Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

Like this? Share it with your network

Share

RIN case studies in the life sciences: findings on data management

on

  • 1,125 views

Presentation by Aaron Griffiths, Research Officer at the Research Information Network at the Embedding Institutional Data Curation Services in Research (EIDSCR) workshop on 14 October 2009. ...

Presentation by Aaron Griffiths, Research Officer at the Research Information Network at the Embedding Institutional Data Curation Services in Research (EIDSCR) workshop on 14 October 2009.

http://eidcsr.blogspot.com/2009/09/eidcsr-workshop-on-14-october.html

Statistics

Views

Total Views
1,125
Views on SlideShare
1,125
Embed Views
0

Actions

Likes
0
Downloads
9
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

RIN case studies in the life sciences: findings on data management Presentation Transcript

  • 1. RIN case studies in the life sciences:  findings on data management Aaron Griffiths 14 October 2009
  • 2. Forthcoming  RIN/British Library report:  Case studies in the life sciences: Understanding  researchers’ information needs and uses (November 2009) Research by ISSTI and DCC (Edinburgh)
  • 3. RIN case studies aim:  “To enhance understanding of how researchers  locate, evaluate, organise, manage, transform  and communicate information sources as an  integrated part of the research process, with a  view to identifying how information‐related  policy, strategy and practice might be  improved to meet the needs of researchers.”
  • 4. Case study research teams 1. Animal genetics and animal disease genetics 2. Transgenesis in the chick and development  of the chick embryo 3. Epidemiology of zoonotic diseases 4. Neuroscience 5. Systems biology 6. Regenerative medicine 7. Botanical curation
  • 5. Research methods • Probes (information lab books) • Interviews • Focus groups
  • 6. Information flow maps
  • 7. Animal Genetics and Animal Disease Genetics 
  • 8. Transgenesis in the chick and development of  the chick embryo
  • 9. Botanical curation
  • 10. Getting to grips with managing data 1. There is little evidence of planned data  management as standard practice 2. Confusion over terms has implications for  practice 3. Effective curation needs human infrastructure,  and the more local the better
  • 11. A culture of sharing – with caveats • Ethos of sharing in the life sciences • Different modes of sharing
  • 12. Constraints on sharing • Barriers to sharing and re‐using:  – career imperatives – protectiveness – confidentiality – lack of trust in cyberspace • Provisos for sharing
  • 13. Needs for data services & support • Most groups need more locally‐available  support on handling data • Challenges include data volumes and  standardisation requirements • Funding concerns over data curation
  • 14. Conclusions • Gulfs between practices and e‐science visions • Diversity of research and information flows • Policy to be informed by researchers’ practices
  • 15. Recommendations: funders • Engage further with researchers to identify constraints  and develop more experimental policies to build upon  existing information sharing • Define more closely which data and information they  expect to be shared, to what ends and under what  circumstances • Monitor the development of hybrid information  support roles • Assess national requirements for skills in research data  curation and support
  • 16. Recommendations: HEIs • Attend to features of current professional  formation processes ‐ including training and  career development, and professional  recognition and reward structures ‐ which  currently inhibit the effective use and  exchange of information
  • 17. Recommendations: library and  information service providers • Work towards better portals and tools to  identify information resources • Work towards developing easy‐to‐use, tool‐ based support for researchers to undertake  their own data curation • More active engagement between data  producers and curators
  • 18. aaron.griffiths@rin.ac.uk