### SlideShare for iOS

by Linkedin Corporation

FREE - On the App Store

- Total Views
- 612
- Views on SlideShare
- 612
- Embed Views

- Likes
- 0
- Downloads
- 6
- Comments
- 0

No embeds

Uploaded via SlideShare as Microsoft Word

© All Rights Reserved

- 1. NATIONAL COLLEGE OF SCIENCE AND TECHNOLOGY Amafel Building, Aguinaldo Highway Dasmariñas City, Cavite Experiment No. 3 ACTIVE LOW-PASS and HIGH-PASS FILTERSCauan, Sarah Krystelle P. July 14, 2011Signal Spectra and Signal Processing/BSECE 41A1 Score: Engr. Grace Ramones Instructor
- 2. OBJECTIVES: Plot the gain-frequency response and determine the cutoff frequency of a second- order (two-pole) low-pass active filter. Plot the gain-frequency response and determine the cutoff frequency of a second- order (two-pole) high-pass active filter. Determine the roll-off in dB per decade for a second-order (two-pole) filter. Plot the phase-frequency response of a second-order (two-pole) filter.
- 3. SAMPLE COMPUTATIONS:Step 3 Computation of voltage gain based on measured value: AdB = 20 log A 4.006 = 20 log AStep 4 Computation of voltage gain based on circuit:Q in Step 4 Percentage DifferenceStep 6 Computation of cutoff frequency:Q in Step 6 Percentage DifferenceQ in Step 7 Roll –Off -36.146 dB – 0.968 dB = -37.106 dBStep 14 Calculated the actual voltage gain (A) from the dB gain A = 1.54
- 4. Step 15 Computation of expected voltage gain based on circuit:Q in Step 15 Computation of percentage difference:Step 17 Computation of expected cutoff frequency:Q in Step 17 Computation of percentage difference:Q in Step 18 Roll –Off -36.489 dB – 0.741 dB = -37.23 dB
- 5. DATA SHEET:MATERIALSOne function generatorOne dual-trace oscilloscopeOne LM741 op-ampCapacitors: two 0.001 µF, one 1 pFResistors: one 1kΩ, one 5.86 kΩ, two 10kΩ, two 30 kΩTHEORY In electronic communications systems, it is often necessary to separate a specificrange of frequencies from the total frequency spectrum. This is normally accomplishedwith filters. A filter is a circuit that passes a specific range of frequencies while rejectingother frequencies. Active filters use active devices such as op-amps combined with passiveelements. Active filters have several advantages over passive filters. The passive elementsprovide frequency selectivity and the active devices provide voltage gain, high inputimpedance, and low output impedance. The voltage gain reduces attenuation of the signalby the filter, the high input prevents excessive loading of the source, and the low outputimpedance prevents the filter from being affected by the load. Active filters are also easy toadjust over a wide frequency range without altering the desired response. The weakness ofactive filters is the upper-frequency limit due to the limited open-loop bandwidth (funity) ofop-amps. The filter cutoff frequency cannot exceed the unity-gain frequency (funity) of theop-amp. Ideally, a high-pass filter should pass all frequencies above the cutoff frequency(fc). Because op-amps have a limited open-loop bandwidth (unity-gain frequency, funity),high-pass active filters have an upper-frequency limit on the high-pass response, making itappear as a band-pass filter with a very wide bandwidth. Therefore, active filters must beused in applications where the unity-gain frequency (funity) of the op-amp is high enough sothat it does not fall within the frequency range of the application. For this reason, activefilters are mostly used in low-frequency applications. The most common way to describe the frequency response characteristics of a filteris to plot the filter voltage gain (Vo/Vin) in dB as a function of frequency (f). The frequencyat which the output power gain drops to 50% of the maximum value is called the cutofffrequency (fc). When the output power gain drops to 50%, the voltage gain drops 3 dB(0.707 of the maximum value). When the filter dB voltage gain is plotted as a function offrequency using straight lines to approximate the actual frequency response, it is called aBode plot. A Bode plot is an ideal plot of filter frequency response because it assumes thatthe voltage gain remains constant in the passband until the cutoff frequency is reached, andthen drops in a straight line. The filter network voltage gain in dB is calculated from theactual voltage gain (A) using the equation AdB = 20 log Awhere A = Vo/Vin.
- 6. An ideal filter has an instantaneous roll-off at the cutoff frequency (fc), with fullsignal level on one side of the cutoff frequency. Although the ideal is not achievable, actualfilters roll-off at -20 dB/decade or higher depending on the type of filter. The -20dB/decade roll-off is obtained with a one-pole filter (one R-C circuit). A two-pole filter hastwo R-C circuits tuned to the same cutoff frequency and rolls off at -40 dB/decade. Eachadditional pole (R-C circuit) will cause the filter to roll off an additional -20 dB/decade. In aone-pole filter, the phase between the input and the output will change by 90 degrees overthe frequency range and be 45 degrees at the cutoff frequency. In a two-pole filter, thephase will change by 180 degrees over the frequency range and be 90 degrees at the cutofffrequency. Three basic types of response characteristics that can be realized with most activefilters are Butterworth, Chebyshev, and Bessel, depending on the selection of certain filtercomponent values. The Butterworth filter provides a flat amplitude response in thepassband and a roll-off of -20 dB/decade/pole with a nonlinear phase response. Because ofthe nonlinear phase response, a pulse wave shape applied to the input of a Butterworthfilter will have an overshoot on the output. Filters with a Butterworth response arenormally used in applications where all frequencies in the passband must have the samegain. The Chebyshev filter provides a ripple amplitude response in the passband and a roll-off better than -20 dB/decade/pole with a less linear phase response than the Butterworthfilter. Filters with a Chebyshev response are most useful when a rapid roll-off is required.The Bessel filter provides a flat amplitude response in the passband and a roll-off of lessthan -20 dB/decade/pole with a linear phase response. Because of its linear phaseresponse, the Bessel filter produces almost no overshoot on the output with a pulse input.For this reason, filters with a Bessel response are the most effective for filtering pulsewaveforms without distorting the wave shape. Because of its maximally flat response in thepassband, the Butterworth filter is the most widely used active filter. A second-order (two-pole) active low-pass Butterworth filter is shown in Figure 3-1. Because it is a two-pole (two R-C circuits) low-pass filter, the output will roll-off -40dB/decade at frequencies above the cutoff frequency. A second-order (two-pole) activehigh-pass Butterworth filter is shown in Figure 3-2. Because it is a two-pole (two R-Ccircuits) high-pass filter, the output will roll-off -40 dB/decade at frequencies below thecutoff frequency. These two-pole Sallen-Key Butterworth filters require a passband voltagegain of 1.586 to produce the Butterworth response. Therefore,andAt the cutoff frequency of both filters, the capacitive reactance of each capacitor (C) is equalto the resistance of each resistor (R), causing the output voltage to be 0.707 times the input
- 7. voltage (-3 dB). The expected cutoff frequency (fc), based on the circuit component values,can be calculated from wherein, FIGURE 3 – 1 Second-order (2-pole) Sallen-Key Low-Pass Butterworth Filter FIGURE 3 – 2 Second-order (2-pole) Sallen-Key High-Pass Butterworth Filter
- 8. PROCEDURELow-Pass Active FilterStep 1 Open circuit file FIG 3-1. Make sure that the following Bode plotter settings are selected: Magnitude, Vertical (Log, F = 10dB, I = -40dB), Horizontal (Log, F = 100 kHz, I = 100 Hz).Step 2 Run the simulation. Notice that the voltage gain has been plotted between the frequencies of 100 Hz and 100 kHz by the Bode plotter. Draw the curve plot in the space provided. Next, move the cursor to the flat part of the curve at a frequency of approximately 100 Hz and measure the voltage gain in dB. Record the dB gain on the curve plot. AdB f dB gain = 4.006 dBQuestion: Is the frequency response curve that of a low-pass filter? Explain why. The response curve shown above is a low-pass filter response. I said so because low-pass filter only allows the frequencies below the cutoff frequency and block the frequencies above the cutoff frequency.Step 3 Calculate the actual voltage gain (A) from the measured dB gain. A = 1.586
- 9. Step 4 Based on the circuit component values in Figure 3-1, calculate the expected voltage gain (A) on the flat part of the curve for the low-pass Butterworth filter. A = 1.586Question: How did the measured voltage gain in Step 3 compared with the calculated voltage gain in Step 4? There is no difference between the measured voltage gain and the calculated voltage gain.Step 5 Move the cursor as close as possible to a point on the curve that is 3dB down from the dB gain at the low frequencies. Record the dB gain and the frequency (cutoff frequency, fc) on the curve plot. dB gain= 0.968 dB fc = 5.321 kHzStep 6 Calculate the expected cutoff frequency (fc) based on the circuit component values. fc = 5.305 kHzQuestion: How did the calculated value for the cutoff frequency compare with the measured value recorded on the curve plot for the two-pole low-pass active filter The difference between the calculated cutoff frequency and the measured value has 0.30%. They are almost equal.Step 7 Move the cursor to a point on the curve where the frequency is as close as possible to ten times fc. Record the dB gain and frequency (fc) on the curve plot. dB gain = -36.146 dB fc = 53.214 kHz
- 10. Questions: Approximately how much did the dB gain decrease for a one-decade increase in frequency? Was this what you expected for a two-pole filter? The dB gain decrease approximately 37.106 dB for a one-decade increase in frequency I am expecting 40 dB decrease per decade increase in frequency.Step 8 Click Phase on the Bode plotter to plot the phase curve. Change the vertical axis initial value (I) to 180 degrees and the final value (F) to 0 degree. Run the simulation again. You are looking at the phase difference (θ) between the filter input and output wave shapes as a function of frequency (f). Draw the curve plot in the space provided. θ fStep 9 Move the cursor as close as possible on the curve to the cutoff frequency (fc). Record the frequency (fc) and phase (θ) on the curve. fc = 5.321 kHz θ = -90.941Question: Was the phase shift between input and output at the cutoff frequency what you expected for a two-pole low-pass filter? Phase shift between input and output at the cutoff frequency is what I expected because the phase at cutoff frequency is 90o
- 11. Step 10 Click Magnitude on the plotter. Change R to 1 kΩ in both places and C to 1 pF inboth places. Adjust the horizontal final frequency (F) on the Bode plotter to 20 MHz. Run thesimulation. Measure the cutoff frequency (fc) and record your answer. fc = 631.367 kHzStep 11 Based on the new values for resistor R and capacitor C, calculate the new cutoff frequency (fc). fc = 159.1549 MHzQuestion: Explain why there was such a large difference between the calculated and themeasured values of the cutoff frequency when R = 1kΩ and C = 1pF. Hint: The value of theunity-gain bandwidth, funity, for the 741 op-amp is approximately 1 MHz. There is a large difference between the calculated and measured value because the cutoff frequency exceed the unity-gain frequency of the op- amp. And op-amp has a limited open-loop bandwidth that causes the active filter to have an upper-frequency limit.
- 12. High-Pass Active FilterStep 12 Open circuit file FIG 3-2. Make sure that the following Bode plotter settings are selected: Magnitude, Vertical (Log, F = 10dB, I = -40dB), Horizontal (Log, F = 100 kHz, I = 100 Hz).Step 13 Run the simulation. Notice that the voltage gain has been plotted between the frequencies of 100 Hz and 100 kHz by the Bode plotter. Draw the curve plot in the space provided. Next, move the cursor to the flat part of the curve at a frequency of approximately 100 kHz and measure the voltage gain in dB. Record the dB gain on the curve plot. AdB f dB gain = 3.776 dBQuestion: Is the frequency response curve that of a high-pass filter? Explain why. The response curve shown above is a high-pass filter response. I said so because high-pass filter only allows the frequencies above the cutoff frequency and block the frequencies below the cutoff frequency.Step 14 Calculate the actual voltage gain (A) from the measured dB gain. A = 1.54
- 13. Step 15 Based on the circuit component values in Figure 3-2, calculate the expected voltage gain (A) on the flat part of the curve for the high -pass Butterworth filter. Av = 1.586Question: How did the measured voltage gain in Step 14 compare with the calculated voltage gain in Step 15? The measured voltage gain and the calculated voltage gain has a percentage difference of 2.98%. Yet, it is still approximately the equal.Step 16 Move the cursor as close as possible to a point on the curve that is 3dB down from the dB gain at the high frequencies. Record the dB gain and the frequency (cutoff frequency, fc) on the curve plot. dB gain = 0.741 dB fc = 5.156 kHzStep 17 Calculate the expected cutoff frequency (fc) based on the circuit component values. fc = 5.305 kHzQuestion: How did the calculated value of the cutoff frequency compare with the measured value recorded on the curve plot for the two-pole low-pass active filter? They are almost equal. The percentage difference between the calculated and measured value is 2.89%Step 18 Move the cursor to a point on the curve where the frequency is as close as possible to one-tenth fc. Record the dB gain and frequency (fc) on the curve plot. dB gain = -36.489 dB fc = 515.619 HzQuestions: Approximately how much did the dB gain decrease for a one-decade decrease in frequency? Was this what you expected for a two-pole filter? It decreases 37.23 dB per decade. It is approximate -40 dB per decade so it was what I am expecting.
- 14. Step 19 Change the horizontal axis final setting (F) to 50 MHz on the Bode plotter. Run the simulation. Draw the curve plot in the space provided. AdB fStep 20 Measure the upper cutoff frequency (fc2) and record the value on the curve plot. fc2 = 92.595 kHzQuestion: Explain why the filter frequency response looked like a band-pass response when frequencies above 1 MHz were plotted. Hint: The value of the unity-gain bandwidth, funity, for the 741 op-amp is approximately 1 MHz The filter frequency response appears like a band-pass filter because the cutoff frequency exceeds the unity-gain frequency of the active filter. The active filters have an upper frequency limit on the high-pass response.
- 15. CONCLUSION After performing the experiment, I conclude that active filter uses op-amps and otherpassive elements. This filter has several advantages over the passive filter such as providing afrequency selectivity, voltage gain, high input impedance, and low output impedance. However,the weakness of this kind of filter is having an upper-frequency limit because of the limitedopen-loop funity of the op-amp. I also notice that the frequency response curve of passive and active filters appear thesame except in high-pass response. In high-pass response, the frequency looked like a band-pass filter because of the funity of the op-amp. I also notice that two-pole filter which has two R-C circuits rolls-off at approximately -40dB per decade. Furthermore, this filter has a phase frequency response of 90 degrees at thecutoff frequency and 180 degrees over the frequency range. Lastly, the circuit we have performed is a Butterworth filter because it has a passbandvoltage gain of 1.586. That is why the curve has a flat amplitude response in the passband andthen rolls-off at approximately -40dB per decade.

Full NameComment goes here.