Chapitre i rappel sur l'algèbre de boole
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Chapitre i rappel sur l'algèbre de boole

  • 661 views
Uploaded on

 

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
661
On Slideshare
661
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
23
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Université Saad Dahleb de Blida Faculté des Sciences Département d’Informatique Licence Génie des Systèmes Informatique (GSI) Semestre 3 (2ème année) CONCEPTION DE MACHINES DIGITALES Cours n°1: 10 Octobre 2013 AROUSSI Sana s_aroussi@esi.dz
  • 2. PRÉAMBULE  Pré-requis: Cours (SM, S2).  UEF: Conception de Circuits et Systèmes Digitaux (CSDI)  Volume horaire hebdomadaire: 3HCours (Dimanche 9H3511H10 et 12H45 à 14H15)  Évaluation: continu + Examen.  Coefficient 1, Crédit 4 2
  • 3. CONTENU DE LA MATIÈRE I. Rappel sur l’Algèbre de Boole II. Circuits Combinatoires III. Circuits Séquentiels 3
  • 4. CHAPITRE I: RAPPEL SUR L’ALGÈBRE DE BOOLE
  • 5. PLAN DU CHAPITRE I  Introduction  Définitions et Conventions  Opérateurs Logiques  Fonctions  Analyse Logiques et Conception d’un Circuit Logique 5
  • 6. INTRODUCTION  Les machines digitales (ou numériques) sont constituées d’un ensemble de circuits électroniques.  Chaque circuit fournit une fonction logique bien déterminée (addition, comparaison,….).  Pour concevoir et réaliser un tel circuit, on doit avoir le modèle mathématique de sa fonction réalisée.  Le modèle mathématique utilisé est celui de l’algèbre de Boole (du nom du mathématicien anglais Georges Boole 1915 - 1864). 6
  • 7. DÉFINITIONS ET CONVENTIONS  Une variable logique (ou booléenne) est une variable qui peut prendre soit la valeur 0 soit la valeur 1.  Niveau Logique Niveau de Logique Logique Signification Tension Positive Négative H (Hight) Haut 1 0 VRAI / OUI L (Low) Bas 0 1 FAUX / NON 7
  • 8. DÉFINITIONS ET CONVENTIONS Une porte logique est un circuit électronique élémentaire  permettant de réaliser la fonction d’un opérateur logique.  A 0 0 0 0 1 1 1 1 Fonction Logique B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 F(A, B, C) 0 1 0 1 0 1 1 1 Table de Vérité Expression Logique F (A, B, C )= AB + C 8
  • 9. OPÉRATEURS LOGIQUES DE BASE  Opérateur NON (Négation)  Opérateur ET (Conjonction)  Opérateur OU (Disjonction) 9
  • 10. LOIS FONDAMENTALES DE L’ALGÈBRE DE BOOLE NON 1. Fermeture ET OU Si A est une variable booléenne alors est une variable booléenne. Si A et B sont des variables booléennes alors A+B, AB sont aussi des variables booléennes. 2. Involution 3. Commutativité A*B=B*A A+B=B+A 4. Associativité A * (B * C) = (A * B) *C=A*B*C A + (B + C) = (A + B) +C=A+B+C 5. Distributivité A * (B + C) = A B + A C A + (B * C) = (A + B) * (A + C) 6. Idempotence A*A=A A+A=A 8. Élément Neutre 1*A=A 0+A=A 9. Élément absorbant 10. Règles de De Morgan 0*A=0 1+A=1 7. Complémentarité A* A+ =0 =1 10
  • 11. OPÉRATEURS LOGIQUES COMPOSÉS  Opérateur XOR (OU Exclusif)  Opérateur NAND (NON ET)  Opérateur NOR (NON OU) 11
  • 12. FONCTIONS LOGIQUES LOGIGRAMME  Le logigramme (ou diagramme logique) est la traduction de la fonction logique en un schéma électronique. Le principe consiste à remplacer chaque opérateur logique par la porte logique qui lui correspond.  Exemple: A ET OU B C F2 NOT ET 12
  • 13. FONCTIONS LOGIQUES EXTRACTION DE L’EXPRESSION LOGIQUE À PARTIR DE LA TABLE DE VÉRITÉ A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 A .B.C : min terme A .B.C : min terme A .B.C : min terme A .B.C : min terme F = somme min termes 13 F ( A, B, C )  A . B . C  A . B . C  A . B . C  A . B . C
  • 14. FONCTIONS LOGIQUES EXTRACTION DE L’EXPRESSION LOGIQUE À PARTIR DE LA TABLE DE VÉRITÉ A B C S 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 A  B  C : max terme A  B  C : max terme A  B  C : max terme A  B  C : max terme F = produit des max termes 14 F(A,B, C)  ( A  B  C) (A  B  C)(A  B  C) (A  B  C)
  • 15. FONCTIONS LOGIQUES FORMES CANONIQUES  On appelle la forme canonique d’une fonction, la forme où chaque terme de la fonction comporte toutes les variables:  Première Forme Canonique (Forme Disjonctive) qui est la somme des mintermes (ou produits) ; Une disjonction de conjonctions. Cette forme est la forme la plus utilisée. F ( A, B, C )  A . B . C  A . B . C  A . B . C  A . B . C  Deuxième Forme Canonique (Forme Conjonctive) qui est le produit des maxtermes (ou sommes) : une conjonction de disjonctions 15 F(A,B, C)  ( A  B  C) (A  B  C)(A  B  C) (A  B  C)
  • 16. COURS N°2: 13 OCTOBRE 2013 (MATIN)
  • 17. FONCTIONS LOGIQUES Simplification Méthode Algébrique Méthode Graphique (Propriétés de l’algèbre de (Tableau du Boole) KARNAUGH) 17
  • 18. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  La méthode de KARNAUGH consiste à mettre en évidence par un tableau tous les termes qui sont adjacents (qui ne différent que par l’état d’une seule variable).  La méthode peut s’appliquer aux fonctions logiques de 2, 3, 4, 5 et 6 variables.  Un tableau de KARNAUGH comporte 2n cases (n est le nombre de variables). 18
  • 19. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Dans un tableau de KARNAUGH, chaque case possède un certain nombre de cases adjacentes. Les cases bleues sont des cases adjacentes à la case rouge. 19
  • 20. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Le tableau de KARNAUGH se referme sur lui-même : la colonne la plus à gauche est voisine de la colonne la plus à droite, idem pour les lignes du haut et du bas : 20
  • 21. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Cas de cinq variables: 21
  • 22. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Cas de six variables: 22
  • 23. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Remplissage du tableau de KARNAUGH : AB C 23
  • 24. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Première Règle de simplification : 1. Regrouper les cases adjacentes qui ont pour valeur 1, jusqu'à ce qu'il n'y ait plus de cases à 1 :  Les groupes doivent être choisis convenablement afin de réduire au maximum.  Les groupes de taille maximale, doivent être carrés ou rectangulaires ;  Le nombre de cases dans un groupe doit être une puissance de 2 : 1, 2, 4, 8 et 16 cases.  Les mêmes regroupements termes peuvent participer à 24 plusieurs
  • 25. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Deuxième Règle de simplification : 2. Réduire l'expression de chaque groupe en prenant le produit des variables qui n'ont pas changé d'état dans les groupes. Dans un regroupement :  Qui contient un seul terme, on ne peut pas éliminer de variables.  Qui contient deux termes, on peut éliminer une variable (celle qui change d’état).  Qui contient 4 termes, on peut éliminer 2 variables.  Qui contient 8 termes, on peut éliminer 3 variables.  Qui contient 16 termes, on peut éliminer 4 variables. 25
  • 26. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Règles de simplification : 1. Regrouper les cases adjacentes qui ont pour valeur 1, jusqu'à ce qu'il n'y ait plus de cases à 1. 2. Réduire l'expression de chaque groupe en prenant le produit des variables qui n'ont pas changé d'état dans les groupes. 3. L'expression réduite de la fonction est la somme des différents termes de chaque groupe. 26
  • 27. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH AB C ABC  ABC  AB ABC  ABC  AC ABC  ABC  BC F ( A, B, C )  AB  AC  BC 27
  • 28. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH AB C F ( A, B, C )  C  AB 28
  • 29. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH AB CD F ( A, B, C, D)  C.D  A.B.C  A.B.C.D 29
  • 30. FONCTIONS LOGIQUES M ABÉTHODE DE CD KARNAUGH F ( A, B, C, D)  AB  B D  BCD 30
  • 31. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH AB AB CD CD U=0 U= 1 F(A, B, C, D, U)  A B  A.B.D. U  A .C. D.U  B.D.U 31
  • 32. FONCTIONS LOGIQUES MÉTHODE DE KARNAUGH  Fonction incomplètement définie: AB CD 32 F (A, B, C, D) = AB + CD + BD + AC + BC
  • 33. COURS N°3: 13 OCTOBRE 2013 (APRÈS MIDI)
  • 34. ANALYSE D’UN CIRCUIT LOGIQUE Logigramme d’un circuit logique Définir la fonction logique Déduire le rôle du circuit. Établir la table de vérité 34
  • 35. ANALYSE D’UN CIRCUIT LOGIQUE A NOT E T OU B NOT F1 E T Test d’Inégalité 35
  • 36. CONCEPTION D’UN CIRCUIT LOGIQUE Description du fonctionnement d’un circuit Définir les variables d’entrée Définir les variables de sortie Réaliser le logigramme de la fonction simplifiée Effectuer des simplifications Établir la table de vérité 36
  • 37. CONCEPTION D’UN CIRCUIT LOGIQUE Réaliser un circuit logique permettant de Trois variables d’entrée A, B, C vérifier si un nombre binaire à trois chiffres est pair. 37
  • 38. SOURCES DE CE COURS  Sana Aroussi, Cours Structure Machine, Département Tronc Commun Math-Informatique, Faculté des Sciences, USDB, 2012. 38