rubber Fender Floating Rubber Fender www.lexxonco.com 1 Fender
  • 6. Super Cell Rubber Fender Super Cell Rubber Fenders provide good energy capability owe to the cylindrical shape with circular design and circular mounting base. They are ideally suited to applications in oil and LNG facilities, offshore platforms, bulk terminals, container berths, RoRo and cruise terminals, that are subject to circular motion and extreme weather conditions or where heavy and angular berthing may be required. Features: Dimension N-D Strong, circular and modular design High efficiency Good angular performance B A Wide range and sizes Ideal for low hull pressure system T L Model A (mm) B (mm) T (mm) L (mm) N (Qty. of holes) D (Dia. of hole) Weight (kg) SCE400H 650 550 25 400 4 30 78 SCE500H 650 550 25 500 4 32 110 SCE630H 840 700 25 630 4 39 220 SCE800H 1050 900 30 800 6 40 400 SCE1000H 1300 1100 35 1000 6 47 790 SCE1150H 1500 1300 37 1150 6 50 1200 SCE1250H 1650 1450 40 1250 6 53 1500 SCE 1450H 1850 1650 42 1450 6 61 2300 SCE 1600H 2000 1800 45 1600 8 61 3000 SCE 1700H 2100 1900 50 1700 8 66 3600 SCE 2000H 2200 2000 50 2000 8 74 4200 SCE 2250H 2550 2300 57 2250 10 74 7400 SCE 2500H 2950 2700 70 2500 10 74 10500 SCE 3000H 3350 3150 75 3000 12 90 185002
  • 7. Perfor mance Superhigh Reaction Superhigh Reaction High Reaction Standard Reaction Low Reaction Force F5 Force F4 Force F3 Force F2 Force F1 Model 52.5% 55% 52.5% 55% 52.5% 55% 52.5% 55% 52.5% 55% R E R E R E R E R E R E R E R E R E R E SCE400H 110 19 125 21 96 17 112 18 83 14 97 15 64 11 75 12 51 9 59 9.5 SCE500H 182 40 210 43 162 36 210 43 140 30 160 32 108 23 125 25 86 18 99 25 SCE630H 296 82 315 87 263 73 279 77 228 63 242 68 175 48 185 51 140 39 149 41 SCE800H 431 154 465 166 383 138 413 148 330 118 356 128 280 98 296 105 211 75 228 80 SCE1000H 747 325 790 345 660 289 705 306 572 252 610 263 445 195 470 208 355 158 380 168 SCE1150H 990 505 1050 530 885 445 930 475 760 388 811 408 589 297 626 315 470 240 506 255 SCE1250H 1175 655 1250 684 1042 574 1108 607 902 497 960 526 696 382 741 405 552 306 590 324SCE 1450H 1580 1008 1680 1066 1402 895 1491 948 1215 776 1292 821 936 596 996 632 750 478 794 504 SCE1600H 1756 1260 1890 1362 1558 1120 1680 1210 1351 970 1459 1048 1140 801 1205 836 894 640 955 678 SCE1700H 2171 1624 2309 1720 1928 1442 2050 1526 1672 1250 1775 1323 1287 960 1366 1018 1027 769 1092 815 SCE2000H 2995 2645 3196 2799 2668 2348 2835 2486 2310 2040 2556 2155 1781 1564 1892 1656 1425 1252 1510 1328 SCE2250H 4226 4179 4490 4425 3748 3703 3986 3927 3249 3215 3454 3404 2502 2472 2660 2620 2125 2104 2258 2226 SCE2500H 5217 5732 5545 6068 4630 5088 4920 5386 4012 4410 4265 4668 3088 3391 3280 3592 2624 2885 2788 3050 SCE3000H - - - - - - - - 5790 6710 6750 7210 4380 5110 5190 5460 3730 4310 4400 4660  Note:1.Rated deflection:52.5% ; Maximum deflection:55%2.R=Reaction Force (KN); E=Energy Absorption (KN-M)3.The performance Tolerance is+/-10% www.lexxonco.com 3
  • 8. Installation Unit system Compound system 7.Cell Type buffer 2.Pre-built-in Anchor Bolt&Nut 7.Cell Type buffer 1. " U " ring 6.Connector 5.Face Pad 5.Face Pad 4.Front Panel 4.Front panel 3.Rubber spring chain No. Description Application 1 U anchor Holding chains Embedded Parts 2 Anchor Bolt & Nut Fasten fenders onto dock Tensile Chain Limit fender deflection while fender local part under strain Chains 3 Weight Chain Support the front panel in avoid of sagging Shear Chain Prevent fender system from shear deflection Reduce surface pressure in avoid of damage of the fender 4 Front Panel (Frame) & vessels 5 Face Pad Reduce friction coefficient to protect hull 6 Connector Components Connect the fender & Front panel and Face Pad 7 Fender Body Absorb ship impact energy to protect dock and vessels4
  • 9. Super Cone Rubber FenderSuper Cone Rubber Fenders provide excellent energy capability with low reaction base on the conical shapecombining the very best of both attributes of cell and leg fender design and construction, well suited to berthsand terminals handling large vessels. With optimal design and high performance capabilities, super conefender can be used instead of a larger cell fender.Features: High efficiency (the energy absorption doubles comparing with the super cell rubber fender with same spec.) Excellent angular performance Wide range and sizes Ideal for application of berths and terminals handling large vesselsDimension h n-D1 A H N-Md B Detail Drawing A Φ1 Φ2 Φ3 Φ4 b S Detail Drawing B Unit mm Main Specification Model H h Φ1 Φ2 Φ3 Φ4 n D1 Md Weight (Kg) SCO 500H 500 25 425 325 675 750 4 30 M24 140 SCO 600H 600 27 510 390 810 900 6 30 M24 235 SCO 700H 700 32 595 455 945 1050 6 38 M30 350 SCO 800H 800 36 680 520 1080 1200 6 44 M36 540 SCO 900H 900 41 765 585 1215 1350 6 44 M36 765 SCO 1000H 1000 45 850 650 1350 1500 6 50 M42 1050 SCO 1100H 1100 50 935 715 1485 1650 6 50 M42 1400 SCO 1150H 1150 52 998 750 1550 1725 6 56 M42 1720 SCO 1200H 1200 54 1020 780 1620 1800 8 50 M42 1950 SCO 1300H 1300 59 1105 845 1755 1950 8 60 M48 2400 SCO 1400H 1400 66 1190 930 1890 2100 8 60 M48 3130 SCO 1600H 1600 72 1360 1060 2160 2400 8 60 M48 4670 SCO 1800H 1800 78 1530 1190 2430 2700 10 76 M56 6650 www.lexxonco.com 5
  • 10. Perfor mance Superhigh Reaction High Reaction Standard Reaction Force F4 Force F3 Force F2 Model 70% 72% 70% 72% 70% 72% R E R E R E R E R E R E SCO 500H 335 79 380 90 268 63 311 70 200 47 232 50 SCO 600H 410 139 459 144 320 105 362 109 250 78 285 81 SCO 700H 560 218 627 226 450 166 508 172 360 129 410 134 SCO 800H 720 324 806 336 570 245 644 255 450 189 513 196 SCO 900H 930 465 1041 482 740 355 836 369 590 271 672 282 SCO 1000H 1160 626 1300 650 920 478 1040 490 730 365 832 380 SCO 1100H 1400 826 1568 858 1120 638 1265 664 890 498 1014 509 SCO 1150H 1550 1029 1740 1000 1250 740 1393 720 1010 600 1140 620 SCO 1200H 1650 1056 1848 1097 1300 806 1469 839 1040 624 1185 650 SCO 1300H 1950 1346 2184 1399 1560 1029 1762 1072 1240 793 1413 827 SCO 1400H 2225 1686 2506 1756 1804 1349 2005 1405 1443 1079 1604 1125 SCO 1600H 3204 2419 3150 2520 2268 1935 2526 2016 1814 1548 2016 1613 SCO 1800H 3750 3538 4166 3686 3000 2830 3333 2948 2401 2264 2267 2359 Note: 1. R=Reaction Force (KN); E=Energy Absorption (KN-M) 2. The performance Tolerance is+/-10%6
  • 11. InstallationThe Super Cone Rubber Fender has the similar installation ways with Super Cell Rubber Fender. The wholesystem includes Cone Rubber Fender body, Front Panel equipped with UHMW-PE face pad, Chains system(tensile chain, weight chain, shear chain). Meanwhile, the cone fender system can be installed by two or morefender bodies with one front panel horizontally or vertically. 3.Tension Chain 8. Buffer 2.Anchor Bolt 7.Connector 6. Steel Mount 3. Shear Chain 1."U"Anchor 3.Weight Chain 4. Front Panel 5.Face Panel No. Description Application 1 U anchor Holding chains Embedded Parts 2 Anchor Bolt & Nut Fasten fenders onto dock Tensile Chain Limit fender deflection while fender local part under strain 3 Chains Weight Chain Support the front panel in avoid of sagging Shear Chain Prevent fender system from shear deflection Reduce surface pressure in avoid of damage of the fender 4 Front Panel (Frame) & vessels 5 Face Pad Reduce friction coefficient to protect hull 6 Connector Components Connect the fender & Front panel and Face Pad 7 Fender Body Absorb ship impact energy to protect dock and vessels www.lexxonco.com 7
  • 12. Super Arch Rubber Fender Super Arch rubber fenders are manufactured using a twin leg system and can be mounted on a quay wall horizontally or vertically to provide long lasting and low maintenance protection. The front face has a high friction to limit vessel movement that is ideal for smaller vessels where friction is not a problem. Super arch rubber fender has the higher performance than the traditional V & M type rubber fenders. Based on the same unit weight of rubber, the energy absorption of super arch rubber fenders is 2.3 times higher than D type rubber fender, 3.5 times higher than the cylindrical rubber fenders. Super arch rubber fenders also can be bolted with UHMW-PE face pads, combining resilience with low-friction, non-marking properties, called SA. This design can reduce the torsion the bottom of the fender dramatically, then prolong the life-span of rubber fender body. The UHMW-PE face pads have various colors, and can be replaced easily. SA and SAP Arch Rubber Fenders are available in many sizes from 200mm to 1000mm high and in lengths of 1000mm to 3500mm. There are many types of rubber compounds as standard. Special requirements also are available. Features: Easy to install and maintain Tough and reliable design High energy absorption and low reaction force Wide ranges of sizes and energy capacities Bolted-on UHMW-PE reduce the friction factor and shear force SA Rubber Fender L1 f 2d e d B2 B1 B S steel plate P h Q n*p H L28
  • 13. Dimension Specification (mm) Model Length (mm) H L1 L2 B B1 B2 Q d e f h P n s Weight (kg) 1000 200 1000 1100 145 400 320 120.0 29 75 105 30 860 1 128 62 1500 200 1500 1600 145 400 320 120.0 29 75 105 30 680 2 128 91 2000 200 2000 2100 145 400 320 120.0 29 75 105 30 620 3 128 122SA 200H 2500 200 2500 2600 145 400 320 122.5 29 75 105 30 785 3 128 151 3000 200 3000 3100 145 400 320 120.0 29 75 105 30 715 4 128 180 3500 200 3500 3600 145 400 320 120.0 29 75 105 30 672 5 128 210 1000 250 1000 1125 175 500 410 130.0 32 90 125 33 865 1 160 85 1500 250 1500 1625 175 500 410 132.5 32 90 125 33 680 2 160 130SA/SAP 2000 250 2000 2125 175 500 410 132.5 32 90 125 33 620 3 160 170 250H 2500 250 2500 2625 175 500 410 127.5 32 90 125 33 790 3 160 225 3000 250 3000 3125 175 500 410 132.5 32 90 125 33 715 4 160 270 3500 250 3500 3625 175 500 320 130.0 32 90 125 33 673 5 160 310 1000 300 1000 1150 225 600 490 140.0 35 105 140 33 870 1 195 125 1500 300 1500 1650 225 600 490 140.0 35 105 140 33 685 2 195 178SA/SAP 2000 300 2000 2150 225 600 490 137.5 35 105 140 33 625 3 195 233 300H 2500 300 2500 2650 225 600 490 140.0 35 105 140 33 790 3 195 308 3000 300 3000 3150 225 600 490 140.0 35 105 140 33 715 4 195 370 3500 300 3500 3650 225 600 490 140.0 35 105 140 33 674 5 195 435 1000 400 1000 1200 300 800 670 150.0 41 120 165 40 900 1 260 205 1500 400 1500 1700 300 800 670 150.0 41 120 165 40 700 2 260 300SA/SAP 2000 400 2000 2200 300 800 670 147.5 41 120 165 40 635 3 260 391 400H 2500 400 2500 2700 300 800 670 150.0 41 120 165 40 800 3 260 430 3000 400 3000 3200 300 800 670 150.0 41 120 165 40 725 4 260 635 3500 400 3500 3700 300 800 670 150.0 41 120 165 40 680 5 260 738 1000 500 1000 1250 375 1000 840 160.0 47 140 180 45 930 1 325 325 1500 500 1500 1750 375 1000 840 160.0 47 140 180 45 715 2 325 460SA/SAP 2000 500 2000 2250 375 1000 840 157.5 47 140 180 45 645 3 325 600 500H 2500 500 2500 2750 375 1000 840 160.0 47 140 180 45 810 3 325 805 3000 500 3000 3250 375 1000 840 165.0 47 140 180 45 730 4 325 953 3500 500 3500 3750 375 1000 840 160.0 47 140 180 45 686 5 325 1110 1000 600 1000 1300 450 1200 1010 170.0 50 160 195 54 960 1 390 480 1500 600 1500 1800 450 1200 1010 170.0 50 160 195 54 730 2 390 680SA/SAP 2000 600 2000 2300 450 1200 1010 167.5 50 160 195 54 655 3 390 882 600H 2500 600 2500 2800 450 1200 1010 170.0 50 160 195 54 820 3 390 1100 3000 600 3000 3300 450 1200 1010 170.0 50 160 195 54 740 4 390 1341 3500 600 3500 3800 450 1200 1010 170.0 50 160 195 54 692 5 390 1581 1000 800 1000 1400 600 1600 1340 180.0 68 260 270 72 1040 1 520 875 1500 800 1500 1900 600 1600 1340 180.0 68 260 270 72 770 2 520 1225SA/SAP 800H 2000 800 2000 2400 600 1600 1340 180.0 68 260 270 72 680 3 520 1585 2500 800 2500 2900 600 1600 1340 180.5 68 260 270 72 713 3 520 2040 www.lexxonco.com 9
  • 14. Perfor mance Superhigh Reaction High Reaction Standard Reaction Low Reaction Force F4 Force F3 Force F2 Force F1 Model Length (mm) 45%/52.5% 50%/55% 45%/52.5% 50%/55% 45%/52.5% 50%/55% 45%/52.5% 50%/55% R E R E R E R E R E R E R E R E 1000 170 11 230 14 150 10 200 12 110 8 150 9 75 5 100 6 1500 255 16 345 21 225 15 300 18 165 12 225 13 112 7 150 9 2000 340 21 460 28 300 20 400 24 220 16 330 17 149 10 200 12 SA 200H 2500 425 26 575 35 375 25 500 30 275 20 375 21 186 12 250 15 3000 510 31 690 42 450 30 600 36 330 24 450 25 223 15 300 18 3500 595 36 805 49 525 35 700 42 385 28 525 29 260 17 350 21 1000 210 17 280 20 180 16 250 18 140 12 190 14 94 8 120 9 1500 315 25 420 30 270 24 375 27 210 18 285 21 141 12 180 13 SA/SAP 2000 420 33 560 40 360 32 500 36 280 28 380 28 188 16 240 17 250H 2500 525 41 700 50 450 40 625 45 350 35 475 30 235 20 300 21 3000 630 49 840 60 540 48 750 54 420 42 570 36 282 24 360 25 3500 735 57 980 70 630 56 875 63 490 49 665 42 329 28 420 29 1000 322 41 448 45 248 31 344 34 204 26 284 29 175 22 244 25 1500 487 62 672 67 372 46 516 51 306 39 426 43 263 33 366 37 SA/SAP 2000 614 82 896 90 496 62 688 68 408 52 568 58 350 44 488 50 300H 2500 805 103 1120 112 620 78 860 85 510 65 710 72 438 55 610 63 3000 966 123 1344 135 744 93 1032 102 612 78 852 87 525 66 732 75 3500 1127 144 1568 157 868 109 1204 119 714 91 994 101 613 77 854 87 1000 430 74 598 78 330 57 460 60 275 46 380 49 234 41 326 43 1500 645 111 897 117 495 85 690 90 412 69 570 74 351 61 489 64 SA/SAP 2000 860 141 1196 156 660 114 920 120 550 92 760 98 468 82 652 86 400H 2500 1075 185 1495 195 825 142 1150 150 618 115 950 123 585 102 815 107 3000 1290 222 1794 234 990 171 1380 180 825 138 1140 147 702 123 978 129 3500 1505 259 2093 273 1155 199 1610 210 963 161 1330 172 819 143 1141 150 1000 538 114 748 122 414 88 574 94 344 72 476 78 294 63 408 65 1500 807 171 1122 183 621 132 861 141 516 108 714 117 441 94 612 97 SA/SAP 2000 1076 228 1496 244 828 176 688 188 688 144 952 156 588 126 816 130 500H 2500 1345 285 1870 305 1035 220 1435 235 835 180 1190 195 735 157 1020 162 3000 1614 342 2244 366 1242 264 1722 282 1032 216 1428 234 882 189 1224 195 3500 1883 399 2618 427 1449 308 2009 329 1204 252 1666 273 1029 220 1428 227 1000 644 164 886 176 496 126 690 136 412 104 570 112 351 89 490 96 1500 966 246 1329 264 744 189 1035 204 618 156 855 168 526 133 735 144 SA/SAP 2000 1288 328 1772 352 992 252 1310 272 824 208 1140 224 702 178 980 192 600H 2500 1610 410 2215 440 1240 315 1725 340 1036 260 1425 280 877 222 1225 240 3000 1932 492 2658 528 1488 378 2070 408 1236 312 1710 336 1053 267 1476 288 3500 2254 574 3101 616 1736 441 2475 476 1442 364 1995 392 1228 311 1715 336 1000 862 290 1195 312 661 223 920 240 550 185 762 199 470 159 654 171 SA/SAP 1500 1293 435 1792 468 991 334 1380 360 825 277 1143 298 705 238 981 256 800H 2000 1724 580 2390 624 1322 446 1840 480 1100 370 1524 398 940 318 1308 342 2500 2155 725 2987 780 1652 557 2300 600 1375 463 1905 497 1175 397 1635 427 Note: 1.R=Reaction Force(kN); E= Energy Absorption(kN-M) 2.The performance Tolerance is+/-10%10
  • 15. SAP Arch Fender Face pad Front panel Md MD S T N MD L M X T S Unit mm Connect with UHMW Connect withSpecification face pad front panel MD Md Length X M N S T S T SAP150 49 0 60 300~400 125 250~300 M22 M16 35 1000~3500 SAP200 65.5 0 60 300~400 125 250~300 M24 M16 35 1000~3500 SAP250 50 64 60~85 300~400 125 250~300 M27 M16 35 1000~3500 SAP300 60 105 65~85 300~400 125 250~300 M30 M16 40 1000~3500 SAP400 60 180 65~85 300~400 125 250~300 M36 M16 45~50 1000~3500 SAP500 65 245 65~85 300~400 125 250~300 M42 M16 50~55 1000~3500 SAP600 70 310 65~85 300~400 125 250~300 M48 M16 50~55 1000~3500 SAP800 80 440 65~85 300~400 125 250~300 M64 M16 55~60 1000~3000 SAP1000 90 570 65~85 300~400 125 250~300 M64 M16 60~70 1000~2000 www.lexxonco.com 11
  • 16. Cylindrical Rubber Fender Cylindrical Rubber Fender is one kind of very popular marine rubber fender because of easy installation and operation, versatile and highly cost effective. With hollow cylindrical design, they can be produced to almost any length and diameter as required, matching to almost any application, including berths serving both large and small vessels such as general cargo, fishing vessels and tug vessels. They can be installed horizontally, vertically or diagonally and can be adapted to wharf corners. Features: L OD Simple and economical design ID Easy to install and maintain Choice of mounting systems to suit different structures and applications Wide range of sizes Almost any length and diameter combination Dimension and Perfor mance Dimension (mm) MAX High Reaction Standard Raction Length OD ID (mm) R E R E 150 75 10000 74.0 2.3 46.0 1.5 200 100 10000 97.0 4.3 62.0 2.7 250 125 10000 123.0 6.6 76.0 4.2 300 150 10000 146.0 9.7 92.0 6.0 400 200 8000 195.0 17.2 122.0 10.6 500 250 8000 245.0 27.0 152.0 16.4 600 300 3000 293.0 38.2 182.0 24.1 700 350 3000 342.0 53.3 212.0 32.2 Note: 1.The rated deflection is 50% 2.R=Reaction force(kN); E= Energy Absorption(kN-M) 3.The performance Tolerance is+/-10% 4.The performance is for 1000 mm length12
  • 17. InstallationCylindrical Rubber Fenders can be installed by various ways as per the different dimensions, like suspendedwith chain, central bar, or ladder brackets. Specification Chain(mm) Steel Bar(mm) Shackle(mm) U Anchor(mm) 150*75* L1~3m 10~17 18~33 10~18 15~25 300*150* L1~3m 13~23 25~44 14~24 20~36 600*300* L1~3m 19~32 36~60 20~32 30~50 1000*500* L1~3m 24~42 46~80 24~42 38~65 1600*800* L1~3m 30~52 60~100 30~55 48~85 www.lexxonco.com 13
  • 18. D Type Rubber Fender D Type Rubber Fenders are manufactured to a simple “D” profile using the latest extrusion technology. They provide a highly economic solution for lower energy absorption applications which can be supplied in a wide range of sizes and lengths. The height and length of D type rubber fender can be matched to almost any application, including berths serving both large and small vessels such as general cargo and fishing ports. Features: With the reasonable reaction force, its energy absorption is higher than Cylindrical Rubber Fender Easy to install and maintain Applicable for frame dock and ships due to its small bottom width H A P×(n- 1) A L B14
  • 19. Dimension and Perfor mance Specification Performance Model H B L n P A Reaction Force Absorption (mm) (mm) (mm) (mm) (mm) (KN) (KN-M) D300×900-2z 300 300 900 2 600 150 270 11.0D300×1000-2z 300 300 1000 2 700 150 300 12.1D300×1000-3z 300 300 1000 3 400 100 294 11.8D300×1500-3z 300 300 1500 3 600 150 450 18.2D300×1500-5z 300 300 1500 5 325 100 450 18.2D300×1500-5p 300 300 1500 5 325 100 450 18.2 D500×900-3z 500 500 900 3 350 100 414 28.3D500×1000-3z 500 500 1000 3 400 100 460 31.4D500×1500-5z 500 500 1500 5 325 100 690 47.1Note: 1.The design compressive deflection is 50% 2.The performance Tolerance is +/-10% 3.The performance is for 1000mm lengthInstallationThe representative installation material of D type rubber fender system include① Bolt ② Nut ③ Pressing Board ④ Washer L1 D 2×45° M 30° 30° Φ H L2 L3 Nut L4 Washer d ① Bolt ② Nut W Plate Bolt ③ Plate ④ Washer Single row hole=SH A S F2 C t N Dock E1 Dock X 2 M B F www.lexxonco.com 15
  • 20. Wing-D Rubber Fender Wing-D rubber fenders are developed based on D type rubber fenders. Wing-D rubber fenders can be fixed with double line anchors which greatly improve the installation stability. They also can be integrated into other fender system to achieve better protection of ships and docks. S k T h t B b H Q P P×n L Dimension and Perfor mance Specification (mm) Performance Reference Model Length (mm) H B b L Q P S h T t n R E weight (kg)   1000 300 540 430 1000 150 700 165 120 82 41 1 386 15.0 128 1500 300 540 430 1500 150 600 165 120 82 41 2 579 22.5 190 WD 300H 2000 300 540 430 2000 145 570 165 120 82 41 3 772 30.0 256 2500 300 540 430 2500 150 550 165 120 82 41 4 965 37.5 320 3000 300 540 430 3000 150 540 165 120 82 41 5 1158 45.0 385 Note: 1.The rated deflection is 50% 2.R=Reaction force(kN); E= Energy Absorption(kN-M) 3.The performance Tolerance is +/-10%16
  • 21. Dock Corner Rubber FenderDock Corner Rubber Fenders are economical and extensively used for protecting corners of berthingstructures or jetties from the impact of moving vessels or boats. Dock Corner Rubber Fenders are also used forprotecting an entrance to a channel. Dock Corner Rubber Fenders can be made by Super Arch Rubber Fendersor D Rubber Fenders. Φ70 L a b×( n-1) 300 32 1) 300 b×( n - a R Specification Pitch Weight Model Angle H (mm) L (mm) Hole (n) (kg) a (Top) b (Middle) DC 300H×1480L 90° 300 1480 100 325 4 145 DC 300H×990L 120° 300 990 100 325 3 98 DC 300H×1820L - 300 1820 100 325 6 180 DC 300H×1000L - 300 1000 100 325 3 100 - DC 300H×580L 300 580 100 325 2 50 Note: The performance Tolerance is +/-10% Nut Installation Washer Plate Bolt www.lexxonco.com 17
  • 22. Leg Rubber Fender Leg Rubber Fenders are modular units with an advanced geometry that combines high performance with an adaptable design. Leg rubber fenders system is the pair Leg Fenders with steel panels and UHMW-PE face pads. Leg rubber fenders can be assembled with many methods, vertical or horizontal mounting of units ensures optimum energy and low reaction. A small footprint makes Leg rubber fenders perfect where fixing area is restricted. These systems are widely used for where larger vessels berth including Container Quays, Tanker Terminals, Bulk Cargo and RoRo berths. The versatility of Leg rubber fenders make them suitable for almost all applications. W P A Features: Modular design High efficiency with excellent shear resistance H T Wide range of sizes suit most of application High energy absorption and low reaction force D Easy to install A L W Specification (mm) Superhigh Reaction Standard Reaction Force F4 Force F2 Model H A P W D T R E R E L500H 500 87 142 158 36 20 265 61 186 43 L600H 600 87 200 188 36 20 320 88 224 62 L750H 750 118 230 235 43 26 401 137 281 96 L800H 800 129 240 250 43 26 428 157 299 110 L1000H 1000 162 310 322 50 31 534 245 374 172 L1250H 1250 196 390 400 56 36 667 383 467 268 L1450H 1450 228 454 454 56 41 775 516 543 361 L1600H 1600 257 480 500 64 50 854 628 598 440 Note: 1.The rated deflection is 50% 2.R=Reaction force(kN); E= Energy Absorption(kN-M) 3.The performance Tolerance is +/-10%18
  • 23. Installation ① Bolt (mm) ② Spacer(mm) ③ Nut(mm) Model D J S H d1 d2 h T L500H 30 90 45 19 33 56 4 24 L600H 30 90 45 19 33 56 4 24 L750H 36 110 50 23 39 66 5 28 L800H 36 110 60 23 39 66 5 28 L1000H 42 125 65 26 45 78 6 34 L1250H 48 135 80 30 52 92 8 34 L1450H 48 135 80 30 52 93 8 38 L1600H 56 160 90 35 62 105 10 45∏Type Rubber FenderFeature of ∏Type Rubber Fender1.Low reaction force,high energy absorption.2.Easy for installation.3.Usually applicable for middle & large docks.Specification (I) 1 2 3 K N 4 T H Q P P Q S1 M P×n K L S 1-Face Pad 2-Front Panel 3-Anchor Bolt 4-Rubber Buffer www.lexxonco.com 19
  • 24. Section Sizes Unit mm Specification H K M N S S1 π600 600 500 370 65 1500 500 π800 800 600 460 70 1700 500 π1000 1000 700 550 75 2000 600 π1250 1250 800 650 75 2450 850 π1400 1400 900 730 85 2700 900 π1700 1700 1050 860 95 3150 1050 π2000 2000 1200 1000 100 3700 1300 π2250 2250 1350 1150 100 4000 1300 π2500 2500 1400 1200 100 4400 1600 L=1000 L=1500 L=2000 L=2500 Specification P n Q P n Q P n Q P n Q π600. π800 π1000.π1250 700 1 150 600 2 150 850 2 150 700 3 200 π1400.π1700 π2000 π2250 600 1 200 550 2 200 800 2 200 700 3 200 π2500 600 1 200 550 2 200 800 2 200 - - - Specification of Front Panel L H W20
  • 25. Unit mmSpecification Performance H W L P1 160 π600 P2 160 1500 P3 180 P1 180 π800 P2 180 1500 P3 180 P1 180 π1000 P2 210 2000 P3 210 P1 235 π1250 P2 235 2500 P3 260 Fender length +500 P1 260 π1400 P2 310 2500 P3 310 P1 310 π1700 P2 310 3000 P3 310 P1 310 π2000 P2 310 3500 P3 310 P1 310 π2250 P2 310 4000 P3 370 P1 310 π2500 P2 370 4500 P3 370Specification (II) W2 W1 W′ W1 L2 H1 H1 ΦD N L N H H h W3 M S1 M S www.lexxonco.com 21
  • 26. Q1 C1×n1 Q1 Q1 Q1 M M W′ W′ S1 S1 S S M M Q2 Q2 Q2 Q2 Q1 C1×n1 Q3 Q1 C1×n1 Q1 Q1 S1 M W′ W′ M Q2 Q2 C2×n2 Q4 Q2 C1×n2 Q2 Section Sizes Specification H h w3 D π600 600 50 375 + w’ M52 π800 800 60 500 + w’ M64 π1000 1000 65 625 + w’ M64 π1150 1150 65 718 + w’ M64 π1300 1300 65 810 + w’ M64 π1450 1450 80 908 + w’ M76 π1600 1600 100 1000 + w’ M76 π1800 1800 110 1126 + w’ M76 π2000 2000 120 1250 + w’ M76 π2250 2250 130 1390 + w’ M76 π2500 2500 140 1560 + w’ M7622
  • 27. Length sizes Unit mm π600 π1150 π1600 Specification π2250 π800 π1300 π1800 π2500 π1000 π1450 π2000 Q1 250 Q2 250 L=500 C1 0 - - - C2 0 n1 0 n2 0 Q1 200 200 200 200 Q2 500 500 500 500L=1000 C1 600 600 600 600 C2 0 0 0 0 n1 1 1 1 1 n2 0 0 0 0 Q1 200 200 200 150 Q2 750 300 300 300L=1500 C1 1100 1100 550 600 C2 0 900 900 900 n1 1 1 2 2 n2 0 1 1 1 Q1 250 200 200 200 Q2 500 550 200 500 Q3 - - - 400L=2000 Q4 - - - 1000 C1 1500 800 800 600 C2 1000 900 800 0 n1 1 2 2 2 n2 1 1 2 0 Q1 200 200 200 150 Q2 750 300 300 300 Q3 400 400 400 300L=3000 Q4 1500 600 600 600 C1 1100 1100 550 600 C2 0 900 900 900 n1 2 2 4 4 n2 0 2 2 2 Q1 - - - 150 Q2 - - - 150 Q3 - - - 300L=3500 Q4 - - - 300 C1 - - - 725 C2 - - - 725 n1 - - - 4 n2 - - - 4 www.lexxonco.com 23
  • 28. Specification of Front Panel W H Unit mm Specification Performance H W L2 P1 240 π600 P2 240 2000 P3 260 P1 300 π800 P2 300 2000 P3 300 P1 300 π1000 P2 320 2500 P3 320 P1 330 π1150 P2 330 2500 P3 350 P1 340 π1250 P2 340 3000 P3 340 P1 350 π1300 P2 350 3000 Fender P3 350 length P1 360 +500 π1400 P2 360 3500 P3 360 P1 360 π1450 P2 360 3500 P3 360 P1 360 π1600 P2 400 4000 P3 400 P1 400 π1700 P2 400 4000 P3 400 P1 400 π1800 P2 400 4500 P3 400 P1 400 π2000 P2 400 4500 P3 400 P1 400 π2250 P2 400 5000 P3 400 P1 420 π2500 P2 420 5500 P3 45024
  • 29. Rubber Grade F1 F2 F3 Deflection 57.5% 60% 57.5% 60% 57.5% 60% Perfor -mance R E R E R E R E R E R EType H X L π600 ×1000 304 832 336 88.2 438 119 480 126 569 154 624 164 π800 ×1000 409 148 448 157 584 211 640 224 759 275 832 291 π1000×1000 511 231 560 245 730 330 800 350 949 429 1040 455 π1150×1000 588 306 644 324 840 436 920 463 1091 567 1196 602 π1250×1000 638 375 700 398 913 537 1000 569 1186 697 1300 740 π1300×1000 664 390 728 414 949 558 1040 592 1234 725 1352 769 π1400×1000 716 470 784 498 1024 670 1120 711 1329 871 1456 924 π1450×1000 741 486 812 515 1059 694 1160 736 1376 902 1508 957 π1600×1000 818 591 896 627 1168 845 1280 896 1518 1098 1664 1165 π1700×1000 869 670 952 711 1240 957 1360 1015 1613 1244 1768 1320 π1800×1000 920 74.8 1008 794 1314 1069 1440 1134 1708 1390 1872 1474 π2000×1000 1020 924 1120 980 1460 1320 1600 1400 1898 1716 2080 1820 π2250×1000 1150 1169 1260 1241 1643 1667 1800 1772 2135 2172 2340 2303 π2500×1000 1277 1444 1400 1531 1825 2063 2000 2187 2373 2681 2600 2844Note:1.The rated deflection is 57.5%, The max deflection is 60%。2. R=Reaction force(kN); E= Energy Absorption(kN-M)3.The performance Tolerance is +/-10% www.lexxonco.com 25
  • 30. Ladder Rubber Fender Ladder Rubber Fenders are very robust but remain flexible to reduce accidental damage and help protect the wharf when small craft berth. Modular ladders are flexible, corrosion resistant and can withstand most accidental impacts from smaller vessels. The step modules are made from polyurethane and can be linked together, combined with extensions and a variety of optional handrails to suit many applications. Features: H b a L Model H (mm) L (mm) LR200H 200 900 1200 1500 1800 2100 2400 2700 3000 LR250H 250 900 1200 1500 1800 2100 2400 2700 3000 LR300H 300 900 1200 1500 1800 2100 2400 2700 300026
  • 31. Tugboat Rubber FenderTugboat Rubber Fenders are widely used as the primary fender system on the bow or stern of modern tugs. Theround shape is ideal for operation of large bow flares and flat-sided vessels. L 4000 T1 Φ600 Φ450 Φ220 200 400 400 400 400 400 400 400 400 400 200 L 3026 T2 Φ450 Φ800 Φ220 225 700 700 350 350 350 350 350 350 L 3200 T3 Φ400 Φ102 Φ250 200 400 400 400 400 400 400 400 200 L 5250 T4567 ΦD Φd 250 1200 500 350 350 500 800 800 500 www.lexxonco.com 27
  • 32. A-A A A Chain Shackle Diameter Out Diameter (mm) Model Max. Length (m) Shape Φ(mm) Middle End T1 220 600 450 12 Cone T2 220 800 450 12 Cone T3 220 400 250 12 Cone T4 102 700 700 12 Straight T5 300 750 750 12 Straight T6 300 800 800 12 Straight T7 400 800 800 12 Straight28
  • 33. Roller Rubber FenderRoller Fenders are commonly used on the berth corners and dock entrances, also widely installed along thewalls of dry docks and other restricted channels to help guide vessels and prevent hull damage.The wheels mounted on a fixed axle, supported by a special frame. And wheels can be rotated freely when theship hull contact / slid the along with the wheels. Roller Fenders combine reasonable energy absorption withlow reaction at all berthing angles.Features: Low maintenance frame design Easy to install Φ H1 Model Φ(mm) H(mm) Max. Deflection Max. Reaction Energy absorption Weight (mm) (KN) (KN.M) (kg) R600Φ×200H 600 200 125 70 2.5 120 R750Φ×250H 750 250 157 110 4.8 230 R900Φ×300H 900 300 184 150 8.3 410 R1200Φ×400H 1200 400 260 270 19.6 980 R1500Φ×500H 1500 500 325 430 38.4 1810 R1800Φ×600H 1800 600 390 620 66.3 3130 www.lexxonco.com 29
  • 34. Wheel Rubber Fender Wheel fenders are widely used on exposed corners to help ships maneuver into berths and narrow channels such as locks and dry-dock entrances. The main axle slides on bearings and the wheel reacts against back rollers to provide high energy and minimal rolling resistance Features: Highest energy absorption Very low rolling resistance Use singly or in multiple stacks Low maintenance casing design Model Reaction Force (KN) Energy Absorption (KN.M) Full Deflection (mm) W1080Φ 150 40 400 W1350Φ 168 51 520 W1800Φ 315 105 600 W2000Φ 588 220 695 W2550Φ 915 440 920 W2900Φ 1300 813 120030
  • 35. Floating Rubber FenderFloating Rubber Fenders have become an ideal ship protection medium used extensively by large tankers, LPGvessels, ocean platforms, bulk carriers, floating structures, large docks, harbors jetties & wharfs. 1 5 2 3 4 Φd1 ΦC PΦ ΦD n-MS L 1.Rubber fender body 2. Steel core 3.Flange 4.Flying rings 5.Protector Unit mm Model D L d d1 C S n Weight (kg) F300Ф×500L 300 500 - - - - - 3 F500Ф×1600L 500 1600 152 30 350 16 6 70 (110) F1000Ф×1600L 1000 1600 168 36 380 24 6 280 (440) F1200Ф×2000L 1200 2000 194 42 400 24 6 500 (790) F1600Ф×3000L 1600 3000 219 50 480 30 6 1300 (2100) F2200Ф×3000L 2200 3000 325 55 520 30 6 2500 (4000) F2400Ф×6000L 2400 6000 351 60 580 36 6 6000 (9500) F2700Ф×6000L 2700 6000 351 60 580 36 6 7600 (12000) F3100Ф×6000L 3100 6000 377 65 600 36 8 10000 F3400Ф×6000L 3400 6000 377 65 600 36 8 12000 F4300Ф×6000L 4300 6000 426 75 650 42 8 20000 F4500Ф×9000L 4500 9000 450 75 700 42 8 32000 www.lexxonco.com 31
  • 36. Perfor mance Rated deflection50% Rated deflection55% Rated deflection60% Model R E R E R E F300Ф×500L - - - - - - F500Ф×1600L 31 10 40 13 54 17 F1000Ф×1600L 122 40 160 52 216 68 F1200Ф×2000L 268 84 364 114 460 144 F1600Ф×3000L 490 160 640 210 860 270 F2200Ф×3000L 980 320 1280 410 1720 540 F2400Ф×6000L 2450 800 3200 1020 4300 1340 F2700Ф×6000L 3060 1000 4000 1280 5360 1680 F3100Ф×6000L 3842 1254 5018 1607 6742 2107 F3400Ф×6000L 4802 1568 6272 1999 8428 2636 F4300Ф×6000L 7683 2509 10035 3214 13485 4214 F4500Ф×9000L 12289 4018 16052 5135 21570 6742 Note: 1.R=Reaction force(kN); E= Energy Absorption(kN-M) 2.The performance Tolerance is +/-10% Ship Pier Or Ship-ship Berth Bridge Pier Protection High water level Ship pier Low water level Bridge pier Ship32
  • 37. Pneumatic Rubber FenderPneumatic rubber fenders are ideal in the situations where fixed fenders are not applicable such as ship-to-ship operations and some ship-to-wharf operations.They are also suitable for the use at a quay where the tidalrange is small or large.Features: Applications: ISO 17357 certified Oil and gas tanker Very Low reaction and hull pressures Fast ferries and aluminum vessels Maintains large clearances between hull and structure Both of temporary and permanent installations Chain tyre net and Sling type Rapid response and emergency fendering Outer Rubber Cord Layer Inner Rubber Flange OpeningFloating pneumatic rubber fender, constructed by Outer Rubber, Inner Rubber, Synthetic-tire-cord, beadingring, flange opening, safety valve and metal accessories, is one kind of cylindrical air bags with hemisphericalheads at both ends. Quay or Jetty Shackle Towing ring Shackle Rubber sleeve Rubber sleeve Ship Small size fender Tanker Guy rope Pneumatic rubber fenders www.lexxonco.com 33
  • 38. Classification of Pneumatic Marine Fender Initial Inter nal Pressure Rating Pneumatic 50 (Initial internal pressure 50 kPa) Pneumatic 80 (Initial internal pressure 80 kPa) Pneumatic Fenders Type Type I Net-type Floating Pneumatic Rubber Fenders The fender is covered by a protection net consisting of either chain, wire or fiber and usually with tires or rubber sleeves. Type II Sling type Floating Pneumatic Rubber Fenders The fender is designed to be used without a protection net. Its easy to handle because of their light weight. Pneumatic Fender 50 Pneumatic Fender 80 Model Deflection at 60% Deflection at 60% Dia. ×Length Safety valve Test Safety valve Test (mm) pressure Pressure pressure Pressure GEA R.F H.P setting (kPa) R.F (kPa) GEA R.F H.P setting (kPa) R.F (kPa) (kNm) (kN) (kPa) (kNm) (kN) (kPa) 500×1000 6 64 132 - 200 8 85 174 - 250 600×1000 8 74 126 - 200 11 98 166 - 250 700×1500 17 137 135 - 200 24 180 177 - 250 1000×1500 32 182 122 - 200 45 239 160 - 250 1000×2000 45 257 132 - 200 63 338 174 - 250 1200×2000 63 297 126 - 200 88 390 166 - 250 1350×2500 102 427 130 - 200 142 561 170 - 250 1500×3000 153 579 132 - 200 214 761 174 - 250 1700×3000 191 639 128 - 200 267 840 168 - 250 2000×3500 308 875 128 - 200 430 1150 168 - 250 2500×4000 663 1381 137 175 250 925 1815 180 230 300 2500×5500 943 2019 148 175 250 1317 2653 195 230 300 3300×4500 1175 1884 130 175 250 1640 2476 171 230 300 3300×6500 1814 3015 146 175 250 2532 3961 191 230 3003424
  • 39. FENDER DESIGNDesign Flow Char t Type of Structure Ship Data Berthing Mode Location & Environment Select Berthing Velocity, Calculate (Normal) Energy Service Life, Loads etc. Safety Factor Abnormal berthing energy Select Fender and Panel Arrangement No Reaction Force Check Structure & Panels OK? Yes No Panel Size Tides, Hull Pressures etc. OK? Yes No Berthing Angles Angular Performance OK? Yes No Shear Forces Restraint Chain Sizes OK? Yes No Material Specifications Corrosion Protection etc. OK? Yes No Fender Design OK? Yes Final Fender DesignFender System DesignShipIn most cases, the actual value of the ships is used to calculate the actual berthing energy. Under some casesthe actual values are not available, then the attached list "Standard Size of Vessels"shall be referred forcalculations. Length Overall Length Between Perpendiculars www.lexxonco.com 3 255 Fender Design
  • 40. Moulded Breadth Freeboard Moulded Depth Full Load Draft Light Load Draft TERMINOLOGY DEFINITION UNIT Total volume of vessel and cargo. It is derived from dividing the total Gross Tonnage GT ton interior capacity of a vessel by 100 cubic feet. Net Tonnage NT Total volume of cargo that can be carried by the vessel. ton Displacement Tonnage Total weight of the vessel and cargo when the ship is loaded to draft line. ton DPT Dead Weight Tonnage ton Weight of cargo, fuel,passenger, crew and food on the vessel. DWT Light Weight LOW Weight of ship. ton Weight of ship and water added to the hold or ballast compartment Ballast Weight BW ton of a vessel to improve its stability after it has discharged its cargo. Length of Ship m The length from the top of the bow to the end of the stern of a ship. Loa or Lpp Breadth of Ship B m The distance across the parallel section of the sides of a ship. The distance from the water surface to the keel of the ship when the m Loaded Draft d ship is loaded to the freeboard mark. The distance from the water surface to the keel of the ship when the m Light Draft d ship is at light. Depth of Ship D The actual Depth of ship. m Note:Passenger ship, car carrier and LPG & LNG carriers are normally expressed using GT or NT. DPT=DWT+LW36
  • 41. Ber th Energy CalculationThe impacting energy calculation is subject to the ships berthing method which can be defined as following:A. Side Berthing & Dolphin Berthing, as shown in the figure 1 & 2 Figure1 V Figure2 Then, E=1/2gMd.V2Cm·Ce·Cc·Cs Passing Lock Entrance, as shown in the figure 3 E=1/2Md.(Vsina)2Cm·Ce·Cc·Cs V Figure3 V Ship-To-Ship Berthing, as shown in the figure 4 (Md 1•Cm1)•(Md 2•Cm1 ) E=0.5[ ]•V2•Ce (Md 1•Cm1 )+(Md 2•Cm1 ) V Figure4 End Berthing, as shown in the figure 5 Figure5 E=0.5MdV2 V Where, E - Vessel effective berthing energy Md - Displacement Tonnage (ton) V - Berthing Velocity (m/s) Cm - Added Mass Coefficient Ce - Eccentricity Coefficient Cs - Softness Coefficient, normally takes 1 Cc - Berth Configuration Coefficient, normally takes 1. www.lexxonco.com 37
  • 42. Ber thing Velocity Berthing velocity is an important parameter in fender system design, which depends upon the sizes of vessel, loading condition, port structure and the easy or difficulty of the approach etc. Therefore the berthing velocity is preferred to be obtained from actual measurements or relevant existing statistic information. When the actual measured speed velocity is not available, the BSI and PIANC etc. standard shall be adopted to determine the required velocity value from the following chart. a Easy berthing and sheltered b Difficult berthing and sheltered c Easy berthing, exposed d Good berthing, exposed e Difficult berthing, exposed 900 800 700 600 Velocity (mm/s) 500 400 300 200 100 0 1000 10000 100, 000 500, 000 DE Displacement (tonne) The berthing velocity can be calculated more precisely by using the following formulation while the ship DPT is 10000 ton -500000 ton. V 1a 1 ≈ 0.599 • Md-0.4423 V 1b 1 ≈ 8406 • Md -0.4031 V 1c 1 ≈ 10885 • Md -0.3899 V 1d 1 ≈ 12452 • Md-0.3748 V 1e 1 ≈ 12893 • Md-0.362538
  • 43. Ber thing Velocities Table Md (Ton) V(a) (m/s) V(b) (m/s) V(c) (m/s) V(d) (m/s) V(e) (m/s) 1000 0.18 0.35 0.52 0.67 0.87 2000 0.15 0.3 0.44 0.57 0.72 3000 0.14 0.27 0.4 0.52 0.65 4000 0.13 0.25 0.38 0.49 0.59 5000 0.12 0.23 0.35 0.46 0.56 10000 0.1 0.19 0.29 0.38 0.45 20000 0.08 0.16 0.23 0.31 0.36 30000 0.06 0.14 0.2 0.27 0.31 40000 0.06 0.12 0.18 0.24 0.28 50000 0.05 0.11 0.16 0.22 0.25 100000 0.04 0.86 0.13 0.17 0.2 200000 0.03 0.06 0.09 0.13 0.16 300000 0.02 0.05 0.08 0.11 0.13 400000 0.02 0.04 0.07 0.1 0.13 500000 0.02 0.04 0.07 0.1 0.12Cm Added Mass Coefficient (Cm)When the ships berth at the dock, the body of water carried along with the ship as it moves sideways throughthe water. As the ship is stopped by the fender, the momentum of the entrained water continues to push againstthe ship and this effectively increase its overall mass. The mass of specified water is called Added SeawaterMass, the added seawater influence coefficient is called Cm, normally calculated as the following formula D-Draft L-Ship length ΠD 2Lρ Cm=1+ ρ (ρ=1.025t/m3) Seawater density 4Md www.lexxonco.com 39
  • 44. Ce Eccentricity Coefficient (Ce) In most cases there is certain angle (shown in the figure) exist when ships approach to the dock, therefore the impacting point is not opposite the center of mass of the vessel, the ship will rotate so as to dissipated partial ship impacting energy .The energy dissipated can be adjusted by Ce at berthing, the calculation formula is stated below: 1 A Ce= 1+(1/r2) A Where, r = Gyration radius of ship against axial of center of L B Center of Gravity gravity on horizontal plane. B I = Project of the distance between the center of gravity and berthing point on dock direction Quarter-point berthing x=L/4 Ce = 0.5 Third-point berthing x=L/3 Ce = 0.6~0.8 Mid-ships berthing x=L/2 Ce = 1 Abnor mal Ber thing Energy Abnormal impacts may occurs for various reasons - engine failure of ship, breakage of mooring or towing lines, sudden changes in weather or human error, the berthing energy will suddenly increased, it is suggested that there should be a safety factor FS. then berthing Energy EA in abnormal berthing should be EA=FS.E, Fs2.40
  • 45. Fender System SelectionAfter the effective berthing energy of ship is determined according to item 2, the selection of fender systemshall be conducted in accordance with fenders performance (reaction force, energy absorption and deflectioncurve) which shallsatisfy the following basic requirements: a Energy absorption of selected fender system exceed effective impacting energy of ships. b Reaction force of selected fender system is less than berthing structure allowable reaction force. c Surface pressure of selected fender system is less than hull allowable surface pressure (to satisfyrequirements by changing the sizes of front panel) d When the ship berthing in slanting direction, the fenders will bear angular compression which resulted indecreased energy absorption, therefore the fender performance shall be adjusted in according with theberthing angles while selecting fender system. e The selected fender system shall be easy for installation and maintenance. f The selected fender system shall satisfy the special requirements of adverse environment (such as hightemperature,strong wind and wave etc.) and of abnormal berthing. g The selected fender system shall be high performance/economic, free of maintenance or low maintenanceratio, that is the fender system shall be as cheap as possible in the investment, operation and maintenanceprocedure.Fender Ar rangementa. Vertical Orientation ArrangementThe fender system arranged in vertical orientation shall satisfy the purpose of all types and sizes of shipberthing safely in all possible tide vary scope. The contact method of fender and ships are shown in the rightfigures. Fender Fender Fender Largest Vessel Largest Vessel Largest Vessel Smallest Vessel Smallest Vessel Smallest Vessel www.lexxonco.com 41
  • 46. b. Horizontal Orientation Arrangement The horizontal orientation spacing of fender depend upon the dock structure, berthing ship types and size and berthing conditions etc, the most important is to ensure the ship will not contact the structure between two fenders on normal berthing. The maximum fender spacing shall be calculated by the following formula: r L h 2 S≤2 r 2- ( r-n ) Where, S = Max. fender spacing r = Bow radius h = Fender height in rated compression deflection The bow radius shall be determined by the following formula : r = 0 . 5 [( B / 2 ) + ( L2 / 8B )] B — Moulded breadth, L — Length overall The equal spacing arrangement is adopted by most of the docks , the fender spacing are shown in the right table. Depth of Seawater Fender spacing along the dock 4~6 4~7 6~8 7~10 8~10 10 ~ 1542
  • 47. AppendixStandard Size of Vessels Type of Vessel Tonnage Length Breadth Depth Full Draft (ton) (m) (m) (m) (m) DWT 300 42 8.1 4.3 3.2 600 54.3 9.4 5.4 3.6 700 58 9.7 5.5 3.7 1000 64 10.4 5.8 4.2 2000 81 12.7 6.8 4.9 3000 92 14.2 7.7 5.7 5000 109 16.4 9 6.8 GENERAL CARGO & 8000 126 18.7 10.3 8 ORE CARRIER 10000 137 19.9 11.1 8.5 15000 153 22.3 12.5 9.3 30000 186 27.1 15.2 10.9 40000 201 29.4 16.5 11.7 50000 216 31.5 17.5 12.4 70000 235 33.8 19.2 13.4 90000 252 37.2 20.6 14.2 100000 259 38.7 21.2 15.8 15000 290 45 23.7 17.5 DWT 20000 201 27.1 15.6 10.6 CONTAINER CARRIER 30000 237 30.7 18.4 11.6 40000 263 33.5 20.7 12.4 50000 280 35.8 22.6 13 DWT 200 31.2 6.5 2.7 2.5 400 41.4 7.8 3.3 3.1 600 48.9 8.6 3.8 3.5 1000 61 9.8 4.4 4 2000 77 12.2 5.6 5 3000 88 13.8 6.5 5.6 5000 104 16.2 7.8 6.5 OIL TANKER 10000 130 20.1 10.1 8 15000 148 22.8 11.7 9 20000 162 24.9 13 9.8 30000 185 28.3 15.2 10.9 40000 204 30.9 16.6 11.8 50000 219 33.1 17.5 12.7 60000 232 35 18.4 13.6 70000 244 36.7 19.2 14.3 80000 255 38.3 19.9 14.9 GT GAS CARRIER 1000 70 11.7 5.7 5 2000 87 14.3 7.3 5.9 www.lexxonco.com 43
  • 48. 3000 99 16.1 8.5 6.6 5000 117 18.6 10.2 7.5 10000 145 22.7 13.1 9 GAS CARRIER 15000 165 25.5 15.2 10.2 20000 181 27.7 16.9 11 30000 206 31.2 19.6 12 50000 242 36.1 23.6 13.5 GT 700 77 12.8 6.9 4.3 1000 86 14.1 8 4.7 2000 105 17.1 10.7 5.5 3000 117 19.1 12.7 6 CAR CARRIER 5000 136 22 15.8 6.8 6000 144 23.1 17.1 7.1 10000 166 26.6 21.2 8 15000 187 29.8 25.1 8.8 20000 203 32.2 28.4 9.5 GT 100 31.7 6.8 2.6 1.8 300 39.2 8 3.1 2.2 500 49.6 9.9 3.8 2.5 2000 86 13.2 6.4 4 3000 99 14.7 7.6 4.5 PASSENGER SHIP 5000 120 16.9 9.5 5.2 8000 142 19.2 11.6 5.8 10000 154 20.4 12.9 6.2 15000 179 22.8 14.7 6.8 20000 198 24.7 16.1 7.5 30000 230 27.5 18.3 8.5 GT 300 45.5 10.5 3.3 2.6 500 56.1 12.3 3.7 3 900 71.3 14 4.3 3.5 1000 73 14.3 9.4 3.7 CAR FERRY 2000 96 17.1 10.7 4.4 3000 113 18.9 11.5 4.9 4000 127 20.2 12.2 5.3 6000 138 22.4 13.2 5.9 10000 170 25.4 14.5 6.5 13000 188 27.1 15.3 6.7 15000 200 28.1 15.7 6.9 DWT SOIL & SAND 200 34.5 8.6 3.3 2.7 CARRIER 300 38.2 9.4 3.7 3 500 47.1 10.2 4.9 3.6 DWT 100 26.1 7.6 3.3 3.3 TUG BOAT 4 200 33.5 9 4 300 38.7 10 4.4 4.444
  • 49. Name of Vessel Gross Ton DWT Length Breadth Depth Draft Q’ty of Containers (m) (m) (m) (m) (20’) SL-TRADE 41127 27752 288 32 20.9 10.2 1096 Beishu-maru 23600 23650 212.5 30 16.3 10.5 1010 Hodaka-maru 21057 20400 196 27.6 16.6 10.5 839 Golden Arrow 16592 19090 188 25.2 15.3 10.7 853 Kashu-maru 16626 16044 188 25.7 15.3 9.4 732 America-maru 16405 15440 187 25 15.5 9.5 819 Hakone-maru 16240 19636 187 26 15.5 10.5 824 Kurobe-maru 37845 32343 261.2 32.2 19.6 11.7 1826 New York-maru 38826 33287 263 32.2 19.6 11.5 1884 Hakozaki-maru 23670 19914 212.5 30 16.3 9.5 1178 Australia-maru 24044 23312 213 29 16.3 10.5 1168 Togo-maru 23300 24077 212 30 16.3 10.5 1012 TOKYO BAY 57000 49700 289.5 32.3 24.6 11 1838 Kamakura-maru 51500 28900 245 32.2 24 11 1850 Thames-maru 30073 33179 259.8 32.2 24.3 12 1950 Hakata-maru 30922 27203 218.5 31.2 18.9 11.2 1409SymbolsDWT:Dead Weight Ton (ton)Wsf:Displacement Ton at full loaded condition (ton)Wsb:Displacement Ton at ballast condition (ton)Loa:Overall Length (m)B:Breadth (m)D:Depth (m)df:Full draft (m)db:BallastAF:Area of projection of the front of ship above water line at full loaded conditionAFB:Area of projection of the front of ship above water line at full ballast conditionAS1F:Area of projection of the side of ship above water line at full loaded conditionA1B:Area of projection of the side of ship above water line at full ballast conditionAS2F:Area of ship side below the draft line at full loaded conditionAS2B:Area of ship side below the draft line at ballast condition www.lexxonco.com 45
  • 50. A. GENERAL FREIGHTERS B . OIL TANKERS Wsf 2.535 DWT 0.932 Wsf 2.118 DWT 0.95 Wsb 0.199 Wsf 1.084 Wsb 0.383 Wsf 1.018 Log Loa 0.799+0.328 log DWT Log Loa 0.808+0.309 log DWT Log B 0.192+0.272 log DWT Log B 0.050+0.309 log DWT Log D -0.267+0.321 log DWT Log D -0.387+0.339 log DWT Log df -0.464+0.341 log DWT Log df -0.321+0.299 log DWT db 0.352 df 1.172 db 0.548 df 0.966 AF 2.763 DWT 0.49 AF 2.666 DWT 0.478 AFB 3.017 DWT 0.51 AFB 2.485 DWT 0.517 AS1F 8.770 DWT 0.496 AS1F 4.964 DWT 0.522 AS1B 9.641 DWT 0.533 AS1B 5.943 DWT 0.562 AS2F 3.495 DWT 0.608 AS2F 3.198 DWT 0.611 AS2B 1.404 DWT 0.627 AS2B 1.629 DWT 0.61 C . CONTAINER SHIPS D . ORE CARRIER Wsf 1.014 DWT 1.042 Wsf 1.687 DWT 0.969 0.955 Wsb 0.843 Wst Wsb 0.385 Wst 1.023 Log Loa 0.612+0.383 log DWT Log Loa 0.926+0.296 log DWT Log B 0.120+0.301 log DWT Log B 0.026+0.310 log DWT Log D -0.620+0.414 log DWT Log D -0.199+0.304 log DWT Log df -0.450+0.333 log DWT Log df -0.267+0.288 log DWT db 0.512 df 1.088 db 0.551 df 0.993 0.645 AF 1.011 DWT AF 1.971 DWT 0.51 AFB 1.163 DWT 0.645 AFB 1.967 DWT 0.538 AS1F 0.314 DWT 0.892 AS1F 4.390 DWT 0.548 0.918 AS1B 0.306 DWT AS1B 5.171 DWT 0.58 0.821 AS2F 0.520 DWT AS2F 2.723 DWT 0.625 AS2B 0.508 DWT 0.846 AS2B 1.351 DWT 0.633 E . GAS CARRIER F. CAR CARRIER Log Loa 0.877+0.317 log GT Log Loa 1.041+0.289 log GT Log B 0.188+0.288 log GT Log B 0.300+0.275 log GT Log D -0.366+0.363 log GT Log D -0.218+0.366 log GT Log df -0.131+0.259 log GT Log df -0.060+0.236 log GT46
  • 51. G . PASSENGER SHIP H . CAR FERRY Wsf 1.215 GT 0.992 Wsf 2.051 GT 0.939 Wsb 0.895 Wsf 0.942 Wsb 0.875 Wsf 0.981 Log Loa 0.720+0.360 log GT Log Loa 0.649+0.393 log GT Log B 0.265+0.258 log GT Log B 0.343+0.261 log GT Log D -0.419+0.360 log GT Log D 0.422+0.375 log GT Log df -0.420+0.294 log GT Log df 0.317+0.280 log GT db 0.927 df 0.893 db 0.847 df 0.973 AF 1.543 GT 0.585 AF 3.828 GT 0.525 0.57 AFB 1.871 GT AFB 4.450 GT 0.509 AS1F 3.183 GT 0.697 AS1F 3.135 GT 0.726 AS1B 3.835 GT 0.634 AS1B 3.439 GT 0.724 0.774 AS2F 0.940 GT AS2F 1.120 GT 0.701 AS2B 0.751 GT 0.773 AS2B 0.985 GT 0.73GENERAL CARGO SHIP (In case of V=0.15m/s) V(m/s) VESSEL BERTHING ENERGY BERTHING DWT Loa Lpp B D df DPT VELOCITY Ce=0.5 Ce=0.7 Cm V(m/s) E(ton-m) E(ton-m) (ton) (m) (m) (m) (m) (m) (ton) 300 42 38.1 8.1 4.3 3.2 516 2.218 0.15 0.66 0.92 600 54 49.6 9.4 5.4 3.6 984 2.051 0.15 1.16 1.62 700 58 53.1 9.7 5.5 3.7 1137 2.029 0.15 1.32 1.85 1000 64 58.7 10.4 5.8 4.2 1585 2.051 0.15 1.87 2.61 2000 81 74.7 12.7 6.8 4.9 3024 1.955 0.15 3.39 4.75 3000 92 85.1 14.2 7.7 5.7 4412 2.009 0.15 5.09 7.12 5000 109 101.3 16.4 9 6.8 7103 2.061 0.15 8.4 11.76 8000 126 117.5 18.7 10.3 8 11007 2.099 0.15 13.26 18.57 10000 137 128 19.9 11.1 8.5 13551 2.098 0.15 16.32 22.84 15000 153 143.3 22.3 12.5 9.3 19774 2.009 0.15 22.8 31.92 30000 186 175 27.1 15.2 10.9 37727 1.887 0.15 40.86 57.2 40000 201 189.5 29.4 16.5 11.7 49329 1.846 0.15 52.27 73.18 50000 216 204 31.5 17.5 12.4 60732 1.831 0.15 63.83 89.36 70000 235 222.4 33.8 19.2 13.4 83102 1.773 0.15 84.58 118.41 90000 252 238.8 37.2 20.6 14.2 105034 1.738 0.15 104.77 146.68 10000 259 245.6 38.7 21.2 15.8 115872 1.852 0.15 123.15 172.41150000 290 275 45 23.7 17.5 169081 1.804 0.15 175.06 245.09 www.lexxonco.com 47
  • 52. OIL TANKER (In case of V=0.15m/s) V(m/s) VESSEL BERTHING ENERGY BERTHING DWT Loa Lpp B D df DPT VELOCITY Ce=0.5 Ce=0.7 Cm V(m/s) E(ton-m) E(ton-m) (ton) (m) (m) (m) (m) (m) (ton) 200 31 28 6.5 2.7 2.5 325 1.868 0.15 0.35 0.49 400 41 37.5 7.8 3.3 3.1 628 1.923 0.15 0.69 0.97 600 49 44.5 8.6 3.8 3.5 923 1.95 0.15 1.03 1.45 1000 61 55.8 9.8 4.4 4 1499 1.959 0.15 1.69 2.36 2000 77 70.9 12.2 5.6 5 2897 1.985 0.15 3.3 4.62 3000 88 81.3 13.8 6.5 5.6 4258 1.964 0.15 4.8 6.72 5000 104 96.6 16.2 7.8 6.5 6917 1.949 0.15 7.74 10.83 10000 130 121.4 20.1 10.1 8 13364 1.936 0.15 14.85 20.79 15000 148 138.7 22.8 11.7 9 19643 1.921 0.15 21.65 30.32 20000 162 152.2 24.9 13 9.8 25817 1.911 0.15 28.32 39.65 30000 185 174.4 28.3 15.2 10.9 37948 1.879 0.15 40.93 57.3 40000 204 192.9 30.9 16.6 11.8 49875 1.867 0.15 53.43 74.81 50000 219 207.5 33.1 17.5 12.7 61652 1.873 0.15 66.29 92.81 60000 232 220.1 35 18.4 13.6 73311 1.894 0.15 79.68 111.56 70000 244 231.8 36.7 19.2 14.3 84873 1.899 0.15 92.5 129.5 80000 255 242.6 38.3 19.9 14.9 96352 1.899 0.15 105.04 147.06 CAR FERRY (In case of V=0.15m/s) V(m/s) VESSEL BERTHING ENERGY BERTHING DWT Loa Lpp B D df DPT VELOCITY Ce=0.5 Ce=0.7 Cm V(m/s) E(ton-m) E(ton-m) (ton) (m) (m) (m) (m) (m) (ton) 300 46 41.1 10.5 3.3 2.6 434 2.028 0.15 0.51 0.71 500 56 50.8 12.3 3.7 3 702 2.049 0.15 0.83 1.16 900 71 64.9 14 4.3 3.5 1219 2.049 0.15 1.43 2.01 1000 73 66.4 14.3 9.4 3.7 1346 2.088 0.15 1.61 2.26 2000 96 87.8 17.1 10.7 4.4 2580 2.06 0.15 3.05 4.27 3000 113 103.6 18.9 11.5 4.9 3776 2.061 0.15 4.47 6.25 4000 127 116.7 20.2 12.2 5.3 4947 2.067 0.15 5.87 8.21 6000 138 127 22.4 13.2 5.9 7239 1.983 0.15 8.24 11.53 10000 170 157 25.4 14.5 6.5 11694 1.913 0.15 12.84 17.98 13000 188 174 27.1 15.3 6.7 14961 1.84 0.15 15.8 22.12 15000 200 185.3 28.1 15.7 6.9 17113 1.83 0.15 17.97 25.16 CONTAINER CARRIER (In case of V=0.15m/s) V(m/s) VESSEL BERTHING ENERGY BERTHING DWT Loa Lpp B D df DPT VELOCITY Ce=0.5 Ce=0.7 Cm V(m/s) E(ton-m) E(ton-m) (ton) (m) (m) (m) (m) (m) (ton) 20000 201 186.5 27.1 15.6 10.6 30741 2.097 0.15 37 51.8 30000 237 221.5 30.7 18.4 11.6 46903 2.023 0.15 54.45 76.24 40000 263 246.9 33.5 20.7 12.4 63297 1.965 0.15 71.4 99.96 50000 280 263.6 35.8 22.6 13 79867 1.898 0.15 86.99 121.848
  • 53. Front Panel Design1.Design requirementsThe main function of front panel is to distribute the reaction forces from fender units into the ships hull, so thedesign should be suit each individual berth. The loads and stress loads exert to front panel will depend on manyfactors----the type of ship, berthing mode, characteristic of the rubber fender and tidal range etc. The design offront panel should meet the following requirements:1.1 Resistance to bending moments and shear forces1.2 Resistance to impact on part1.3 There is no deflection on front panel and face pad during the compression1.4 Suitable corrosion protection for intended environment2. The type of the structure of front panelThere are two types: open type and closed type. Regarding the open type ,it is consist of steel pad, H steel andacross steel .Closed type are consist of steel pad ,back steel and H steel3. The determination of the dimension of the structure of the front panel:The following requirement should be met in the design ∑R A P= ≤ Py A1B1 Where P= Hull Pressure (KN/m2) P= The sum of maximum reaction force of all fender (KN) B B1 A1= Valid width of front panel (m) B1= Valid length of front panel (m) Py= Hull allowable surface pressure (KN/m2) Therefore if the allowable surface is known, the dimension A1 of the front panel can be determined. 4. The allowed hull pressure can be obtained from the following table if its not available in design Ship Pattern Allowed Hull Pressure General Oil Tanker 250~350 KN/m2 ULCC & VLCC Coastal Tanker 150~250 KN/m2 Bulk ship 150~250 KN/m2 Panamax Container Ships 300~400 KN/m2 Sub-Panamax Container Ships 400~500 KN/m2 General Cargo Ship 300~600 KN/m2 Gas Carrier 100~200 KN/m2 www.lexxonco.com 49
  • 54. Face Pads Design Comer Pad 1. Type There are two types of Pads: One is flat pads,the other is corner pad, which are assembled as shown in right figure. 2. Specification Flat Pad Type Specification (Length×Width) (mm) (Thickness 30mm or 40mm) Flat Pad 500 × 500 600 × 600 600 × 450 600 × 300 450 × 450 300 × 300 etc Corner Pad 500 × 220 600 × 220 300 × 220 450 × 220 380 × 220 etc 3. Material Ultra High Molecular Weight Polyethylene (UHMW-PE) or Nylon Resin are chosen as the material for Face pads whose performance are shown in the following tables. Physical Performance Elongation Tensile Yield Compression Resistance Youngs Density at Break Strength Abrasion Friction Strength Strength of Shocks Modulus Material %≥ MPa≥ Rate Factor Mpa≥ Mpa≥ Kg/cm Kg/cm2 Nylon Resin 1.15 20 68.6 0.3 0.2 98 88.2 200 26000 PE Resin 0.9~1.0 20 24.5 0.5 0.2 19.6 19.6 75 5600~10500 Chain Design h1 h2 1.There are three types of chains L In fender system: tension chain ,weight chain and shear chain. μ 1.1 The main function of tension chain: protect the fender from the damage while under local compression. 1.2 The main function of weight chain is to support Φ1 Φ2 the weight of front panel and face panel. 1.3 The main function of shear chain is to protect the fender from damage while in shear deflection. W W50
  • 55. 2. The following items should be noted in chain design. 2.1 The chain dimension should be as exact as possible ,not too loose or too tight. 2.2 The chain can not be twisted as this reduces the load capacity. 2.3 Open link is preferred. 2.4 The initial (static) angle of the chain is important. Normally weight chains are set at a static angle of 15-25 o to vertical and shear chains are set 20-30 o to the horizontal. Any failure will cause the chain ineffective. 2.5 All the chains must be with safety factors which should be 2-3 times of the work load. 2.6 Shackle Selection The dimension of the shackle is usually the same as the dimension of the chain. but if the shackle is required to bear the same load with the chain, then thicker shackle is preferred.Selection & Calculation of Chain where, Ø1=Static angle of chain (degrees) h1=Static offset between brackets (m) h1 = LsinØ1 L=Bearing length of chain (m) h2 = h1- D h2=Dynamic offset between brackets at F (m) D=Fender compression (m) h1- D ] Ø2= asin·[ Ø2=Dynamic angle of chain (degrees) L LW=Safe Working Load of chain (tonne) μ·Σ R + W LW = μ=Friction coefficient of face pad material=0.15 for UHMW- 9.81·n·cosØ2 PE facings, typically Σ R=Combined reaction of all rubber fenders (kN) Lb = F s ·LW n=Number of chains acting together Lb=Minimum Breaking Load of chain (tonne) Fs=Factor of safety = 2~3 (typically)Rubber PerformanceLexxon Rubber Fenders are manufactured from the high quality nature rubber and other styrene ButadieneSBR based compounds to satisfy various performance requirements. Other special rubber is also availableupon customers special requirements, the main performance index are shown as below: www.lexxonco.com 51
  • 56. No. Property Testing Standard Standard Value GB/T528,I;ASTM D412 DieC;ISO37;Din 53504 1 TENSILE STRENGTH ≥ 16Mpa AS 1180.2;BS903.A2;JIS K6301 Item 3,Dumbell3 GB/T528,I;ASTM D412 DieC;ISO37;Din 53504 2 ELONGATION AT BREAK ≥ 300% AS 1180.2;BS903.A2;JIS K6301 Item 3,Dumbell3 GB/T7759,I;ASTM D395;ISO815;Din 53517 3 COMPRESSION SET (70OC, 22h, 20%) ≤ 30% AS 1683.13B;BS903.A6;JIS K6301 Item 10 GB/T531,;ASTM D2240; ISO815;Din 53505 4 HARDNESS(SHORE A) ≤ 82 DEGREE AS 1683.15.2;BS903.A26;JIS K6301 Item 5A Tester GB/T529,Crescent Test Piece; ASTM D624;ISO 34.1;Din 53507 5 TEAR RESISTANCE Die B ≥ 70N/mm AS 1683.12;BS903.A3;JIS K6301 Item 9A Test Piece A OZONE RESISTANCE (50pphm GB/T13642;ASTM D1149; ISO34.1;Din 53509 No cracking 6 at 40oCat 20% strain at for 96 hours) visible by eye AS 1683.24;BS903.A3; ABRASION RESISTANCE 7 GB9867;BS903.A9; DIN53516 ≤ 0.5CC (Method B 1000 Revolutions) BOND STRENGTH OF STEEL 8 HG4-854; BS903.A21 ≥ 7N/mm TO RUBBLE Method B VARIATION RATIO OF GB/T3512;ASTM D412 DieC;ISO37;Din 53504 ≤ 20% 70℃, 96h TENSILESTRENGTH AS 1180.2;BS903.A19;JIS K6301 Item 3,Dumbell 3 9 HOT AIR AGING VARIATION RATIO OF GB/T3512;ASTM D412 DieC;ISO37;Din 53504 ≤ 20% ELONGATION AT BREAK AS 1180.2;BS903.A19;JIS K6301 Item 3,Dumbell 3 Note: Other rubber performance can be manufactured upon user’s request. Fender Performance Testing The fender performance is determined by the absorbed energy and max. reaction force in the procedure when the fender is compressed to the rated deflection. In the performance testing procedure, the rubber fender is under direct force vertical to the fender surface, the compression speed shall be 2-8cm/min repeating three times. Unless otherwise specified, the deflection and reaction force shall be record to the nearest value to 1mm and 1.0KN (0.1ton) The unit of energy absorption is KN-m(Ton-m), determined by calculation of reaction force in rated deflection/deflection curve. The performance value of fender shall take the mean value of the 2nd and 3rd testing result. In the testing results, it is preferred that the energy absorption value shall be greater than the required energy absorption value with 10% deducted, the reaction force value shall be lower than the required reaction force value with 10% added. Record the in-house temperature in the testing52
  • 57. The Tolerance of Fender DimensionThe tolerance of fender dimension shall meet the following requirements . Name Length Width Height Tolerance +4%~-2% +4%~-2% +4%~-2% Table 2The dimension tolerance of bolt holes shall meet the following requirements. Name Diameter Hole Pitch Tolerance ± 2mm ± 4mm Table 3SamplingAll the taken sample, material testing, size and sampling number shall meet table 3. Tested Item Sample Quantity Material Take one set from the compound which is used to produce fenders Size All the fenders Specification Take one piece in ten Table 4Re-testingIn the case that the sample fail to meet the specified requirements in the material testing, two otheradditional samples shall be taken for testing. The selected samples shall meet specified requirementsand the testing results must satisfy all requirements.In performance and dimensions testing, any sample fail to meet the requirements listed in table 2, table 3and table 4, then sampling shall be 1 in 10 fenders (excluded the non-conformance fender). If any furthersample does not satisfy the specifications, all remaining products shall be tested. www.lexxonco.com 53
  • 58. Unit Conversion table VELOCITY M/s Km/h Ft/s Mph Knot 1 m/s = 1 3.600 3.281 2.237 1.944 1 km/h = 0.2778 1 0.9114 0.6214 0.5400 1 ft/s = 0.3048 1.0972 1 0.6818 0.5925 1 mph = 0.4470 1.6093 1.4667 1 0.8690 1 knot = 0.5144 1.8518 1.6877 1.1507 1 FORCE ENERGY ABSORPTION 1 kNm (kJ) 1 kN = 0.2248 kipf 1 kNm (kJ) = 1 1 kipf = 4.449 kN 1 tonne-m = 9.807 1 ft.kip = 1.356 AREA M2 Inch2 1 m2 = 1 1550 1 in2 = 0.000645 1 1 ft2 = 0.0929 144 1 yd2 = 0.8361 1296 MASS kg Tonne lb Kip 1 kg = 1 0.0010 2.205 0.002205 1 tonne = 1000 1 2205 2.2046 1Ib = 0.4536 0.000453 1 0.0010 1 kip = 453.6 0.4536 1000 154
  • 59. Friction Coefficient Material Friction Coefficient (μ) UHMW-PE to Steel (wet) ≤0.10 UHMW-PE to Steel (dry) 0.10~0.15 HD-PE to Steel 0.20~0.25 Rubber to Steel 0.50~1.00 Timber to Steel 0.30~0.50Inter national Steel Material Comparison List International China GB Germany DIN France NF Japan Sweden British BS AmericaItem Standard Organization ISO JTS SS ASTM 1 S235JR S235JR Fe360A SS400 1311 S235JR Q235A A570Gr.A (ST37-2) (E24-2) (Ss441) (E24-2) 2 Q255A St44-2 E28-2 - SM400A 1412 A709M 43B Gr.36 3 45 C45E C45E C45E4 S45C 1660 1045 Ck45 Xc48 4 35CrMo 34CrMo4 35CD4 34CrMo4 SCM435 2234 708A37 4135 5 20Mn 21Mn4 20Mn5 - SBC490 1434 080A20 1022 6 0Cr19Ni9 X5CrNi18 10 Z6CNi18.09 11 SUS304 2332 304S15 304 2333 304H X5CrNiMo17 12 2 Z6CND17.11 20 2347 316S16 7 0Cr17Ni12Mo2 SUS316 316S31 316 X5CrNiMo17 13 3 Z6CND17.12 20a 2343 www.lexxonco.com 55
  • 60. Fender System Design Condition Maximum Vessel Minimum Vessel Note VESSLE 1.Container Ship 1.Container Ship L 2.Oil Tanker 2.Oil Tanker Vessel Type For other vessel pleases specify 3.Ore Carrier 3.Ore Carrier 4.Cargo Ship 4.Cargo Ship Gross ton G.T W Dead Weight Ton D.W.T. Displacement ton T. Full D Loaded Length(L) m ft d Width(W) m ft Depth(D) m ft Full Draft(d) m ft Energy ton-m ft-kip Speed m/s ft/s Face Pressure ton/s2 kip/ft2 Safety Factor Horizontal Angle Degree BERTHING Vessel Flare Angle Degree CONDITION Vessel Roll(+ )Angle Degree Vessel max.belt size mm(eg, R200300) Soft belt or soft object assume “No” if not filled Low Contact YES NO Berthing Method 1/4 POINT OR OTHER □CONTINUOUS WHARF □NEW WHARF □CONCRETE □OPEN STYLE Structure □DOLPHIN □EXISTING WHARF □STEEL □GRAVETY □FLEXIBLE PILE Tidal Level-H.W.L m ft Tidal Level-L.W.L m ft Structure Area-Height m ft Width m ft BERTH Structure Elevation-Zenith m ft Structure Elevation -Nadir m ft Fenders Spacing m ft Allowed .R.F tf kips kn Max. Projection m ft Specified Fender If any Other Requirement56
  • 61. BOLLARDBollard Types and SelectionDouble Bitt Bollard Double Bitt Bollards are useful when high densities of mooring lines are present. The two column design allows two lines to be secured and independently released without having to compromise the mooring of an adjacent vessel. The opposing sloping columns are particularly useful for securing of spring lines as their greatest strength is parallel to the berth.Kidney Bollard Kidney Bollards offer an economical solution for installations where securing of mooring lines at high angles is not a concern. This style is not recommended when multiple mooring lines will share one bollard as there may be a possibility of an unintentional release due to the shallow lip at the top of the bollard.T-head and Staghorn Bollard While customer preference may determine the model supplied by Lexxon, there are differences amongst models that should be considered when selecting a bollard. T-head and Staghorn Bollards can handle higher line load angles than Single Bitt and Kidney shaped bollards. This feature may be of particular importance where very large changes in water level result in significant differences in line angles. Large differences in line angles may also occur at multipurpose berths where widely varying vessel sizes frequent the same berth. www.lexxonco.com 57
  • 62. Installation EMBEDDED THROUGH RETROFIT Various options exist for the installation of mooring bollards. The most common method is utilizing cast-in- place embedded anchors. Alternate methods include through bolting with cast in pipe sleeves, or epoxy-in anchors for retrofitting existing structures. Cast-in anchors or pipe sleeves should be set in place with the aid of a template or setting frame which will locate the anchors within the proper tolerances. For installations where the bollard is to be set into a recess cast into the concrete, Lexxon can supply a unique solution whereby the recess form work and anchor location template can be combined into one tool. Contact Lexxon for more information or assistance with this technique. Always follow installation procedures supplied by Lexxon when installing our bollards as each installation may be unique and require special instructions. Particular attention should be paid to the torque values recommended for each installation. Coatings Coatings are an essential part of the system as it prevents excessive corrosion that can weaken a bollard. This is particularly significant for cast steel bollards, which are less corrosion resistant than ductile iron bollards. Virtually any coating requested can be applied, but some attention to the abrasion resistance of the coating should given as the direct contact and movement of the mooring lines will result in accelerated wear of any coating.Bollards can be supplied fully painted from our factory or with an easily removable rust preventative primer that allows surface preparation and coating on-site after installation. Traditionally, cleats are supplied hot dip galvanized, but can also be supplied painted if requested.58
  • 63. Load Angle Recommendation 60○Double Bitt Bollard 40○ Re co mm Allowable Line Angle end 90○ 70○ 70○ 90 ○ ed L in e An gl e 0○ _ 10○ _ _ 70○ _ 70○ _ 90○ 90○ ○ 60 ○ 40 Re coKidney Bollard mm end able L i n e Allow Ang ed L le in e An gl e 0 ○ ○ _ 10 ○ 160 ○ 70 ○ 50T-head Bollard Re co mm end ed L a ble L i n e A Allow in e An gl e ngl e 0○ ○ 160 _ ○ 10 70○ 50○ ReStaghor n Bollard co mm end ed L in e An gle ○ 0 le L in e A l l o w ab Ang _ ○ le 10 ○ 180 www.lexxonco.com 59
  • 64. Dimensions and Capacities Double Bitt Bollard B C F I D G G A H H E C L Standard Bollard Capacity (Metric Tonnes) Metric Dimensions (mm) DBB DBB DBB DBB DBB DBB DBB DBB 20 30 50 75 100 125 150 200 A 38 45 56 62 73 80 91 98 B 673 781 942 1144 1346 1548 1683 1885 C 204 236 285 346 407 468 509 570 D 335 389 469 570 670 771 838 938 E 267 302 365 432 508 584 635 702 F 533 604 711 864 1016 1168 1270 1422 G 70 81 98 189 222 256 278 311 H 222 258 311 378 444 512 556 622 I 191 221 267 324 381 438 476 533 Bolt Size M20 M22 M30 M36 M42 M42 M48 M56 Bolt Length 300 300 450 450 600 600 750 915 Bolt Qty 8 8 8 10 10 10 10 1060
  • 65. Kidney Bollard D M C F N G H I B A J E K L C L Standard Bollard Capacity (Metric Tonnes) Metric Dimensions KB KB KB KB KB KB KB KB KB (mm) 15 20 30 50 75 100 125 150 200 A 41 51 54 60 70 79 89 95 111 B 194 216 257 264 298 340 375 410 457 C 275 330 385 413 481 550 605 660 759 D 325 390 455 488 569 650 715 780 897 E 288 345 402 431 503 575 632 690 793 F 50 60 70 75 88 100 110 120 138 G - - - - 238 272 299 326 345 H - 213 258 226 381 436 479 523 543 I 213 300 350 353 438 500 550 600 671 J 0 0 8 8 0 0 0 0 112 K - 136 154 183 146 167 184 201 283 L - - - - 218 249 274 299 345 M 250 300 350 375 438 500 550 600 690 N 125 150 175 188 219 250 275 300 345 Bolt Size M24 M24 M30 M36 M36 M42 M48 M56 M56 Bolt Length 450 450 450 600 600 600 750 915 915 Bolt Qty 4 5 5 6 7 7 7 7 8 www.lexxonco.com 61
  • 66. T-head Bollard D M C F G N H I B A J E K L C L Standard Bollard Capacity (Metric Tonnes) Metric Dimensions THB THB THB THB THB THB THB THB THB THB (mm) 10 15 20 30 50 75 100 125 150 200 A 47 52 54 57 70 80 80 87 93 97 B 199 219 240 250 308 354 413 458 492 521 C 305 335 351 366 451 518 610 671 719 762 D 381 419 438 457 564 648 762 838 899 952 E 330 363 380 396 489 561 660 726 779 826 F 44 49 51 53 66 76 89 98 105 111 G - - - - - - 305 335 360 349 H - - 232 242 298 298 496 546 586 559 I 243 267 329 343 423 463 572 629 674 694 J 103 114 0 0 0 105 0 0 0 119 K - - 152 159 196 241 195 215 231 299 L - - - - - - 291 320 343 365 M 292 321 336 351 432 497 584 643 689 730 N 189 208 217 226 279 321 377 415 445 472 Bolt Size M24 M24 M24 M30 M36 M42 M42 M48 M48 M56 Bolt Length 450 450 450 450 600 600 600 750 750 915 Bolt Qty 4 4 5 5 5 6 7 7 7 862
  • 67. Staghor n Bollard D M C F N G H I B J A K E L C L Standard Bollard Capacity (Metric Tonnes) Metric Dimensions SB SB SB SB SB SB SB SB SB SB (mm) 10 15 20 30 50 75 100 125 150 200 A 41 45 49 55 59 71 81 90 98 102 B 291 320 349 392 419 489 559 615 671 699 C 348 394 430 483 516 627 717 788 860 896 D 381 419 442 497 530 645 737 810 884 921 E 330 363 381 429 457 556 635 699 762 794 F 44 49 46 51 55 67 76 84 91 95 G - - - - - - 292 321 351 333 H - - 234 263 281 287 484 532 581 543 I 243 267 335 377 402 459 559 615 671 679 J 103 114 0 0 0 120 0 0 0 119 K - - 159 179 191 250 195 215 235 299 L - - - - - - 291 320 349 365 M 291 320 349 393 419 509 582 640 698 727 N 140 154 160 180 192 233 267 293 320 333 Bolt Size M24 M24 M24 M30 M36 M42 M42 M48 M48 M56 Bolt Length 450 450 450 450 600 600 600 750 750 915 Bolt Qty 4 4 5 5 5 6 7 7 7 8 www.lexxonco.com 6 653
  • 68. Global Head OfficeSuzhou Lexxon Equipment Co.ltd 301, Building 116 Evian Town, No. 98 East Yangcheng Rd Suzhou P.R.China Telephone: +86 512 6508 6496 Facsimile: +86 512 6508 6496 Email: info@lexxonco.com Web: www.lexxonco.com