• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Kuliah 2 sistem digital
 

Kuliah 2 sistem digital

on

  • 1,233 views

 

Statistics

Views

Total Views
1,233
Views on SlideShare
1,233
Embed Views
0

Actions

Likes
1
Downloads
32
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • @ Supeno Djanali

Kuliah 2 sistem digital Kuliah 2 sistem digital Presentation Transcript

  • PENGKODEAN LAINNYA Decimal 8,4,2,1 Excess3 8,4, - 2, - 1 Gray 0 0000 0011 0000 0000 1 0001 0100 0111 0100 2 0010 0101 0110 0101 3 0011 0110 0101 0111 4 0100 0111 0100 0110 5 0101 1000 1011 0010 6 0110 1001 1010 0011 7 0111 1010 1001 0001 8 1000 1011 1000 1001 9 1001 1 100 1111 1000
  • KODE DENGAN PENDETEKSI KESALAHAN Desimal BCD Dengan paritas genap Dengan paritas gasal 0 0000 0000 0 0000 1 1 0001 0001 1 0001 0 2 0010 0010 1 0010 0 3 0011 0011 0 0011 1 4 0100 0100 1 0100 0 5 0101 0101 0 0101 1 6 0110 0110 0 0110 1 7 0111 0111 1 0111 0 8 1000 1000 1 1000 0 9 1001 1001 0 1001 1
  • KODE HAMMING (DETEKSI DAN KOREKSI KESALAHAN) Data: 0 1 1 0 (6) d 3 d 2 d 1 d 0 Posisi : 1 2 3 4 5 6 7 p 1 p 2 d 3 p 4 d 2 d 1 d 0 p 1 p 2 0 p 4 1 1 0 p 1 bertanggung jawab pada posisi: 1,3,5,7 p 2 bertanggung jawab pada posisi: 2,3,6,7 p 4 bertanggung jawab pada posisi: 4,5,6,7 p 1 : p 1 + 0 + 1 + 0 = genap  p 1 = 1 p 2 : p 2 + 0 + 1 + 0 = genap  p 2 = 1 p 4 : p 4 + 1 + 1 + 0 = genap  p 4 = 0 Kode Hamming: 1 1 0 0 1 1 0
  • MISAL KODE HAMMING PARITAS GENAP DARI BCD ADALAH 1 1 1 0 1 1 0 , BERAPA NILAI BCD TSB? Posisi : 1 2 3 4 5 6 7 p 1 p 2 d 3 p 4 d 2 d 1 d 0 1 1 1 0 1 1 0 p 1 : 1 + 1 + 1 + 0 = ganjil  salah p 2 : 1 + 1 + 1 + 0 = ganjil  salah p 4 : 0 + 1 + 1 + 0 = genap  benar Yang benar: 1 1 0 0 1 1 0 Data : 0110 (6) Bit yang salah adalah posisi: 3 ????
  • Gerbang Logika OUT IN INVERTER Ada 16 kemungkinan fungsi F F0 – F15 Truth Table IN OUT 0 1 1 0 X F Y X Y 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 X AND Y X Y X XOR Y X OR Y X = Y NOT Y NOT X X NAND Y NOT (X AND Y) 1 X NOR Y NOT (X OR Y)
  • Gerbang Logika
  • Exclusive OR (NOR)
  • Teori Aljabar Boole (1) Elementer 1. x + 0 = x 1d. x . 1 = x 2. x + x’ = 1 2d. x . x’ = 0 3. x + x = x 3d. x . x = x 4. x + 1 = 1 4d. x . 0 = 0 5, (x’)’ = x Commutative 6. x + y = y + x 6d. x . y = y . x Assocoative 7. x+(y+z)=(x+y)+z 7d. x(yz)=(xy)z Distributive 8. x(y+z)=xy+xz 8d. x+(yz)=(x+y)(x+z) Teori De Morgan 9. (x + y)’ = x’y’ 9d. (xy)’ = x’ + y’ Absorption 10. x + xy = x 10d. x(x+y) = x
  • Teori Aljabar Boole (2) Secara umum teori De Morgan dapat ditulis sebagai: F’(X1,X2,…,Xn,0,1,+, ◦) = F(X1’,X2’,…,Xn’,1,0, ◦,+) Dualitas suatu pernyataan logika didapatkan dengan mengganti 1 dengan 0, 0 dengan 1, + dengan ◦, ◦ dengan +, dengan semua variabel tetap F(X1,X2,…,Xn,0,1,+, ◦) ⇔ F(X1,X2,…,Xn,1,0, ◦,+)
  • Bukti teori De Morgan: (x + y)’ = x’y’ Dengan tabel kebenaran x y x + y (x+y)’ x’ y’ x’y’ 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Dengan diagram Venn x x’y’ (x+y)’ y
  • Contoh penyederhanaan F = ABC + A’B’C + A’BC + ABC’ + A’B’C’ G = [(BC’ + A’D)(AB’ + CD’)]’ = (BC’ + A’D)’ + (AB’ + CD’)’ = (BC’)’(A’D)’ + (AB’)’(CD’)’ = (B’+C)(A+D’) + (A’+B)(C’+D) = AB’+AC+B’D’+CD’+A’C’+A’D+BC’+BD = 1 (dari mana???) = (AB + A’B’)C + BC + (AB + A’B’)C’ = (A ⊕B)’ + BC
  • Bentuk kanonis Sum Of Product (SOP) & Product Of Sum (POS) Dalam bentuk SOP: F1=A’BC+AB’C’+AB’C+ABC’+ABC = ∑(m3,m4,m5,m6,m7) = ∑(3,4,5,6,7) Dalam bentuk POS: F1=(A+B+C)(A+B+C’)(A+B’+C) = Л (M0,M1,M2) = Л (0,1,2) Des A B C F1 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1
  • Tuliskan bentuk SOP & POS Bentuk SOP: P = A’B’C’ + A’B’C + AB’C’ +AB’C = ∑(m0,m1,m4,m5) = ∑(0,1,4,5) Bentuk POS: P = (A+B’+C)(A+B’+C’)(A’+B’+C)(A’+B’+C’) = Л (M2,M3,M6,M7) = Л (2,3,6,7) 0 0 1 1 0 0 1 1 P 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 C B A
  • Pemetaan antar SOP & POS
  • Bentuk SOP: P = A’B’C’ + A’B’C + AB’C’ +AB’C = A’B’ + AB’ = B’ P = (A+B’+C)(A+B’+C’)(A’+B’+C)(A’+B’+C’) = ( A+AB’+AC’+AB’ +B’+B’C’+ AC +B’C) * ( A’+A’B’+A’C’+A’B’ +B’C’+ A’C +B’C) = (A+B’)(A’+B’) = AA’ + AB’ + A’B’ + B’ = B’
  • Standard SOP & POS Sum of Product (SOP) Product of Sum (POS)
  • Bentuk Nonstandar Bentuk Nonstandar (tidak dalam SOP maupun POS) Bentuk SOP
  • Implementasi Implementasi tiga level vs. Implementasi dua level Implementasi dua level lebih disukai karena alasan delay
  • Penyederhanaan dengan menggunakan Peta-K (Karnaugh Map) Peta-K dengan 2 variabel x y 0 0 1 1 x y 0 0 1 1 x y 0 0 1 1 x’y + xy = (x’ + x)y = y m0 m1 m2 m3 x’y’ x’y xy’ xy 1 1
  • Peta-K dengan 3 & 4 variabel Peta-K dengan 3 variabel F=A’B’C’+B’CD’+A’BCD’+AB’C’= x yz 0 1 00 01 11 10 x yz 0 1 00 01 11 10 Peta-K dengan 4 variabel F1= ∑(3,4,5,6,7) = x + yz x yz A C B D B’C’ B’D’ A’CD’ = B’C’+B’D’+A’CD’ x’y’z’ x’y’z x’yz x’yz’ xy’z’ Xyz’ xyz xyz’ 1 1 1 1 1 1 1 1 1 1 1 1
  • Peta-K dengan 5 & 6 variabel Peta-K dengan 5 variabel F(A,B,C,D,E)= ∑( 0,2,4,6,9,11,13,15,17,21,25,27,29,31) = BE+AD’E+A’B’E’ AB CDE Untuk peta-K dengan 6 variabel, baca buku teks 0 1 3 2 6 7 5 4 8 9 11 10 14 15 13 12 24 25 27 26 30 31 29 20 16 17 19 18 22 23 21 20 A D D C E E B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A D D C E E B
  • PEKERJAAN RUMAH
    • Dari buku Morris Mano: soal no. 2.5; 2.6; 2.7; 2.11; 2.13; 2.14
    • Idem soal no. 3.4; 3.5; 3.7; 3.9