Todd Griffith: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop

  • 552 views
Uploaded on

Wind Energy Market and Technology Trends Update- 2013

Wind Energy Market and Technology Trends Update- 2013

More in: Business , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
552
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
43
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. D. Todd Griffith, Ph.D. Wind and Water Power Technologies Sandia National Laboratories Fifth Sandia Wind Plant Reliability Workshop August 13, 2013 dgriffi@sandia.gov Sandia Technical Report: SAND2013-6915C
  • 2.  Continued increase  in installed wind  capacity both world  wide and in the U.S.  China – largest  cumulative capacity  U.S. second in  cumulative ~285 GW Installed Worldwide - Total (up from 240 GW) ~60 GW Installed in U.S. – Total (up from 47 GW) 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 0 9,000 18,000 27,000 36,000 45,000 54,000 1983 1990 1995 2000 2006 2012 CumulativeMW MWperyear Year Installed Wind Powerin the World - Annual and Cumulative - Source: BTM Consult - A Part of Navigant - March 2013 Source: BTM Consult – A Part of Navigant – March 2013
  • 3. Turbine Prices Source: DOE Wind Technologies Market Report Project Prices 2012: $950-$1300/kW 2009: $1500/kW 2000-2002: $700/kW 2012: $1940/kW 2009&2010: ~$2200/kW 2004: ~$1250/kW
  • 4.  U.S. ‐ DOE has proposed the 20% by 2030 scenario • 2013 State of the Union:  double renewables by 2020 • U.S. DOE recently announced new Vision for wind (2020, 2030, 2050)  Europe – EU has proposed a 20% renewables by 2020 plan  Record installations of nearly 45 GW in 2012  Economic value of global market from $76B (2012) to $113B  (2017) • US Wind Energy:  $25B • US Aerospace:  $218B   (Civil Aircraft $61B) **  UK – significant offshore wind installations continue • World leader in offshore wind with 2.8 GW installed end of  2012 (56% total world offshore capacity)  ** 2012 Year-end Review and Forecast, Aerospace Industries Association
  • 5. 0 2 4 6 8 10 12 14 16 18 Annual GW Installed *Installations 2007: 5,253 MW *Installations 2008: 8,362 MW DOE 20% by 2030 Scenario:  Installed  Capacity – Predicted and Actual Capacity additions in 20% Scenario Source*: AWEA, 2012 *Installations 2009: 10,005 MW *Installations 2010: 5,216 MW 2011: 6,820 MW 2012: 13,131 MW
  • 6.  Size  1.5-5.0+ MW  Towers: 65-100+ meters  Blades: 34-80+ meters  Weight: 150-500+ tons  Costs (traditional) • System ~ $3/lb • Blades ~ $6/lb Wind Industry Trends & Challenges •High-end Military ~ $1000/lb •Aerospace Industry ~ $100/lb
  • 7.  Growth of average individual turbine capacity: 1.67 to 1.84 MW   Mainstream of installed turbines, 1.5‐2.5 MW (83%) with ~13% 2.5  MW and above in 2012 • US average rating is 1.93 MW  (down from 1.97 MW) • However, growth in hub height and rotor diameter (low wind speed siting) Source*: AWEA, 2012
  • 8. Current Turbine Technology And, expanded product offerings Continued rotor growth for offshore (5 MW and above) Additional offerings for land-based machines 2-3 MW: hub height and rotor size options
  • 9. Continued significant  installations in the UK in  recent years Many offshore projects in  pipeline for 2013/2014 (~4.8  GW) particularly in Germany  (~2.5 GW), UK (~1.5 GW) 2.5% of 2012 installations  were offshore (slight drop) Forecasting range from 6‐18%  annually offshore for next five  years (2013‐2017)
  • 10.  Until recent years, two prime suppliers of offshore  turbines (Siemens, Vestas) – new entrants emerging  Offshore is test bed for large turbine technology • Virtually all are fixed bottom (monopile, etc)  New large machines in development for offshore • 6 MW Alstom (150‐meter diameter) • 6 MW Siemens (120‐meter diameter) • 7 MW Vestas (164‐meter diameter) • 7 MW Mitsubishi (165‐meter diameter) • 4.5 MW Gamesa (134‐meter diameter)
  • 11. Land-based Project Shallow Water Offshore Project Musial, W. and Ram, B. Large- Scale Offshore Wind Power in the United States. NREL/TP-500- 40745. 2010.
  • 12. Direct drive concept continues in its application • Direct drive account for 19.5% of world’s supply  of wind power capacity in 2012 (up from 14% in  2009) • Simpler mechanism with no gear box  maintenance
  • 13. Solving issues, improving codes and standards, and developing innovations all lead to lower COE: • lower capital costs, • lower O&M, or • increased energy capture.
  • 14.  Radar  Noise  Transportation  Wind Plant Performance; Wake Losses  Field Service & Repair  Lightning  Reliability of blade design & manufacturing Acoustic Research Effects of Turbines on Radar
  • 15.  Innovations in research communities – labs, universities,  industry • Passive load control • New airfoils • Large blade development • Active load and performance control • Vertical Axis Wind Turbine (VAWT designs) • New materials characterizations • Sensor development for SHM and active load control • Increased tip speeds • Coatings for radar, lightning
  • 16.  Labs – addressing various aspects and elements of wind  system reliability through R&D • Components Reliability  Gearbox Reliability Collaborative (GRC)  Blade Reliability Collaborative (BRC) • Condition monitoring; Structural Health and Prognostics  Management • Wind Energy Systems Analysis and Engineering • Wind Farm Performance and Testing
  • 17.  Problem:  Blade reliability  issues related to  manufacturing,  transportation, installation,  and operation can have  large effects on COE as  blade failures can cause  extensive down time and  lead to expensive repairs.  Goal:  Improve the reliability  of blades delivered to the  field so that remediation  work before operation can  be eliminated and the  service lifetimes can achieve  the 20 year targets that are  expected by wind plant  operators and financiers. Manufacturing Operation TestingDesign
  • 18.  Two blades built based on  BSDS blade design • Glass and carbon spar  versions • Defects manufactured:  Out‐ of‐plane and in‐plane waves,  porosity, delaminations, and  disbonds
  • 19. Sandia has focused on a sealed water box that: • Adjusts to slight curvature surfaces • Eliminates water flow to open box • Maximizes signal strength • Accommodates necessary standoffs for signal clarity • Easily saves scanned images for reference using the unidirectional Mouse Encoder 4 Ply Pillow Inserts FBH FHB’s Pillow Inserts BRC: Probe Housing Development for Factory Deployment
  • 20. CREW: Continuous Reliability Enhancement for Wind 21 Goal: Create a national reliability database of wind plant operating data to enable reliability analysis Sandia  partners with  Strategic Power Systems  (SPS), whose ORAPWind®  software collects real‐ time data from wind plant  partners Benchmark reliability performance Track operating performance Method:
  • 21. SHPM: Structural Health and Prognostics  Management Cost-effectively simulating realistic damaged states and evaluating their effects Repair Cost Defect Size Blade Removal Blade Replacement Up‐Tower Repair Ground Repair No Repair (not to scale) Recognizing the dependence of repair costs on extent of damage and ease of accessibility: Opportunity to plan for cheaper repairs, optimize O&M processes
  • 22. SHPM: Structural Health and Prognostics  Management (cont’d) Smart loads management has potential to reduce cost of energy in two ways: reduce O&M costs and increase energy capture Shutdown Online Reports
  • 23. Annual Global Wind Power Development 0 25,000 50,000 75,000 100,000 125,000 1990 2012 2017 2022 MW Annual Global Wind PowerDevelopment Offshore (Prediction) Prediction Offshore (Forecast) Forecast Existing capacity Source: BTM Consult - A Part of Navigant - March 2013