Your SlideShare is downloading. ×
0
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Digital logic circuit
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Digital logic circuit

8,765

Published on

Sanjeev Patel 4x

Sanjeev Patel 4x

Published in: Education, Technology, Business
1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total Views
8,765
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
536
Comments
1
Likes
4
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Digital Logic Circuits By : Tamsil Shamsi
  • 2. Half Adder Logic Diagram Truth Table A half adder adds two one-bit binary numbers A and B . It has two outputs, S and C . The simplest half-adder design, pictured on the right, incorporates an XOR gate for S and an AND gate for C . Half adders cannot be used compositely, given their incapacity for a carry-in bit.
  • 3. Full Adder A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds three one-bit numbers, often written as A , B , and C in ; A and B are the operands, and C in is a bit carried in. A full adder can be constructed from two half adders by connecting A and B to the input of one half adder, connecting the sum from that to an input to the second adder, connecting C in to the other input and OR the two carry outputs Logic Diagram Truth Table
  • 4. SR Flip-Flop Graphic Symbol Truth Table A SR flip-flop has three inputs, S (for set ), R (for reset ) and C (for clock ). It has an output Q. The undefined condition makes the SR flip-flop difficult to manage and therefore it is seldom used in practice.
  • 5. D Flip-Flop Graphic Symbol Truth Table The D flip-flop is a slight modification of the SR flip-flop by inserting an inverter between S and R and assigning the symbol D to the single input. If D=1, the output goes to the state 1, and if D=0, the output of the flip flop goes to the 0 state.
  • 6. JK Flip-Flop Graphic Symbol Truth Table Inputs J and K behave like inputs S and R. When inputs J and K are both equal to 1, a clock transition switches the output of the flip-flop to their complement state.
  • 7. T Flip-Flop Truth Table Graphic Symbol The T flip-flop is obtained from a JK flip-flop when inputs J and K are connected to provide a single input designated by T. The flip-flop thus has only two conditions.
  • 8. Excitation Tables During the design of circuits, we need a table that lists the required input combinations for a given change of state. Such table is called a flip flop excitation table.
  • 9. Sequential Circuits <ul><li>A sequential circuit is an interconnection of flip-flops and gates. </li></ul>Example of a Sequential Circuit Ax Bx Ax+Bx A’x x’ A+B (A+B).x A=Ax+Bx, B=A’x y=(A+B).x State Table

×