0
Recurring decimals<br />BTEOTSSBAT:<br /><ul><li>Write recurring decimals using the dot notation
Change recurring decimals into exact fractions</li></li></ul><li>Key terms<br />Decimals<br />Fractions<br />Recurring<br ...
Recurring decimals<br />= 0.3333333333333……<br />3<br /> 1<br />
Recurring decimals<br />…  it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br />...
Recurring decimals<br />…  it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br />...
Recurring decimals<br />…  it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br />...
0.12121212121212… Is another  recurring decimal<br />
0.12121212121212… Is another  recurring decimal<br />This can be written as 0.12<br />.<br />.<br />
0.12121212121212… Is another  recurring decimal<br />This can be written as 0.12<br />.<br />.<br />In the same way <br />...
0.12121212121212… Is another  recurring decimal<br />This can be written as 0.12<br />.<br />.<br />In the same way <br />...
Recurring decimals as exact fractions<br />Recurring decimals can easily be written as fractions.<br />To do this:<br /><u...
  write as many 9s as there are digits in the numerator as the bottom bit (denominator)</li></li></ul><li>Recurring decima...
Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurr...
Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurr...
Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurr...
.<br />.<br />0.12<br />
.<br />.<br />0.12<br /> 12<br />
.<br />.<br />0.12<br />2 digits<br /> 12<br />
.<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />
.<br />.<br />0.1234<br />
.<br />.<br />0.1234<br /> 1234<br />
.<br />.<br />0.1234<br /> 1234<br />4 digits<br />
.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
.<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
.<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<b...
Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<b...
Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<b...
Upcoming SlideShare
Loading in...5
×

Recurring Decimals

4,213

Published on

Published in: Technology, Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
4,213
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
23
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Recurring Decimals"

  1. 1. Recurring decimals<br />BTEOTSSBAT:<br /><ul><li>Write recurring decimals using the dot notation
  2. 2. Change recurring decimals into exact fractions</li></li></ul><li>Key terms<br />Decimals<br />Fractions<br />Recurring<br />Exact<br />
  3. 3. Recurring decimals<br />= 0.3333333333333……<br />3<br /> 1<br />
  4. 4. Recurring decimals<br />… it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br /> 1<br />
  5. 5. Recurring decimals<br />… it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br />We can write it in mathematical shorthand as:<br /> 1<br />
  6. 6. Recurring decimals<br />… it keeps going on, it will never stop – we say it recurs.<br />= 0.3333333333333……<br />3<br />We can write it in mathematical shorthand as:<br /> 1<br />.<br />0.3333333333333…… = 0.3<br />
  7. 7. 0.12121212121212… Is another recurring decimal<br />
  8. 8. 0.12121212121212… Is another recurring decimal<br />This can be written as 0.12<br />.<br />.<br />
  9. 9. 0.12121212121212… Is another recurring decimal<br />This can be written as 0.12<br />.<br />.<br />In the same way <br />0.12341234123412341234 =<br />
  10. 10. 0.12121212121212… Is another recurring decimal<br />This can be written as 0.12<br />.<br />.<br />In the same way <br />0.12341234123412341234 =<br />.<br />.<br />0.1234<br />
  11. 11. Recurring decimals as exact fractions<br />Recurring decimals can easily be written as fractions.<br />To do this:<br /><ul><li> place the recurring numbers at the top of the decimal (as the numerator)
  12. 12. write as many 9s as there are digits in the numerator as the bottom bit (denominator)</li></li></ul><li>Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />
  13. 13. Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurring <br />So the numerator is 3 <br /> 3<br />
  14. 14. Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurring <br />So the numerator is 3 <br /> 3<br /> 3<br />There is one digit in the numerator so we have one 9 in the denominator<br />9<br />
  15. 15. Recurring decimals as exact fractions<br />For example <br />Write 0.3 as an exact decimal <br />Here only one 3 is recurring <br />So the numerator is 3 <br /> 3<br /> 3<br /> 1<br />There is one digit in the numerator so we have one 9 in the denominator<br />9<br />This can then be cancelled down to be <br />3<br />
  16. 16. .<br />.<br />0.12<br />
  17. 17. .<br />.<br />0.12<br /> 12<br />
  18. 18. .<br />.<br />0.12<br />2 digits<br /> 12<br />
  19. 19. .<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />
  20. 20. .<br />.<br />0.1234<br />
  21. 21. .<br />.<br />0.1234<br /> 1234<br />
  22. 22. .<br />.<br />0.1234<br /> 1234<br />4 digits<br />
  23. 23. .<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
  24. 24. .<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
  25. 25. .<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
  26. 26. .<br />.<br />0.12<br />2 digits<br />99<br /> 12<br />.<br />.<br />0.1234<br /> 1234<br />4 digits<br />9999<br />
  27. 27. Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<br />0.4343434343 ….<br />0.765765765 ….<br />0.237823782378237…<br />
  28. 28. Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<br />0.4343434343 ….<br />0.765765765 ….<br />0.237823782378237…<br />.<br />0.1<br />0.43<br />0.765<br />0.2378<br />.<br />.<br />.<br />.<br />.<br />.<br />
  29. 29. Now try these<br />Write the following using the dot notation then convert them into exact fractions.<br />0.111111111….<br />0.4343434343 ….<br />0.765765765 ….<br />0.237823782378237…<br />.<br />0.1<br />0.43<br />0.765<br />0.2378<br />.<br />.<br />.<br />.<br /> 1<br /> 43<br /> 99<br />765<br /> 2378<br />999<br />.<br />.<br />9<br /> 9999<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×