Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Core sub math_att_4pythagoreantheorem

1,550
views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
1,550
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
91
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. To day we are teaching about PYTHAGOREAN THEOREM
• 2. Pythagorean Theorem Pythagoras (~580-500 B.C.) He was a Greek philosopher responsible for important developments in mathematics, astronomy and the theory of music.
• 3. 1. cut a triangle with base 4 cm and height 3 cm 4 cm 3 cm 2. measure the length of the hypotenuse Now take out a square paper and a ruler. 5 cm 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
• 4. Consider a square PQRS with sides a + b c c c c Now, the square is cut into - 4 congruent right-angled triangles and - 1 smaller square with sides c Proof of Pythagoras’ Theorem P Q R S a a a a b b b b
• 5. Area of square ABCD = ( a + b ) 2 Area of square PQRS a 2 + 2ab + b 2 = 2ab + c 2 a 2 + b 2 = c 2 a + b a + b A B C D b b a b b a a a c c c c P Q R S = 4 + c 2
• 6. Theorem states that: &quot;The area of the square built upon the hypotenuse of a right triangle is equal to the sum of the areas of the squares upon the remaining sides.&quot; The Pythagorean Theorem asserts that for a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides: a 2 + b 2 = c 2 The figure above at the right is a visual display of the theorem's conclusion. The figure at the left contains a proof of the theorem, because the area of the big, outer, green square is equal to the sum of the areas of the four red triangles and the little, inner white square: c 2 = 4(ab/2) + (a - b) 2 = 2ab + (a 2 - 2ab + b 2 ) = a 2 + b 2
• 7. Animated Proof of the Pythagorean Theorem Below is an animated proof of the Pythagorean Theorem. Starting with a right triangle and squares on each side, the middle size square is cut into congruent quadrilaterals (the cuts through the center and parallel to the sides of the biggest square). Then the quadrilaterals are hinged and rotated and shifted to the big square. Finally the smallest square is translated to cover the remaining middle part of the biggest square. A perfect fit! Thus the sum of the squares on the smaller two sides equals the square on the biggest side. Afterward, the small square is translated back and the four quadrilaterals are directly translated back to their original position. The process is repeated forever.
• 8. Animated Proof of the Pythagorean Theorem
• 9. Pythagorean Theorem Over 2,500 years ago, a Greek mathematician named Pythagoras developed a proof that the relationship between the hypotenuse and the legs is true for all right triangles . In any right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.&quot; This relationship can be stated as: and is known as the  Pythagorean Theorem a, b are legs. c is the hypotenuse (across from the right angle). There are certain sets of numbers that have a very special property.  Not only do these numbers satisfy the Pythagorean Theorem, but any multiples of these numbers also satisfy the Pythagorean Theorem For example :  the numbers 3, 4, and 5 satisfy the Pythagorean Theorem.  If you multiply all three numbers by 2  (6, 8, and 10), these new numbers ALSO satisfy the Pythagorean theorem.
• 10. If we think about a right triangle we know of course that one of the angles is a right angle. We also know that the other two angles are acute angles (why?). In fact we know that the other two angles are complementary angles. Therefore there is a relationship between the sizes of the angles that the two acute angles have measures that add up to ninety degrees. What about sides? Is there a relationship between the sides of a right triangle? We know from previous lessons that if we have the lengths of just two of the sides we can construct the triangle so it is enough to know the lengths of two sides to determine the length of the third side. We shall now try to figure out the relationship. We shall, to make it easy to communicate assume that the length of the hypotenuse is c units and that the two legs are of length a and b units. So according to the Pythagorean Theorem, the area of square A, plus the area of square B should equal the area of square C. The special sets of numbers that possess this property are called  Pythagorean Triples. The most common Pythagorean Triples are: 3, 4, 5 5, 12, 13 8, 15, 17
• The Pythagorean Theorem
•
• The Pythagorean Theorem is one of Euclidean Geometry's most beautiful theorems. It is simple, yet obscure, and is used continuously in mathematics and physics. In short, it is really cool.
• This first method is one of the ways the Pythagoreans would have proved the theorem. Unfortunately, it lacks glamour. In the following picture let ABC be a right triangle and BD be a segment drawn perpendicular to AC.
• Since the triangles are similar, the sides must be of proportional lengths.