Unit B4 Molecules Carbs


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Unit B4 Molecules Carbs

  1. 1. Unit B4: Cell Biology (Biological Molecules) <ul><li>Students who have fully met the prescribed learning outcomes (PLO’s) are able to: </li></ul><ul><ul><li>Analyze the structure and function of biological molecules in living systems, including carbohydrates, lipids, proteins and nucleic acids. </li></ul></ul><ul><ul><li>Demonstrate a knowledge of dehydration synthesis and hydrolysis as applied to organic polymers. </li></ul></ul><ul><ul><li>Differentiate among carbohydrates , lipids , proteins , and nucleic acids with respect to chemical structure. </li></ul></ul><ul><ul><li>Recognize the following molecules in structural diagrams: </li></ul></ul><ul><ul><ul><li>ATP DNA disaccharide glucose glycerol </li></ul></ul></ul><ul><ul><ul><li>Hemoglobin monosaccharide neutral fat </li></ul></ul></ul><ul><ul><ul><li>phospholipid polysaccharide (glycogen, starch and cellulose) </li></ul></ul></ul><ul><ul><ul><li>ribose RNA saturated & unsaturated fatty acids </li></ul></ul></ul><ul><ul><ul><li>steroids </li></ul></ul></ul>
  2. 2. PLO’s Continued <ul><li>Recognize the empirical formula of a monosaccharide as C n H 2n O n . </li></ul><ul><li>List the main functions of carbohydrates. </li></ul><ul><li>Differentiate among monosaccharides (e.g. glucose), disaccharides (e.g. maltose), and polysaccharides. </li></ul><ul><li>Differentiate among starch, cellulose, and glycogen with respect to function, type of bonding and level of branching. </li></ul><ul><li>Describe the location, structure and function of the following in the human body: neutral fats, steroids, and phospholipids. </li></ul><ul><li>Compare saturated and unsaturated fatty acids in terms of molecular structure. </li></ul>
  3. 3. And….more PLO’s…this is a big unit!! <ul><li>List the major functions of proteins. </li></ul><ul><li>Draw a generalized amino acid and identify the amine, acid (carboxyl), and R-groups. </li></ul><ul><li>Identify the peptide bonds in dipeptides and polypeptides. </li></ul><ul><li>Differentiate among the following levels of protein organization with respect to structure and types of bonding: primary, secondary (alpha helix, beta pleated sheet), tertiary, and quaternary (e.g. hemoglobin). </li></ul>
  4. 4. And…some more <ul><li>List the major functions of nucleic acids (RNA and DNA). </li></ul><ul><li>Name the four nitrogenous bases in ribonucleic acid (RNA) and describe the structure of RNA using the following terms: </li></ul><ul><ul><li>nucleotide (ribose, phosphate, nitrogenous base, adenine, uracil, cytosine, guanine) </li></ul></ul><ul><ul><li>linear, single stranded </li></ul></ul><ul><ul><li>sugar-phosphate backbone </li></ul></ul><ul><li>Name the four nitrogenous bases in DNA and describe the structure of DNA using the following terms: </li></ul><ul><ul><li>nucleotide (deoxyribose, phosphate, nitrogenous base, adenine, thymine, cytosine, guanine) </li></ul></ul><ul><ul><li>complementary base pairing </li></ul></ul><ul><ul><li>double helix </li></ul></ul><ul><ul><li>hydrogen bonding </li></ul></ul><ul><ul><li>sugar-phosphate backbone </li></ul></ul>
  5. 5. And finally….. <ul><li>Compare the general structural composition of DNA and RNA. </li></ul><ul><li>Relate the general structure of the ATP molecule to its role as the “energy currency” of cells. </li></ul>
  6. 6. So here we go!! <ul><li>Introduction </li></ul><ul><li> 1) Organic Molecules </li></ul><ul><ul><li>Only the molecules that contain carbon . </li></ul></ul><ul><ul><li>Usually associated with the following elements: H, O, S, N, and P . </li></ul></ul><ul><ul><li>2) Biological Molecules </li></ul></ul><ul><ul><li>These are organic molecules essential to life and are divided into four classes: </li></ul></ul><ul><ul><ul><li>Proteins, Carbohydrates, Lipids, and Nucleic acids . </li></ul></ul></ul>
  7. 7. Terms <ul><li>1.) Monomers </li></ul><ul><li>The building blocks/ unit molecules of organic/biological molecules. </li></ul><ul><li>The digestive system breaks down food into monomers through hydrolysis reactions. </li></ul><ul><li>Includes the following: amino acids , monosaccharides/glucose , fatty acids , glycerol , and nucleotides . </li></ul>
  8. 8. Hydrolysis <ul><li>SAT prepping kid #1: What's 'hydrolysis'? </li></ul><ul><li>SAT prepping kid #2: Dude, don't you play Grand Theft Auto? Hydrolysis is what makes the cars bump up and down. </li></ul><ul><li>SAT prepping kid #3: Um ... Hydrolysis is the splitting of things in water. </li></ul><ul><li>SAT prepping kid #2: Whatever. Same thing. </li></ul>
  9. 9. Examples of hydraulics…I mean hydrolysis <ul><li>1) </li></ul><ul><li>phospholipids + H 2 O  hydrolysis  glycerol + fatty acids (polymer) (monomers) </li></ul><ul><li>2) </li></ul><ul><li>maltose + H 2 O  hydrolysis  glucose + glucose </li></ul><ul><li> (polymer) (monomers) </li></ul>
  10. 10. Terms <ul><li>2.) Polymers </li></ul><ul><li>Monomers bonded together to make larger molecules through synthesis reactions. </li></ul><ul><li>Examples: </li></ul><ul><ul><li>Enzymes, collagen, keratin, anti-bodies, hormones, hemoglobin (Hb), starch, cellulose, glycogen, neutral fats (triglycerides), phospholipids, steroids, DNA ( D eoxyribo n ucleic a cid), RNA ( R ibo n ucleic a cid), ATP ( A denosine t ri p hosphate). </li></ul></ul>
  11. 11. Dehydration Synthesis <ul><li>1) </li></ul><ul><li>áá1 + áá2 + áá3  dehydration synthesis  Polymer/protein + H 2 O </li></ul><ul><li>(monomers) </li></ul><ul><li>2) </li></ul><ul><li>glucose + glucose  dehydration synthesis  Polymer/maltose + H 2 O </li></ul><ul><li>(monomers) </li></ul>
  12. 12. Quick Summary <ul><li>‘ organic polymers ’ are therefore macromolecules consisting of the elements C, H, O, N, P, and/or S. </li></ul><ul><li>Organic polymers include proteins , carbohydrates , lipids and nucleic acids . These polymers are a chain of specific monomers bonded together through dehydration synthesis reactions. </li></ul>
  13. 13. H 2 0 H 2 0 Hydrolysis Dehydration synthesis Monomers Polymer
  14. 14. Let’s jump into the polymers ! Carbohydrates <ul><li>Chemical Composition </li></ul><ul><ul><li>Elements: C, H, and O . </li></ul></ul><ul><li>Empirical Formula of a monosaccharide </li></ul><ul><ul><li>The simplest whole number ratio of atoms, i.e. C n H 2n O n or CH 2 O has a ratio of 1:2:1 of carbon, hydrogen & oxygen. </li></ul></ul><ul><ul><li>If n=6 in the empirical formula, the chemical formula for glucose (monsaccaharide) is C 6 H 12 O 6 . </li></ul></ul>http://www.coolschool.ca/lor/BI12/unit2/U02L03.htm (Video on empirical formula)
  15. 15. Functions of Carbs <ul><li>1.) Source of energy ( glucose ). </li></ul><ul><li>2.) Storage of energy ( glycogen ) in the liver and muscle cells; in plants as starch. </li></ul><ul><li>3.) Structural component found in plant cell walls ( cellulose ). </li></ul><ul><li>4.) Structural component found in DNA ( deoxyribose ) and RNA ( ribose ) </li></ul><ul><li>5.) Structural component found in glycoproteins and glycolipids ( carbohydrate chains, i.e. C 6 H 12 O 6 ) attached to cell membrane proteins & phospholipids. </li></ul>
  16. 16. Monomers <ul><li>monosaccharides </li></ul><ul><li>Glucose (C 6 H 12 O 6 ), fructose, and ribose. </li></ul><ul><li>Usually a ring form but the exact shape of the ring differs. </li></ul><ul><li>Named by the number of carbons. </li></ul>
  17. 17. Ribose is a “ pent ose” sugar because it has 5 carbons. Glucose and fructose are “ hex ose” sugars because they have 6 carbons.
  18. 19. And Some More…
  19. 20. Naming Carbohydrates <ul><li>(a) Carbohydrates containing 1 monomer = mono saccharide. </li></ul><ul><ul><li>E.g. Glucose, fructose, ribose </li></ul></ul><ul><li>(b) Carbohydrates containing 2 monosaccharides = di saccharide. </li></ul><ul><li> E.g. Maltose, sucrose. </li></ul><ul><li>(c) Carbohydrates containing 3 or more monosaccharides = poly saccharides. </li></ul><ul><li> E.g. Cellulose, starch, and glycogen. </li></ul>
  20. 21. Formation <ul><li>Formation of a carbohydrate polymer through dehydration synthesis (-H 2 O ). </li></ul><ul><ul><li>E.g. Maltose, sucrose, cellulose, starch, glycogen. </li></ul></ul><ul><li>A bond forms ( glycosidic bond ) between the joining monosaccharides/monomers. </li></ul><ul><li>Dehydration synthesis occurs in the liver, muscle and body cells. </li></ul>
  21. 22. See Page 32 in text instead.
  22. 24. Maltose/ carbohydrate polymer Glucose + Glucose Disaccharide
  23. 25. <ul><li>E.g. Glucose, fructose, ribose. </li></ul><ul><li>Glycosidic bonds between the monosaccharides are destroyed within the carbohydrate polymer. </li></ul><ul><li>Hydrolysis occurs in your mouth, small intestine and body cells. </li></ul>Formation of a carbohydrate monomer through hydrolysis (+H 2 O ).
  24. 26. Three Important Polymers of Carbohydrates <ul><li>These are polysaccharides consisting of several monosaccharides joined together by dehydration synthesis (-H 2 O ). </li></ul><ul><ul><li>E.g. Cellulose , starch , and glycogen </li></ul></ul>
  25. 27. 1.) Cellulose <ul><li>In plant cell walls for support and rigidity. </li></ul><ul><li>Consists of straight chains of glucose , but with a different linkage (β-glycosidic bond) and therefore cannot be digested by humans! </li></ul>
  26. 28. Cellulose Fibers
  27. 30. 2.) Starch <ul><li>In plants as a storage form of glucose. </li></ul><ul><li>Consists of chains of glucose (α-glycosidic bonds) with a few side branches </li></ul>
  28. 32. 3.) Glycogen <ul><li>Storage form of glucose in animals. </li></ul><ul><li>Excess glucose in the blood is stored as glycogen (dehydration synthesis) in the liver and muscles. </li></ul><ul><li>Can be broken down (hydrolysis) in the liver to glucose. </li></ul><ul><li>Consists of chains of glucose (α-glycosidic bonds) with many side branches. </li></ul>
  29. 33. Glycogen
  30. 35. End of Carbs!!