WESPAK‐SEWetland Ecosystem Services Protocol for Southeast Alaska                   Paul Adamus, Ph.D.                    ...
Wetland DeterminationWetland DelineationWetland ClassificationWetland CategorizationWetland AssessmentEcosystem Services
Which Wetlands Are The Most Important?1. What criteria should we use to tell?   Health ?     Threat/ Risk ?     Rarity/ Lo...
Wetland Attributes That Are Important to Assess• Risk to Wetland:   • Stressors (Threats)   • Sensitivity = Resistance & R...
United States                 Oregon                          Alaska southeast                                            ...
WESPAK‐SE  Origins1983. Federal Highway Wetland Evaluation Method (applied  nationally)1986.  Juneau Wetlands Study      C...
Example of Output from a Function Assessment Method                                       Function    Value    Function   ...
Functions and Values should be assessed independently of each other.     Level of FUNCTIONS         Level of VALUES     Ac...
Uses of OutputsPRIMARY: • Compare ecosystem services of different wetlands ad hoc and use as a basis for avoidance or comp...
Variables        Indicators            < Models >           Attributes                     assessment method:         Data...
WESPAK Basic FeaturesIntended to get away from simplistic assumptions, e.g., bogs better than forested wetlands.Provides 0...
Steps for Using WESPAK-SE1. Go online and download the current version of:          Excel spreadsheet          PDF files f...
Download the Latest Version of WESPAK‐SE from Here:
Web Portal for WESPAK‐SE
Examples of Indicator Questions                                             True‐False:Acidic    Most pools within the AA ...
[spreadsheet]
Delimiting a Wetland’s Contributing Area
Delimiting the Assessment Units:View wetland maps at:  http://wetlandsfws.er.usgs.gov/wtlnds/launch.html
Delimiting the Assessment Area (AA)
Other Wetland Assessment Methods in Alaska (a few examples)1.  Models for Assessing Functions and Values of Juneau Wetland...
WET/ Juneau methods• categorical output only (High, Medium, Low, etc.)• outdated science • not calibrated outside of Junea...
Why Should the Assessment of Wetland Functions and Condition be Standardized?  • Few people are knowledgeable about all we...
Validation.  Test methods and models relative to a pre‐specified performance standard or objective.• repeatability.  The r...
Designing good methods isn’t just science … it’s architecture.… the art of designing a method that gets you the informatio...
Basic Principles of Wetland Functioning
Focus:  Ground Water                       from: Smith et al. 1995
New Groundwater Formation•   Intensity/duration of precipitation.•   Vegetation cover and evapotranspiration. •   Topograp...
National HGM Classification (Brinson 1993)HGM Class            Water Sources That Define It   Usual NWI SystemsEstuarine F...
Water Quality Functions and ValuesFunctions                    Values of the Functions (examples)Water Cooling            ...
Nitrogen Removal ‐‐ wetlands VERY important
model for Nitrate RemovalValue of Nitrate RemovalAVERAGE(MAX(Aquifer,Drink),MAX(NSource,CAnatPct,Imperv,PopDist), average ...
Organic Matter Cycling  ‐‐ contrasting values?Functions                 Values of the Functions (examples)Carbon Sequestra...
models for Nesting Waterbird Habitat    IF((TooSteep=1),0,IF((DeepSpot + Lake + LakeProx + Fringe =0),0, ELSE: average  [A...
models for Pollinator Habitataverage (PollenOnsite, PollenOffsite,NestSites)  Value of Pollinator Habitat   = average (wet...
Wetland Stressors (FieldS data form)Too much: • enrichment      hypoxia• contamination• salt• sediment• shade • water• rem...
“No Net Loss” – Factors That Could Influence Ratios for Offsite Mitigationa). Risk of Failure  Type of Mitigation  Wetland...
Wetlands Credit AccountingKey Components • Eligibility • Calculation Method • Verification • Registration • Tracking
Sample Ratios for Compensatory Mitigation in Alaska –USACE Alaska District, 2009 (Appendix B)                            T...
Grouped Service Functions and AggregatedFunctions Assessed by WESPAK-SE      Grouped Service           Aggregated Function...
Function Scores and Relative Performance – Blueberry Hill (10L, 4M, 4H)     Grouped Service         Aggregated Functions W...
Function Scores and Relative Performance –Vanderbilt (6M, 12H)      Grouped Service          Aggregated Functions Within E...
Highest Score in Each Grouped Service Function       Grouped Service Functions   Blueberry Hill   Vanderbilt  Hydrologic F...
Scatter Plot to Estimate Performance Levels (Example from ORWAP data)
Compensating for STREAM impacts: example from Montana
Other Ecosystem Services        (consensus of 12+ agencies, facilitated by Willamette Partnership)“Currencies” With Tools•...
WESPAK-SE: Wetland Functional Assessment by Paul Adamus
WESPAK-SE: Wetland Functional Assessment by Paul Adamus
WESPAK-SE: Wetland Functional Assessment by Paul Adamus
Upcoming SlideShare
Loading in...5
×

WESPAK-SE: Wetland Functional Assessment by Paul Adamus

828

Published on

Southeast Alaska Watershed Coalition; WESPAK-SE training, Haines AK. 9/14/2012

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
828
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

WESPAK-SE: Wetland Functional Assessment by Paul Adamus

  1. 1. WESPAK‐SEWetland Ecosystem Services Protocol for Southeast Alaska Paul Adamus, Ph.D. Graduate Faculty, Water Resources Graduate Program and Marine Resource Management Program Oregon State University and Adamus Resource Assessment, Inc. phone: 541‐745‐7092 adamus7@comcast.net September 12‐14, 2012 Haines, AK
  2. 2. Wetland DeterminationWetland DelineationWetland ClassificationWetland CategorizationWetland AssessmentEcosystem Services
  3. 3. Which Wetlands Are The Most Important?1. What criteria should we use to tell? Health ?   Threat/ Risk ?   Rarity/ Loss Rate?    Sensitivity?  Ecosystem Services? 2. How much information should we require? Does knowing just a wetland’s type tell us enough? Is GIS compilation of existing spatial data enough? Are one‐time field observations enough? Are advanced methods of imagery interpretation enough? Is analysis of water quality, soils, plants, etc. necessary?
  4. 4. Wetland Attributes That Are Important to Assess• Risk to Wetland: • Stressors (Threats) • Sensitivity = Resistance & Resilience to stressors• Functions: what a wetland does naturally• Values (Benefits): Values of Functions (e.g., water storage flood protection) Opportunity to perform function (upslope) Significance of function when performed (downslope) Integrity (a.k.a. Ecological Condition, Health, Quality, Naturalness) Recreation, Education, Aesthetics Production of Commodities (timber, hay, fish, etc.) Ecosystem Services = Functions + their Values
  5. 5. United States Oregon Alaska southeast Alberta  south1983, 1987 2009 2011 2012
  6. 6. WESPAK‐SE  Origins1983. Federal Highway Wetland Evaluation Method (applied  nationally)1986.  Juneau Wetlands Study  Criteria  Management Plan1987. Wetland Evaluation Technique (WET)2001‐05.  Oregon Hydrogeomorphic (HGM) methods2009. Oregon Rapid Wetland Assessment Protocol (ORWAP)2010. Wetland Ecosystem Services Protocol for the U.S. (WESPUS)2011.  WESPAK‐SE Ongoing2012. Wetland Ecosystem Services Protocol for Alberta (WESPAB)2013. Nearshore Marine WESPUS for Puget Sound  (Adamus, Houghton, Simenstad, et al.)2013. Stream Functional Assessment &  Mitigation Crediting Protocol for Oregon (ESA Inc., Skidmore, Adamus, et al.)
  7. 7. Example of Output from a Function Assessment Method Function  Value  Function  Value  Time 1 Time 1 Time 2 Time 2Water Storage & Delay 0.2 0.8 0.2 0.9Sediment Stabilization &  0.6 0.6 0.7 0.6Phosphorus RetentionNitrogen Removal 0.9 0.5 0.9 0.5Thermoregulation 0.1 0.5 0.2 0.5Primary Production 0.7 0.7 0.6 0.7Resident Fish Habitat  0.3 0.4 0.4 0.4Anadromous Fish Habitat  0 0.6 0.5 0.6Invertebrate Habitat  0.6 0.1 0.7 0.1Amphibian & Turtle Habitat 0.6 0.2 0.5 0.2Breeding Waterbird Habitat 0.8 0.4 0.7 0.4Non‐breeding Waterbird Habitat 0.2 0.1 0.3 0.1Songbird Habitat  0.5 0.7 0.6 0.7Support of Characteristic Vegetation 0.7 0.7 0.8 0.7
  8. 8. Functions and Values should be assessed independently of each other. Level of FUNCTIONS Level of VALUES Action HIGH HIGH Avoid/ Preserve LOW HIGH Enhance/ Restore ? HIGH LOW Maintain ? LOW LOW Develop w. mitigation ?
  9. 9. Uses of OutputsPRIMARY: • Compare ecosystem services of different wetlands ad hoc and use as a basis for avoidance or compensation.• Identify wetland designs that may provide greatest levels of particular ecosystem services.• Identify ways to minimise impacts to functions of a wetland.SUPPORTING:• Prioritise all wetland sites in a watershed or region.• Monitor success of individual restoration projects.• Provide inputs to wetland economic models.
  10. 10. Variables  Indicators  < Models >   Attributes assessment method: Data form + Guidance document + Models/criteriamodels. Decision rules, criteria, or equationsby which information on variables is summarizedinto a score, qualitative rating, rank, index, or other representation of anattribute.Example of a Function Assessment Scoring ModelFish Habitat Suitability = Access x (WaterQuality + Cover + Temperature)
  11. 11. WESPAK Basic FeaturesIntended to get away from simplistic assumptions, e.g., bogs better than forested wetlands.Provides 0‐10 score for 16 wetland functions and their values.Recommended by the IRT.  Oregon version required by State of Oregon.  Long history.The only field method being calibrated specifically to Southeast Alaska. (tested on 40+ sites).Tidal & Non‐tidal Wetlands.  Office & Field components.Uses ~120 indicators, but many “skip to’s.”  Takes less than 3 hours per site.Quick to learn.  No specialized expertise required.  High repeatability is anticipated (in Oregon, only 5% variation in independent scores).Strongly rooted in scientific literature and peer review.Can be applied at multiple scales: Entire wetland:  prioritization for purchase or enhanced regulatory protection. Part of a wetland: road widening residential development
  12. 12. Steps for Using WESPAK-SE1. Go online and download the current version of: Excel spreadsheet PDF files for data forms OF, FieldF, and FieldS.Print the PDF files, not the Excel spreadsheet.2. Read and thoroughly understand the Manual.3. Fill out the CovPg and Office Form (OF)• Obtain and view topo map and aerial image• Draw boundaries of assessment area (AA) and contributing area (CA)• Obtain specific info from web sites and local sources4. Visit the wetland. Fill out 2 data forms -- FieldF and FieldS. Identify plants, texture the soils, observe hydrology indicators.5. Enter the data in Excel spreadsheet.6. Process and interpret the results.
  13. 13. Download the Latest Version of WESPAK‐SE from Here:
  14. 14. Web Portal for WESPAK‐SE
  15. 15. Examples of Indicator Questions True‐False:Acidic Most pools within the AA are depressions in a peat layer of > 4 inch depth, or have 0Pools darkly-stained waters (brownish tannins), and/or a pH < 5.5. Nearby vegetation is mostly moss and/or evergreen shrubs. Choose the most applicable: N The cover of nitrogen-fixing plants (e.g., alder, sweetgale, legumes) in the AA or the percent of the Fixers AAs water edge occupied by those (whichever contains more) is: <1% or none 0 1-25% 0 >25% 0 Choose all applicable:Woody Diameter Mark all the types whose stems comprise >5% of the woody stems in the AA:Classes deciduous 1-4" diameter and >3 ft tall 0 evergreen 1-4" diameter and >3 ft tall 0 deciduous 4-9" diameter 0 evergreen 4-9" diameter 0 deciduous 9-21" diameter 0 evergreen 9-21" diameter 0
  16. 16. [spreadsheet]
  17. 17. Delimiting a Wetland’s Contributing Area
  18. 18. Delimiting the Assessment Units:View wetland maps at:  http://wetlandsfws.er.usgs.gov/wtlnds/launch.html
  19. 19. Delimiting the Assessment Area (AA)
  20. 20. Other Wetland Assessment Methods in Alaska (a few examples)1.  Models for Assessing Functions and Values of Juneau Wetlands (1987, 2007, 2010) 2.  HGM (hydrogeomorphic) methods: • Riverine and Slope River Proximal Wetlands in Coastal Southeast &  Southcentral Alaska • Flat Wetlands on Precipitation Driven and Discontinuous Permafrost in  Interior Alaska • Flat/Slope Wetland Complexes in the Cook Inlet Basin Ecoregion3. AKWAM  Montana   WET4. NatureServe Method  (Juneau)5.   Habitat Equivalency Analysis (HEA – Sitka airport project)
  21. 21. WET/ Juneau methods• categorical output only (High, Medium, Low, etc.)• outdated science • not calibrated outside of JuneauHGM (vs. WESPAK‐SE)HGM is an Approach (no national Method) • must classify wetland first. • must first develop separate method for each HGM type and region – this  requires intensive field measurements.   • does not score the relative value of any function . • assumption:  least‐altered wetlands are highest‐functioning.
  22. 22. Why Should the Assessment of Wetland Functions and Condition be Standardized? • Few people are knowledgeable about all wetland functions. • Few people can instantly recall all indicators potentially applicable to a given  wetland function. • Different people implicitly give more weight to some indicators than others. • Any reduction in arbitrariness of assessments leads to increased public  confidence in the objectivity of the results. • “Paper trail” is helpful for legal reasons. The Trade‐off:  less flexibility to accomodate the quirks of a particular site
  23. 23. Validation.  Test methods and models relative to a pre‐specified performance standard or objective.• repeatability.  The reproducibility or replicability of a method as demonstrated by the consistency (precision) of its results among independent users and across time. • sensitivity.  The ability to discriminate finely among alternative conditions or gradations of an attribute across a specified range of conditions, i.e., its responsiveness.• accuracy.  The degree to which something approaches reality.  “Reality” may be represented simply by independent judgments of experts, or by extensive and intensive robust measurements of a function or other attribute.
  24. 24. Designing good methods isn’t just science … it’s architecture.… the art of designing a method that gets you the information you’re really seeking.(1) BPJ approach (open‐ended questions):• Is the water regime optimal to support frog egg deposition?(2) A more standardized approach:• Is most of the wetland 1‐3 m deep?(3) A qualified standardized approach: • spatially‐qualified:   Are depths of at least 1m present in >50% of the unshaded portion of the  wetland? • temporally‐qualified: Is the above present during most of the period, May‐July?
  25. 25. Basic Principles of Wetland Functioning
  26. 26. Focus:  Ground Water from: Smith et al. 1995
  27. 27. New Groundwater Formation• Intensity/duration of precipitation.• Vegetation cover and evapotranspiration. • Topography and recharge zones. (Infiltration rate is called recharge.)• Extent of vadose (unsaturated) zone• Sheet flow (runoff) versus infiltration ‐ Soil texture & permeability  (coarser  = more infiltration) ‐ Soil water content & holding capacity  (high values may impede infiltration) courtesy Pennsylvania State University
  28. 28. National HGM Classification (Brinson 1993)HGM Class Water Sources That Define It Usual NWI SystemsEstuarine Fringe ocean> runoff> groundwater Estuarine> Riverine> PalustrineRiverine runoff> groundwater> precip Riverine> PalustrineSlope groundwater> runoff Palustrine> RiverineFlats precip> groundwater> runoff PalustrineDepressional runoff> groundwater> precip PalustrineLacustrine Fringe runoff> precip> groundwater Lacustrine> Palustrine
  29. 29. Water Quality Functions and ValuesFunctions Values of the Functions (examples)Water Cooling salmonid summer habitat in lowlandsWater Warming marine productivity & wintering fish habitatSediment Retention &  protect salmonid spawning areas; keep toxic Stabilization metals from mobilizingPhosphorus Retention maintain preferred food webs?Nitrate Removal maintain preferred food webs?   detoxification?
  30. 30. Nitrogen Removal ‐‐ wetlands VERY important
  31. 31. model for Nitrate RemovalValue of Nitrate RemovalAVERAGE(MAX(Aquifer,Drink),MAX(NSource,CAnatPct,Imperv,PopDist), average (Inflo,ShedPos,BuffSlope,Transport, Anad,Nsource,Nfix) 
  32. 32. Organic Matter Cycling  ‐‐ contrasting values?Functions Values of the Functions (examples)Carbon Sequestration maintain global climate;  maintain wetland soil  integrity (up to a point)Organic Matter Export critically important nutrients for food webs  (nearshore marine, streams, lakes); immobilize toxic metals; protect aquatic life from ultraviolet radiation
  33. 33. models for Nesting Waterbird Habitat IF((TooSteep=1),0,IF((DeepSpot + Lake + LakeProx + Fringe =0),0, ELSE: average  [AqPlantCov, Size, Wettype,Waterscape, average (Hydro,Struc,Produc,Lscape)] Value of Nesting Waterbird Habitat = IF((MAX(Rare,_IBA)>UniqPatch),MAX(Rare,_IBA),UniqPatch
  34. 34. models for Pollinator Habitataverage (PollenOnsite, PollenOffsite,NestSites) Value of Pollinator Habitat = average (wetuniq,rareherb)
  35. 35. Wetland Stressors (FieldS data form)Too much: • enrichment   hypoxia• contamination• salt• sediment• shade • water• removal of water• removal of vegetationThe results:• invasion by exotic species• fragmentation of habitat• loss of function & value (usually)
  36. 36. “No Net Loss” – Factors That Could Influence Ratios for Offsite Mitigationa). Risk of Failure Type of Mitigation Wetland Type & Design (“appropriateness”) Location Stressors Sensitivity of the Geomorphic Setting Long-term Financial Securityb). Acresc). Wetland Importance Functions, Values, Sensitivity Paul Adamus March 2010
  37. 37. Wetlands Credit AccountingKey Components • Eligibility • Calculation Method • Verification • Registration • Tracking
  38. 38. Sample Ratios for Compensatory Mitigation in Alaska –USACE Alaska District, 2009 (Appendix B) Type of Compensatory Mitigation Impacted Wetland or Preservation Restoration Other Waters of the and /or U.S. Enhancement LOW Category III or IV 1.5:1 1:1 MODERATE Category II or III 2:1 1:1 HIGH Category I or II 3:1 2:1
  39. 39. Grouped Service Functions and AggregatedFunctions Assessed by WESPAK-SE Grouped Service Aggregated Functions Within Each Grouped Functions Service Hydrologic Function (WS) Water storage & delay (WS) Stream Flow Support (SFS) Water Quality Functions Streamwater cooling (WC) (WQ) Streamwater warming (WW) Sediment & toxicant retention & stabilization (SR) Phosphorus retention (PR) Nitrate removal & retention (NR) Fish Support (FISH) Anadromous fish habitat (FA) Resident and other fish habitat (FR) Aquatic Support (AQ) Aquatic invertebrate habitat (INV) Amphibian habitat (AM) Waterbird feeding habitat (WBF) Waterbird nesting habitat (WBN) Terrestrial Support (TERR) Songbird, raptor & mammal habitat (SBM) Native plant diversity (PD) Pollinator habitat (POL) Carbon Sequestration (CS) Carbon Sequestration (CS) Organic matter export (OE)
  40. 40. Function Scores and Relative Performance – Blueberry Hill (10L, 4M, 4H) Grouped Service Aggregated Functions Within Each Grouped Service Blueberry Functions HillHydrologic Function (WS) Water storage & delay (WS) 2.39 L Stream Flow Support (SFS) 0 LWater Quality Functions Streamwater cooling (WC) 4.35 M(WQ) Streamwater warming (WW) 8.42 H Sediment & toxicant retention & stabilization (SR) 10.0 H Phosphorus retention (PR) 10.0 H Nitrate removal & retention (NR) 10.0 HFish Support (FISH) Anadromous fish habitat (FA) 0 L Resident and other fish habitat (FR) 0 LAquatic Support (AQ) Aquatic invertebrate habitat (INV) 4.79 M Amphibian habitat (AM) 5.26 M Waterbird feeding habitat (WBF) 0 L Waterbird nesting habitat (WBN) 0 LTerrestrial Support (TERR) Songbird, raptor & mammal habitat (SBM) 4.57 L Native plant diversity (PD) 3.48 M Pollinator habitat (POL) 3.52 LCarbon Sequestration (CS) Carbon Sequestration (CS) 4.63 L Organic matter export (OE) 0 L
  41. 41. Function Scores and Relative Performance –Vanderbilt (6M, 12H) Grouped Service Aggregated Functions Within Each Grouped Service Vanderbilt Functions Hydrologic Function (WS) Water storage & delay (WS) 3.80 M Stream Flow Support (SFS) 4.65 M Water Quality Functions Streamwater cooling (WC) 5.28 M (WQ) Streamwater warming (WW) 7.08 H Sediment & toxicant retention & stabilization (SR) 5.24 H Phosphorus retention (PR) 5.50 H Nitrate removal & retention (NR) 6.01 H Fish Support (FISH) Anadromous fish habitat (FA) 7.05 H Resident and other fish habitat (FR) 6.59 H Aquatic Support (AQ) Aquatic invertebrate habitat (INV) 6.02 H Amphibian habitat (AM) 5.84 M Waterbird feeding habitat (WBF) 4.70 H Waterbird nesting habitat (WBN) 5.31 H Terrestrial Support (TERR) Songbird, raptor & mammal habitat (SBM) 5.36 M Native plant diversity (PD) 5.22 H Pollinator habitat (POL) 7.50 H Carbon Sequestration (CS) Carbon Sequestration (CS) 5.60 M Organic matter export (OE) 6.69 H
  42. 42. Highest Score in Each Grouped Service Function Grouped Service Functions Blueberry Hill Vanderbilt Hydrologic Function (WS) 2.39 4.65 Water Quality Functions (WQ) 10 7.08 Fish Support (FISH) 0 6.69 Aquatic Support (AQ) 5.26 6.02 Terrestrial Support (TERR) 4.57 7.50 Average Overall Score 4.4 6.4
  43. 43. Scatter Plot to Estimate Performance Levels (Example from ORWAP data)
  44. 44. Compensating for STREAM impacts: example from Montana
  45. 45. Other Ecosystem Services (consensus of 12+ agencies, facilitated by Willamette Partnership)“Currencies” With Tools• Wetlands• Upland Prairies• Salmon Habitat• Stream Temperature• Nutrients http://willamettepartnership.org/
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×