• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Friday talk   apache solr 101 - santiago lizardo
 

Friday talk apache solr 101 - santiago lizardo

on

  • 1,659 views

These slides were the ones I used last year to present a Friday Talk at my company.

These slides were the ones I used last year to present a Friday Talk at my company.
We are using Sphinx but I'm a Solr lover. :)

Statistics

Views

Total Views
1,659
Views on SlideShare
1,655
Embed Views
4

Actions

Likes
1
Downloads
29
Comments
1

1 Embed 4

http://wiki.redtonic 4

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • Hi Santiago,

    Thanks for the Solr presentation. It was a nice read. I have shared my experience on deploying & configuring solrcloud (v4.x) on AWS in this article. I thought it will be useful for the readers of your slideshare post.

    http://harish11g.blogspot.in/2013/03/Apache-Solr-cloud-on-Amazon-EC2-AWS-VPC-implementation-deployment.html

    http://harish11g.blogspot.in/2013/03/Configuring-installing-Apache-Solrcloud-solr4.x-on-Amazon-VPC-EC2-AWS.html

    Thanks
    Harish Ganesan
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Friday talk   apache solr 101 - santiago lizardo Friday talk apache solr 101 - santiago lizardo Presentation Transcript

    • Santiago Lizardo Friday Talk (15/07/2011) 101(now in bad English!)
    • Search server
    • Why not a RDBMS?
    • SELECT *FROM postWHERE topic LIKE „%foobar%‟ OR author LIKE „%foobar%‟ORDER BY id DESC
    • SELECT *FROM articlesWHERE MATCH (title, body) AGAINST ( +MySQL -YourSQL IN BOOLEAN MODE )
    • Conclusion so far RDBMS aren‟t designed for searching.
    • highlightingfast spellcheckerreplication similars open faceting flexible
    • EZ installation• Download and install Tomcat• Download the Solr WAR and copy it to webapps• Define the Solr home variable -Dsolr.solr.home=… confcatalinalocalhostsolrconfig. xml
    • Directory layout• ${solr.home} – conf • schema.xml • solrconfig.xml – data – logs – bin
    • Solrconfig.xml• Lucene indexing parameters• Cache settings• Request handler configuration• HTTP cache settings• Search components, response writers, query parsers
    • Solr Schema• Lucene has no notion of schema – Sorting: string vs numeric – No ranges• Defines fields, types and properties• Defines unique key field, default search field• schema.xml – Defines types used in the webapp – Defines fields and types – Define copyfields
    • Solr data model• Solr maintains a collection of documents• A document is a collection of fields & values• A field can occur multiple times in a document• Documents are inmutable – They can be deleted, and a new version added, however.
    • Solr data model• A document is not a database row!• A solr Index store only ONE kind of document definition• A document has typed properties: string, date, integer• Static definition or dynamic type• May be indexed or stored• De-normalize your database into a structured document optimized for the search requirements
    • Types• How the words are split? (whitespace, punctuaction) CIA != C.I.A?• Stemming• Case folding
    • Multivalued field• The property is similar to an array• Neat solution for storing a set of categories linked to a product or permissions linked to a document
    • copyField• Copies one field to another at index time• Use case: Analyze same field different ways – Copy into a field with a different analyzer – Boost exact-case, exact-punctuation matches – Language translations, thesaurus, soundex• Use case 2: Index multiple fields into single searchable field
    • Copy fields• Two main uses – To concatenate fields – To analyze a field in two different ways
    • Adding data (indexing)An HTTP POST request to /update<add> <doc> <field name=“title”>scooter</field> <field name=”price”>42.30</field> </doc></add>
    • Querying• HTTP request• http://localhost:8080/co mix/select/?q=data&ind ent=on
    • Command line with curl• curl URL -H “Content-type: text/xml” --data- binary “<commit />”
    • Query parameters• Query arguments for HTTP GET/POST to /select – “q” the query – “start” (0) offset – “rows” (10) number of docs – “fl” (*) fields to return – “qt” (standard) query type, maps to query handler – “df” (schema) default field to search – “qt” query type (response writer)
    • Response writers• XML (Standard)• Python• PHP• JSON (output)• Ruby• XSLT
    • &start=0 (default 0)&rows=10 (default 10)
    • Solr Query syntax• Similar to Lucene• Include (+), exclude (-)• Field-specific searching: <fieldname>:<fieldvalue>• Wildcard searching: “*” or “?” Ip?d Belk* *deo
    • Solr Query syntax• paris• city:paris• title:”The Right Way” AND text:go• price:[100 TO 300]• -type:sale• te?t• theat*• te*t• test~
    • Solr Query syntax• Range searching – Timestamp:[2006-01-01 TO *]• Proximity searching: “~” – “video ipod”~3 (up to 3 words apart)• Fuzzy searches: “~” – Ipod~ (will find ipod and ipods) – Belkin~0.8 (will find words close spellings)
    • Debugging query• Add &debugQuery=on to request params• &debugQuery=true is your friend• Returns scoring information• Returns parsed form of query• Includes parsed query, explanations, and• search component timings in response
    • Deleting data• Delete by id – <delete><id>1</id></delete>• Delete by query – <delete><query>city:paris</query></delete>
    • Commiting• Nothing shows up in the index until you commit<commit />• /solr/update<optimize /> sames as commit, merges all index segments
    • Rollback• <rollback/> to last commit point
    • Solr clients (APIs)• HTTP GET/POST (curl or any other HTTP client)• SolrJ (embedded or HTTP - Java)• Ruby: solr-ruby, RSolr• Python• C++• Solrsharp• PHP!
    • • Roll your own classes – Not difficult, it’s REST after all – Some Curl, XML, Json or native PHP array parsing• Using existing libraries – PECL – http://us.php.net/manual/en/book.solr.php – Solr-php-client (follows ZF Coding Standards) – Ez Components ezcSearch
    • include "bootstrap.php";$options = array( hostname => SOLR_SERVER_HOSTNAME, login => SOLR_SERVER_USERNAME, password => SOLR_SERVER_PASSWORD, port => SOLR_SERVER_PORT,);$client = new SolrClient($options);$doc = new SolrInputDocument();$doc->addField(id, 334455);$doc->addField(cat, Software);$doc->addField(cat, Lucene);$updateResponse = $client->addDocument($doc);print_r($updateResponse->getResponse());
    • include "bootstrap.php";$options = array( hostname => SOLR_SERVER_HOSTNAME, login => SOLR_SERVER_USERNAME, password => SOLR_SERVER_PASSWORD, port => SOLR_SERVER_PORT,);$client = new SolrClient($options);$updateResponse = $client->deleteByQuery(‘city:Barcelona’);print_r($updateResponse->getResponse());
    • include "bootstrap.php";$options = array( hostname => SOLR_SERVER_HOSTNAME, login => SOLR_SERVER_USERNAME, password => SOLR_SERVER_PASSWORD, port => SOLR_SERVER_PORT,);$client = new SolrClient($options);$query = new SolrQuery();$query->setQuery(lucene);$query->setStart(0);$query->setRows(50);$query->addField(cat)->addField(features)->addField(id)->addField(timestamp);$query_response = $client->query($query);$response = $query_response->getResponse();print_r($response);
    • SolrJSolrServer solr = new CommonsHttpSolrServer( new URL("http://localhost:8983/solr"));SolrInputDocument doc = new SolrInputDocument();doc.addField("id", "EXAMPLEDOC01");doc.addField("title", "NOVAJUG SolrJ Example");solr.add(doc);solr.commit(); // after a batch, not per documentsolr.optimize(); // periodically, if/when needed
    • HighlightingParametershl => true/false to enable/disable highlightinghl.fl => in which field apply the highlighting (comma/space separated)hl.snippets => max number of snippetshttp://localhost:8983/solr/select?q=apple&hl=on&hl.fl=*
    • FACETINGGroup the results by categoryCan do multiple facets at onceReturns matching count
    • Faceting• Facet on: field terms, queries, date ranges&facet=on&facet.field=cat&facet.query=price:[0 TO 100]• SimpleFacetParameters
    • Spell checking• File or index-based dictionaries • Dictionary lookup • Using the indexed words itself• Supports pluggable distance algorithms: • Levenstein and JaroWinkler
    • More like this
    • Queryelevation
    • • Configurable through the “elevate.xml” config file to boost/exclude specific documents• Based on the QueryElevationComponent
    • • Duplicates detection• Adds a signature field• Exact or Fuzzy duplicate detection DEDUPLICATION
    • • Single primary index – Cars – Exclusive configuration files • schema.xml, solrconfig.xmlSolr CORE
    • Multi corehttp://localhost:8983/solr/core0-cars/select?q=ford+fiestahttp://localhost:8983/solr/core1-jobs/select?q=php+developerhttp://localhost:8983/solr/core0-cars/admin/http://localhost:8983/solr/core1-jobs/admin/
    • Multi coreUsing a solr.xml file, you can configure Solr to manage several different indexes.<solr persistent="true" sharedLib="lib“><cores adminPath="/core-admin/"><core name="books" instanceDir="books" /><core name="games" instanceDir="games" /></solr>
    • Data import handler• Indexes relational database, XML data, and email sources• Supports full and incremental/delta indexing• Highly extensible with custom data sources, transformers, etc
    • Solr Cellaka ExtractingRequestHandlerLeveraging Tika, extracts and indexes rich documents such as Word, PDF, HTML, and many other typescurl http://localhost:8983/solr/update/extract?literal.id=doc1&commit=true –F myfile=@tutorial.html
    • CLUSTERING
    • Architecture• Scales from – Single solr server – Master/replicants (slaves) – Distributed shards• Each solr instance can alsohave multiple cores
    • Caching
    • Replication
    • Relevance• Term frequency (TF): number of times a term appears in a document• Inverse document frequency (IDF): One over number of times term appears in the index (1/df)
    • Request handlers• Defines how the query is processed• Two main types – StandardRequestHandler • Simple queries – DisMaxRequestHandler • Boost functions • Boost fields • Span query to many fields
    • Request handler• mini-“servlets”• SearchHandler extensions chain search components• Flexible response formatting:• &wt=[json, ruby, xslt, php, phps, javabin, python,velocity]
    • Useful request handlers• Dump, ping, system, plugins, threads, properties, file
    • Dump• http://localhost:8983/solr/debug/dump• Echoes parameters, content streams, and Solr web context• Careful with content stream enabled, client could retrieve contents of any file on server or accessible network! [Solution: disable dump request handler]
    • Ping• http://localhost:8983/solr/admin/ping• If healthcheck configured and file not available, error is reported• Executes single configured request and reports failure or OK
    • System• http://localhost:8983/solr/admin/system• Core info, Lucene version, JVM details, uptime, operating system info
    • Plugins• http://localhost:8983/solr/admin/plugins• Configuration details of Solr core, available query and update handlers, cache settings
    • Threads• http://localhost:8983/solr/admin/threads• JVM thread details
    • Properties• http://localhost:8983/solr/admin/properties• All JVM system properties, or single property value (?name=os.arch)
    • File• http://localhost:8983/solr/admin/file?file=/• See fetchable directory treehttp://localhost:8983/solr/admin/file?file=schema.x ml&contentType=text/plain
    • Dismax• Minimum match: for optional clauses• Default: 100% (pure AND)• Examples: – Pure OR: mm= 0 or mm=0% – At least tow should match=2 – At least 75% should match mm:75%
    • Search components• Default Components That Power SearchHandlerQueryComponent, HighlightComponent,FacetComponent, MoreLikeThisComponent,StatsComponent, DebugComponent• Additional Components You Can ConfigureSpellCheckComponent, QueryElevationComponent,TermsComponent, TermVectorComponent, ClusteringComponent
    • Boost functions• Allow to influence scoring at runtime• Computationally expensive!• Really useful for tuning scoring
    • TermEnumerates terms from specified fieldshttp://localhost:8983/solr/terms?terms.fl=name&ter ms.sort=index&terms.prefix=vi
    • Whats in a token?
    • Text analysis
    • Stemming• Reduce terms to their root form• Language specific• Many specialised stemmers available – Most european languages
    • •Inject synonyms for certain terms•Language specific•Best used for query time analysis •May inflate the search index too much •Decreases relevancy
    • Tokenizer Analysis
    • Tokenizers And TokenFilters• Analyzers Are Typical Comprised Of Tokenizers And TokenFilters• Tokenizer: Controls How Your Text Is Tokenized• TokenFilter: Mutates And Manipulates The Stream Of Tokens• Solr Lets You Mix And Match Tokenizers and TokenFilters• In Your schema.xml To Define Analyzers On The Fly• OOTB Solr Has Factories For 17 Tokenizers and 45 TokenFilters• Many Factories Have Customization Options – Limitless Combinations
    • Tokenizers And TokenFilters<fieldType name="text" class="solr.TextField"><analyzer type="index"><tokenizer class="solr.WhitespaceTokenizerFactory"/><filter class="solr.StopFilterFactory words="stopwords.txt"/><filter class="solr.WordDelimiterFilterFactory“ generateWordParts="1" generateNumberParts="1"/><filter class="solr.LowerCaseFilterFactory"/><filter class="solr.EnglishPorterFilterFactory“ protected="protwords.txt"/></analyzer><analyzer type="query"><tokenizer class="solr.WhitespaceTokenizerFactory"/><filter class="solr.SynonymFilterFactory“ synonyms="synonyms.txt" expand="true"/>...
    • Notable Token(izers|Filters)• StandardTokenizerFactory• WhitespaceTokenizerFactory• KeywordTokenizerFactory• NGramTokenizerFactory• PatternTokenizerFactory• EnglishPorterFilterFactory• SynonymFilterFactory• StopFilterFactory• ASCIIFilterFactory• PatternReplaceFilterFactory
    • Character filters• Used to cleanup text before tokenizing – HTMLStripCharFilter (strips html, xml, js, css) – MappingCharFilter (normalisation of characters, removing accents) – Regular expression filter
    • Web admin interface• Show config, schema, distribution info• Query interface• Statistics – Caches: lookups, hits, hitratio, inserts, evictions, size – RequestHandlers: requests, errors – UpdateHandler: adds, deletes, commits, optimizes – Indexreader: opentime, indexversion, numdocs, maxdocs• Analysys debugger – Show tokesn after each analyzer stage – Show token matches for query vs index
    • Analysis Tool• HTML Form Allowing You To Feed In Text And See How It• Would Be Analyzed For A Given Field (Or Field Type)• Displays Step By Step Information For Analyzers• Configured Using Solr Factories...• Token Stream Produced By The Tokenizer• How The Token Stream Is Modified By Each TokenFilter• How The Tokens Produced When Indexing Compare With• The Tokens Produced When Querying• Helpful In Deciding Which Tokenizer/TokenFilters You• Want To Use For Each Field Based On Your Goals
    • Analyzing the analyzer● The quick brown fox jumps over the lazy dog.
    • Analyzing the analyzer● The quick brown fox jumps over the lazy dog.● WhitespaceAnalyzer● Simplest built-in analyzer[The] [quick] [brown] [fox] [jumps] [over] [the] [lazy] [dog.]
    • Analyzing the analyzer● The quick brown fox jumps over the lazy dog.● SimpleAnalyzer Lowercases, splits at non-letter boundaries● [the] [quick] [brown] [fox] [jumps] [over] [the] [lazy] [dog]
    • Analyzing the analyzer● The quick brown fox jumps over the lazy dog.● StopAnalyzer Lowercases and removes stop words● [quick] [brown] [fox] [jumps] [over] [lazy] [dog]
    • Analyzing the analyzer● The quick brown fox jumps over the lazy dog.● SnowballAnalyzer Stemming algorithm● [the] [quick] [brown] [fox] [jump] [over] [the] [lazi] [dog]
    • Do I find “cheval”when searching for“chevaux”?Is document 93345found when searchingfor“+montreux –casinoAND role:story”
    • Indexing performance tips• Tricks of the trade: • multithread/multiprocess • batch documents • separate Solr server and indexers • Indexing master + replicants • StreamingUpdateSolrServer + javabin
    • Search performance tips• Searching Performance • javabin - binary protocol for Java clients • caches: filterCache most relevant here • Autowarm • FastLRUCache • warming queries: firstSearcher, newSearcher • sorting, faceting
    • ●Theyre fast and designed to index and search large bodies ofdata efficiently.●Both have a long list of high-traffic sites using them●Both offer commercial support.●Both offer client API bindings for several platforms/languages●Both can be distributed to increase speed and capacity First round! Similarities
    • ●Foundation vs company●Language●Licenses Second round! Differences
    • Sphinx as a complementary serviceSolr as the main featureThird round!Conclusion
    • Questions?