Tema 1 señales

3,056 views
2,997 views

Published on

Principios de Comunicación
Propagacion de Ondas
Modulaciones
El sistema PAL

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,056
On SlideShare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
101
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Tema 1 señales

  1. 1. EQUIPOS DE IMAGEN SAMUEL FERNÁNDEZ BLANCOTema 1. Señales: Principios de telecomunicación en TV1. Principios de Comunicación a) Sistemas de Radiodifusión b) Espectro de una Señal c) El Espectro radioeléctrico2. Propagación de Ondas Electromagnéticas3. Modulación a) Modulación AM b) Modulación FM c) Modulación PM4. El sistema PAL a) Señales Implicadas b) Estructura de la Señal c) El Espectro PAL d) Funcionamiento del Sistema PAL 2011-2012 EQUIPOS ELECTRÓNICOS DE CONSUMO IES PINTOR RAFAEL REQUENA. CAUDETE. ALBACETE
  2. 2. Equipos de Imagen Tema 1. Señales Samuel Fernández 1. Principios de Comunicación En cualquier sistema de Telecomunicación o comunicación a distancia el objetivo final es el de la transmisión de señales desde un elemento llamado a Emisor a otro llamado Receptor por medio de un canal que sirve de enlace. Ambos elementos (emisor y receptor), actúan modificando la naturaleza de la señal no en su contenido fundamental (señal a transmitir), sino en la magnitud física en la se encuentra dicha información. Por ejemplo, una antena recibe una señal eléctrica pero para su emisión la transforma en electromagnética ya que el medio por el que se propagará la señal (aire), no permitiría trabajar con magnitudes eléctrica. A este fenómeno mediante el que se produce la transformación de un tipo de señal o energía en otra de distinta naturaleza se le llama Transducción. Algunos casos conocidos son el altavoz como ejemplo de transductor eléctrico-acústico y el micrófono como el inverso, el diodo LED como transductor eléctrico-luminoso, y, aunque menos obvio, un televisor de plasma también convierte la información eléctrica que recibe en información lumínica. 1. Sistemas de Radiodifusión Un sistema de radiodifusión será aquel que utilice como canal de transmisión principal el aire, utilizando para ello ondas de origen electromagnético. El uso más común al que están destinado es al de ondas de radio (comercial o no) y de televisión (analógica o digital), aunque cada vez existen más sistemas de radiodifusión cuya finalidad es la de difusión de datos (ejemplo evidente, una señal Wifi). Aunque como norma general, son de carácter multidireccional (multidifusión o broadcasting), podemos encontrar dos tipos de sistemas en función de la dualidad Emisor – Receptor: • Unidireccional: se trata, generalmente, de enlaces punto a punto donde ambas antenas se encuentran sintonizadas (emiten a la misma frecuencia) y presentan una alta directividad de manera que la comunicación puede ser Semi-Dúplex o Fullduplex. Un ejemplo de esta comunicación se realiza entre el Centro de Control de Satélite y el propio satélite para mandar la información que posteriormente se emitirá (a lo que se conoce como canal ascendente). • Multidireccional: un único emisor envía toda la información a numerosos destinatarios y presenta una zona de cobertura llamada huella dentro de la cual, cualquier receptor en condiciones de apuntamiento y sintonía puede captar la señal que la contiene. Por eso mismo se llama en ocasiones multidifusión, o bradcastoing. El sistema de radiodifusión utilizado es independiente de la tecnología que utilice, pudiendo encontrar sistemas analógicos o digitales, cifrados o abiertos, públicos o privados,…y todos ellos dentro del mismo espacio al que llamamos Espacio Radioeléctrico. De cualquier manera, lo que es evidente que existen entidades como la ITU (a nivel nacional e internacional) que vigilan, asignan y controlan el adecuado uso del espectro para cualquier persona u organización no interfiera dentro de otros servicios ya en vigor. 2. El Espectro de una señal Ya conocemos que una señal periódica, tiene una frecuencia fundamental a través de la cual se puede representar de una manera simple. La teoría de Fourier (físico y matemático francés), sostiene que toda señal se puede considerar como suma de señales unifrecuenciales, lo cual nos permite facilitar el trabajo en el campo de la imagen. En transmisiones de señales, la mayor parte de la información que nos resultará de interés la obtendremos de lo que se conoce como el espectro de una señal, mediante el cual se nos ofrece la intensidad que posee cada una de las componentes de frecuencia en la que se puede descomponer una señal.Página 2 de 18
  3. 3. Equipos de Imagen Tema 1. Señales Samuel Fernández 3. El Espectro Electromagnético El espectro electromagnético cubre longitudes de onda muy variadas. Existen frecuencias de 30 Hz y menores que son relevantes en el estudio de ciertas nebulosas. Por otro lado se conocen frecuencias cercanas a 2,9×1027 Hz, que han sido detectadas provenientes de fuentes astrofísicas. La energía electromagnética en una particular longitud de onda λ (en el vacío) tiene una frecuencia f asociada y una energía de fotón E. Por tanto, el espectro electromagnético puede ser expresado igualmente en cualquiera de esos términos. λ=c—T=c/F Además, y gracias a la ecuación que relaciona la energía de una onda con su frecuencia (E=h—f siendo h la constante de Plank que tiene un valor de 6’6260069—10-34 J—s), podemos decir que las ondas electromagnéticas de alta frecuencia tienen una longitud de onda corta y mucha energía mientras que las ondas de baja frecuencia tienen grandes longitudes de onda y poca energía .Página 3 de 18
  4. 4. Equipos de Imagen Tema 1. Señales Samuel Fernández Por lo general, las radiaciones electromagnéticas se clasifican en base a su longitud de onda en ondas de radio, microondas, infrarrojos, visible –que percibimos como luz visible– ultravioleta, rayos X y rayos gamma, aunque nuestro estudio se centrará en las ondas de radio, las microondas y los infrarrojos. RADIOFRECUENCIA: En radiocomunicaciones, los rangos se abrevian con sus siglas en inglés. Los rangos son: Nombre Abreviatura Banda ITU Frecuencias Longitud de onda Inferior a 3 Hz > 100.000 km Extra baja frecuencia Extremely low frequency ELF 1 3-30 Hz 100.000 km – 10.000 km Super baja frecuencia Super low frequency SLF 2 30-300 Hz 10.000 km – 1000 km Ultra baja frecuencia Ultra low frequency ULF 3 300–3000 Hz 1000 km – 100 km Muy baja frecuencia Very low frequency VLF 4 3–30 kHz 100 km – 10 km Baja frecuencia Low frequency LF 5 30–300 kHz 10 km – 1 km Media frecuencia Medium frequency MF 6 300–3000 kHz 1 km – 100 m Alta frecuencia High frequency HF 7 3–30 MHz 100 m – 10 m Muy alta frecuencia Very high frequency VHF 8 30–300 MHz 10 m – 1 m Ultra alta frecuencia Ultra high frequency UHF 9 300–3000 MHz 1 m – 100 mm Super alta frecuencia Super high frequency SHF 10 3-30 GHz 100 mm – 10 mm Extra alta frecuencia Extremely high frequency EHF 11 30-300 GHz 10 mm – 1 mm Por encima de < 1 mm los 300 GHz • Frecuencias extremadamente bajas: Llamadas ELF (Extremely Low Frequencies), son aquellas que se encuentran en el intervalo de 3 a 30 Hz. Este rango es equivalente a aquellas frecuencias del sonido en la parte más baja (grave) del intervalo de percepción del oído humano. Cabe destacar aquí que el oído humano percibe ondas sonoras, no electromagnéticas, sin embargo se establece la analogía para poder hacer una mejor comparación. • Frecuencias super bajas: SLF (Super Low Frequencies), son aquellas que se encuentran en el intervalo de 30 a 300 Hz. En este rango se incluyen las ondas electromagnéticas de frecuencia equivalente a los sonidos graves que percibe el oído humano típico. • Frecuencias ultra bajas: ULF (Ultra Low Frequencies), son aquellas en el intervalo de 300 a 3000 Hz. Este es el intervalo equivalente a la frecuencia sonora normal para la mayor parte de la voz humana. • Frecuencias muy bajas: VLF, Very Low Frequencies. Se pueden incluir aquí las frecuencias de 3 a 30 kHz. El intervalo de VLF es usado típicamente en comunicaciones gubernamentales y militares. • Frecuencias bajas: LF, (Low Frequencies), son aquellas en el intervalo de 30 a 300 kHz. Los principales servicios de comunicaciones que trabajan en este rango están la navegación aeronáutica y marina. • Frecuencias medias: MF, Medium Frequencies, están en el intervalo de 300 a 3000 kHz. Las ondas más importantes en este rango son las de radiodifusión de AM (530 a 1605 kHz). • Frecuencias altas: HF, High Frequencies, son aquellas contenidas en el rango de 3 a 30 MHz. A estas se les conoce también como "onda corta". Es en este intervalo que se tiene una amplia gama de tipos de radiocomunicaciones como radiodifusión, comunicaciones gubernamentales y militares.Página 4 de 18
  5. 5. Equipos de Imagen Tema 1. Señales Samuel Fernández Las comunicaciones en banda de radioaficionados y banda civil también ocurren en esta parte del espectro. • Frecuencias muy altas: VHF, Very High Frequencies, van de 30 a 300 MHz. Es un rango popular usado para muchos servicios, como la radio móvil, comunicaciones marinas y aeronáuticas, transmisión de radio en FM (88 a 108 MHz) y los canales de televisión del 2 al 12 [según norma CCIR (Estándar B+G Europa)]. También hay varias bandas de radioaficionados en este rango. • Frecuencias ultra altas: UHF, Ultra High Frequencies, abarcan de 300 a 3000 MHz, incluye los canales de televisión de UHF, es decir, del 21 al 69 [según norma CCIR (Estándar B+G Europa)] y se usan también en servicios móviles de comunicación en tierra, en servicios de telefonía celular y en comunicaciones militares. • Frecuencias super altas: SHF, Super High Frequencies, son aquellas entre 3 y 30 GHz y son ampliamente utilizadas para comunicaciones vía satélite y radioenlaces terrestres. Además, pretenden utilizarse en comunicaciones de alta tasa de transmisión de datos a muy corto alcance mediante UWB. También son utilizadas con fines militares, por ejemplo en radares basados en UWB. • Frecuencias extremadamente altas: EHF, Extrematedly High Frequencies, se extienden de 30 a 300 GHz. Los equipos usados para transmitir y recibir estas señales son más complejos y costosos, por lo que no están muy difundidos aún. MICROONDAS Cabe destacar que las frecuencias entre 1 GHz y 300 GHz, son llamadas microondas. Estas frecuencias abarcan parte del rango de UHF y todo el rango de SHF y EHF. Estas ondas se utilizan en numerosos sistemas, como múltiples dispositivos de transmisión de datos, radares y hornos microondas. Bandas de frecuencia de microondas Banda P L S C X Ku K Ka Q U V E W F D Inicio (GHZ) 0,2 1 2 4 8 12 18 26,5 30 40 50 60 75 90 110 Final (GHZ) 1 2 4 8 12 18 26,5 40 50 60 75 90 110 140 170 INFRARROJOS Las ondas infrarrojas están en el rango de 0,7 a 100 micrómetros. La radiación infrarroja se asocia generalmente con el calor. Éstas son producidas por cuerpos que generan calor, aunque a veces pueden ser generadas por algunos diodos emisores de luz y algunos láseres. Las señales son usadas para algunos sistemas especiales de comunicaciones, como en astronomía para detectar estrellas y otros cuerpos y para guías en armas, en los que se usan detectores de calor para descubrir cuerpos móviles en la oscuridad. También se usan en los mandos a distancia de los televisores y otros aparatos, en los que un transmisor de estas ondas envía una señal codificada al receptor del televisor. En últimas fechas se ha estado implementando conexiones de área local LAN por medio de dispositivos que trabajan con infrarrojos, pero debido a los nuevos estándares de comunicación estas conexiones han perdido su versatilidad.Página 5 de 18
  6. 6. Equipos de Imagen Tema 1. Señales Samuel Fernández 2. Propagación de Ondas Electromagnéticas La tecnología de radiodifusión considera que la tierra está rodeada por dos capas de atmósfera: la troposfera y la ionosfera. La troposfera es la poción de la atmósfera que se extiende hasta aproximadamente 45 km desde la superficie de la tierra (en terminología de radio, la troposfera incluye una capa de máxima altitud denominada estratosfera) y contiene aquello en lo que nosotros generalmente pensamos como el aire. Las nubes, el viento, las variaciones de temperatura y el clima en general ocurren en la troposfera, al igual que los viajes en avión. La ionosfera es la capa de la atmósfera por encima de la troposfera pero por debajo del espacio. Está mas allá de lo que nosotros denominamos atmósfera y contiene partículas libres cargadas eléctricamente (de aquí el nombre). Las características de estas capas, provocan sobre las ondas electromagnéticas una serie de fenómenos físicos llamados reflexión, dispersión, refracción y difracción, que lejos de perturbar la comunicación, permiten que se realice con éxito. En general, y en función de qué fenómeno actúe, podemos encontrar, para la transmisión de ondas de radio, cinco tipos de propagación distintos: Superficial, Troposférica, Ionosférica, Línea de vista y Espacial. 1. Propagación en superficie En la propagación en superficie, la ondas de radio viajan a través de la porción mas baja de la atmósfera, abrazando a la tierra. A las frecuencias más bajas, las señales emanan en todas las direcciones desde la antena de transmisión y sigue la curvatura de la tierra. La distancia depende de la cantidad de potencia en la señal: cuanto mayor es la potencia mayor es la distancia. La propagación en superficie también puede tener lugar en el agua del mar. 2. Propagación troposférica. La propagación troposferica puede actuar de dos formas. O bien se puede dirigir la señal en línea recta de antena a antena (visión directa) ó se puede radiar con un cierto ángulo hasta los niveles superiores de la troposfera donde se refleja hacia la superficie de la tierra. El primer método necesita que la situación del receptor y el transmisor esté dentro de distancias de visión, limitadas por la curvatura de la tierra en relación a la altura de las antenas. El segundo método permite cubrir distancias mayores. 3. Propagación Ionosférica (troposférica). En la Propagación Ionosférica, las ondas de radio de más alta frecuencia se radian hacia la ionosfera donde se reflejan de nuevo hacia la tierra. La densidad entre la troposfera y la ionosfera hace que cada onda de radio se acelere y cambie de dirección, curvándose de nuevo hacia la tierra. Este tipo de transmisión permite cubrir grandes distancias con menor potencia de salida.Página 6 de 18
  7. 7. Equipos de Imagen Tema 1. Señales Samuel Fernández 4. Propagación por visión directa (troposféroica). En la Propagación por visión directa, se trasmite señales de muy alta frecuencia directamente de antena a antena, siguiendo una línea recta. Las antenas deben ser direccionales, estando enfrentadas entre si, y/o bien están suficientemente altas ó suficientemente juntas para no verse afectadas por la curvatura de la tierra. La propagación por visión directa es compleja porque las transmisiones de radio no se pueden enfocar completamente. Las ondas emanan hacia arriba y hacia abajo así como hacia delante y pueden reflejar sobre la superficie de la tierra o partes de la atmósfera. Las ondas reflejadas que llegan a la antena receptora mas tarde que la porción directa de la transmisión puede corromper la señal recibida. 5. Propagación Espacial. La Propagación por el espacio utiliza como retransmisor satélites en lugar de la refracción atmosférica. Una señal radiada es recibida por un satélite situado en órbita, que la reenvía devuelta a la tierra para el receptor adecuado. La transmisión vía satélite es básicamente una transmisión de visión directa como un intermediario. La distancia al satélite de la tierra es equivalente a una antena de súper alta ganancia e incremente enormemente la distancia que puede ser cubierta por una señal.Página 7 de 18
  8. 8. Equipos de Imagen Tema 1. Señales Samuel Fernández 3. Modulaciones La información que podemos transmitir puede ser muy variada y suele ser: sonido, imagen o datos. Para poder realizar la transmisión de esta, necesitamos convertirla en una señal eléctrica y para tal menester emplearemos el transductor más adecuado (micrófonos, cámaras, sondas etc.), según el transductor empleado la señal eléctrica será analógica o digital. Las señales eléctricas generadas (sonido, vídeo y datos) son de una frecuencia muy baja y no es viable su transmisión a través de ondas electromagnéticas. En el caso de señal de TV (audio y vídeo) solo podríamos enviar uno de sus componentes. Por lo tanto con estos condicionantes la transmisión no es factible, para solucionar estos problemas hemos de recurrir a la modulación de la señal. En general, las principales causas que llevan a modular una señal son: • Adaptar la señal que contiene la información al medio y a la distancia de propagación, adecuando así el tipo de modulación y la potencia de emisión a dichos factores. • Proteger la información de posibles interferencias que se puedan producir en el proceso de emisión. • Compactar bajo una señal varias señales de información que dan sentido completo a la transmisión. • Implementar un sistema de acceso a la información que contiene la señal modulada (encriptar) generalmente con fines comerciales o militares. La modulación consiste en la transformación de una señal para poder transmitirla a distancia y simultanearla con otras de manera que el receptor deberá poder de-modular la señal para recuperar la información original. Básicamente podemos decir que modular es modificar una señal de entrada en función de otra (portadora) para conseguir los requisitos necesarios para su transmisión. La portadora ha de tener unos valores de amplitud y frecuencia superiores a la señal de entrada por lo que su frecuencia suele ser mucho mayor para hacer posible su transmisión a través de las ondas electromagnéticas. Las características de la portadora susceptibles de ser modificadas son: Amplitud (AM Modulación de amplitud), Frecuencia (FM Frecuencia modulada) y Fase (PM Modulación de fase). En determinadas aplicaciones se puede actuar sobre dos de los parámetros simultáneamente, son modulaciones más complejas. 1. Modulaciones en Amplitud – AM La señal de la moduladora (señal de entrada) controla la amplitud de la portadora. La frecuencia se mantiene constante y corresponde a la de la portadora. Este procedimiento permite que varias señales de entrada (moduladoras) modulen portadoras de diferentes frecuencias y así poder transmitir informaciones múltiples sin interferirse entre ellas. Si las frecuencias portadoras son lo suficiente elevadas, no hay ningún impedimento para que la vía de transmisión sean las ondas electromagnéticas. Generación. La generación de una onda modulada en AM se realiza empleando un modulador. En nuestro caso emplearemos un amplificador de ganancia controlada por tensión, en la entrada aplicaremos la señal de alta frecuencia (portadora) y en la entrada correspondiente al control de ganancia la señal moduladora (señal que queremos transmitir).Página 8 de 18
  9. 9. Equipos de Imagen Tema 1. Señales Samuel Fernández El funcionamiento del circuito será el siguiente: La frecuencia de la señal de salida será siempre la de la portadora. Si la señal moduladora tiene un valor de 0 Volts, la ganancia tendrá un valor unidad y en la salida del amplificador tendremos una señal de amplitud igual a la portadora. Si la señal moduladora tiene un valor positivo, aumenta la ganancia del amplificador y en la salida tendremos una señal de amplitud superior a la de la portadora. Si la señal moduladora tiene un valor negativo, disminuye la ganancia del amplificador y en la salida tendremos una señal de amplitud inferior a la de la portadora. Índice de Modulación (m) Este valor expresa en % la relación entre el nivel de la moduladora y la portadora sin modular y se calcula a través de la siguiente expresión: m =100—A/A0 El índice de modulación puede variar entre 0 y 100%. Cuando no hay señal moduladora, el índice será 0 (A1=0). Por el contrario, si la amplitud de la señal moduladora es igual a la de la señal portadora el índice será del 100% (A1= A0). Hemos de tener en cuenta que generalmente la señal a transmitir presenta variaciones en su amplitud, si el índice de modulación es muy elevado puede ocurrir que se genere una distorsión debido a problemas de sobre- modulación. Análisis Frecuencial. Analizando espectralmente la señal modulada en AM tendremos: 1. Aplicando al modulador, una señal moduladora de amplitud 0 Volts, solo aparece una línea espectral correspondiente a la frecuencia de la portadora.Página 9 de 18
  10. 10. Equipos de Imagen Tema 1. Señales Samuel Fernández 2. Aplicando al modulador una señal moduladora de frecuencia constante, aparecen 2 líneas adicionales una a cada lado de la portadora, separadas de ella el valor de la frecuencia introducida. Por ejemplo si la portadora es de 100 KHz y la moduladora es de 1 Khz., tendremos una línea a 99 KHz, la línea correspondiente a la portadora 100 KHz y una tercera línea correspondiente a 101 KHz. Estas líneas siempre simétricas y de nivel idéntico son las bandas laterales superior e inferior. 3. Aplicando al modulador una señal moduladora de frecuencia no constante (por ejemplo señal de audio) que abarca hasta los 20 KHz, las bandas laterales pasarán a ser espacios de esta anchura en vez de líneas. Las bandas laterales llevan la información a transmitir de manera duplicada, es decir, cada una de ellas lleva toda la información a transmitir. El nivel de las bandas laterales es variable y depende del índice de modulación (m) y del nivel de la moduladora. Su valor es m * A0/2. Ancho de banda de transmisión. Al margen de frecuencias necesarias para transmitir una información se le denomina ancho de banda. Siendo modulada la transmisión el ancho de banda será superior al de la banda base. En el ejemplo anterior hemos visto que para transmitir una banda base de 20 Khz., necesitamos el doble de banda para la transmisión. Frecuencias de transmisión La modulación de amplitud se puede aplicar a cualquier frecuencia portadora tanto a bajas frecuencias (AM comercial) como a altas frecuencias (TV). Las modulaciones de amplitud en el ámbito de radiodifusión comercial están divididas en tres bandas de frecuencias relativamente bajas. Esto es debido a que se mantiene la estructura original de este medio de comunicación, ya que en su inicio no era factible trabajar con frecuencias muy altas y se opto por bandas que tuviesen unas buenas características de propagación de señal, tanto directa como indirectamente. • Ondas largas: de 200 KHz a 400 KHz • Ondas medias: de 500 KHz a 1600 KHz • Ondas cortas: de 5 MHz a 25 MHz • Las bandas utilizadas en TV son: o Banda I: de 48 MHz a 65 MHz (Canal 1) o Banda III: de 175 MHz a 222 MHz (Canales del 2 al 12) o Banda IV-V: de 471 MHz a 820 MHz (Canales del 21 al 69 con un BW de 8 MHz) La modulación de amplitud queda limitada a las transmisiones comerciales, debido a la gran cantidad de potencia que necesita el transmisor. Hay modulaciones de AM especiales con la finalidad de estrechar la banda de transmisión.Página 10 de 18
  11. 11. Equipos de Imagen Tema 1. Señales Samuel Fernández Otras modulaciones AM El principal inconveniente de la transmisión AM es la cantidad de potencia inútil que se consume para transmitir la portadora, que no contiene ningún tipo de información. Por eso en base a los principios de modulación AM se crean variantes que tienden a eliminar consumo de energía. Debemos tener en cuenta, que en todos estos casos, el aparato receptor ha de poder demodular la señal que recibe. - Modulación en doble banda lateral (DBL). Consiste en una modulación AM en la cual se suprime la línea espectral correspondiente a la portadora, esta supresión se hace empleando moduladores especiales (Balanceantes, equilibrados o en anillo) que entregan la señal modulada sin portadora. - Modulación en banda lateral única (BLU). En una modulación AM podemos eliminar una de las bandas laterales, sin perder la información correspondiente a la transmisión, con esto conseguimos un ancho de banda menor y ahorramos parte de la potencia necesaria para transmitir. - Modulación en banda vestigial. Este procedimiento se emplea en la transmisión de TV, permite el paso de una banda lateral completa y una parte (vestigio) de la otra. O sea, que recorta parte de una banda lateral. 2. Modulaciones de Frecuencia La modulación de frecuencia consiste en hacer variar la frecuencia de la portadora en función de la señal moduladora. Estas variaciones han de ser proporcionales a la amplitud de la señal a transmitir (moduladora). Generación Para generar una modulación en FM partimos de una señal portadora, la señal que queremos transmitir, llamada moduladora y un circuito modulador. El funcionamiento del circuito es el siguiente: -La frecuencia de la señal de salida no será siempre la de la portadora. -Si la señal moduladora tiene un valor de 0 Volts, en la salida tendremos una señal de frecuencia igual a la portadora. -Si la señal moduladora tiene un valor positivo, en la salida tendremos una señal de frecuencia proporcional superior a la de la portadora. -Si la señal moduladora tiene un valor negativo, en la salida tendremos una señal de frecuencia proporcional inferior a la de la portadora. -Es importante destacar que la frecuencia de la moduladora no afecta a la variación de frecuencia de la señal modulada, únicamente influye en la velocidad a la que se produce la variación.Página 11 de 18
  12. 12. Equipos de Imagen Tema 1. Señales Samuel Fernández Espectro de la frecuencia en FM. En AM se producen 2 bandas laterales, una a cada lado de la frecuencia portadora, con una separación igual al valor de la moduladora. Matemáticamente se puede demostrar que en FM, el número de bandas laterales que aparecen es teóricamente, infinito. La amplitud de estas bandas es decreciente y pueden despreciarse a partir de cierto valor. El número de bandas significativas es directamente proporcional a la amplitud de la señal moduladora e inversamente proporcional a su frecuencia. Según todo esto, para determinar el ancho de banda de una emisión en FM, será necesario considerar más factores que en AM y por tanto su estudio y comprensión es mucho más complejo. Influencia de la amplitud de la moduladora. Como hemos comentado anteriormente, el número de bandas significativas es directamente proporcional a la amplitud de la señal moduladora. No siempre una banda lateral FM es decreciente respecto de la anterior, aunque el conjunto del espectro si que tiene tendencia a cero. Es necesario fijar un valor de desviación, es decir un nivel de amplitud máxima para todas las emisiones de FM de una misma banda con el fin de unificar los anchos de banda. En FM comercial este valor es de ±75 Khz. en torno de la frecuencia de reposo de la portadora. Influencia de la frecuencia de la moduladora. A efectos de aparición de bandas laterales, estas son inversamente proporcionales al valor de la frecuencia de la señal moduladora. Dicho de otra forma, cuanto menor sea la frecuencia de señal que queremos transmitir, mayor será el espectro de la señal resultante. Índice de modulación Dado que el ancho de banda en FM depende tanto de la amplitud como de la frecuencia de la moduladora, se define el índice de modulación como la relación entre ellos, es decir el cociente entre la desviación de frecuencia y la frecuencia modulada: m=∆f/fm Este parámetro da una idea del número de bandas laterales presentes en una modulación y es la base para calcular el ancho de banda ocupada.Página 12 de 18
  13. 13. Equipos de Imagen Tema 1. Señales Samuel Fernández Ancho de banda de transmisión El proceso matemático, para calcular el ancho de banda, es muy complejo, el resultado se puede resumir en forma de tablas de valores. Según esto, en una transmisión en FM comercial, con una desviación máxima de ± 75 Khz. y unas frecuencias moduladoras entre 50 y 15.000 Hz resulta: Índice de modulación mínimo: 75.000 / 15.000 = 5 Bandas significativas = 8 Ancho de banda = 240 Khz. Índice de modulación máximo: 75.000 / 50 = 1500 Bandas significativas = 1.501 Ancho de banda = 150 Khz. Según los valores dados por la referida tabla, para una transmisión de FM comercial se ha de disponer de un espacio frecuencial de 240 Khz para transmitir una banda base de 15KHZ. Este valor es muy superior del que seria necesario en AM (30 KHZ). Por lo tanto hemos de tener en cuenta que en FM se ocupa un gran ancho de banda para las transmisiones. La utilización de índices de modulación muy pequeños, limitando la desviación máxima y la frecuencia de la portadora, permite reducir el número de bandas laterales a una única (m inferior a 0,3). Esto representa un ancho de banda menor, equivalente al ocupado por una transmisión de AM, pero con las ventajas de FM. Aunque esto significa una pérdida de calidad es válido para comunicaciones en banda estrecha (NFM) empleadas Walkies-talkies, teléfonos sin hilos etc. 3. Modulaciones De Fase (PM) La modulación de fase consiste en hacer variar la fase de la portadora en función de la señal moduladora. Estas variaciones han de ser proporcionales a la amplitud de la señal a transmitir (moduladora). La señal a transmitir, presentará siempre la misma frecuencia que la señal portadora. Este tipo de modulación es muy robusta frente a las atenuaciones producidas por una transmisión a gran distancia, por lo que se utiliza principalmente en las comunicaciones satélite en su variante QPSK.Página 13 de 18
  14. 14. Equipos de Imagen Tema 1. Señales Samuel Fernández 4. El Sistema PAL PAL es un sistema de codificación analógico de la señal de televisión que se utiliza en la mayor parte del mundo (África, Asia, Europa, Australia y algunos países americanos). Se basa en que la imagen se dibuja a partir de líneas ligeramente inclinadas con un barrido progresivo y entrelazado; es decir, cada imagen se compone de dos semi- imágenes a las que llamamos campos dibujadas a partir de líneas alternas. De esta forma, cuando el haz de rayos catódicos incide sobre la matriz de luminóforos (inicialmente unos 720 por cada línea), estos emiten una intensidad de luz proporcional a la que porta el haz. Este sistema, ideado para televisores de tubo, con la implantación de la tecnología TDT o DVB-T, sigue en vigor en la medida en que muchos de los equipos de trabajo basan el tratamiento de las señales de imagen en él, siendo necesario su estudio y el de las señales que conlleva. 1. Señales Implicadas en el Sistema PAL Dentro de PAL, existen varias señales que componen todo el sistema y que son necesarias para la correcta visualización del mismo. Estas señales parten de las componentes Rojo, Verde y Azul (RGB) captadas por una cámara que se toman como origen para hacer compatible el sistema en color con su predecesor en Blanco y Negro. Luminancia: Se trata de la señal que contiene la información de la cantidad de luz que tiene la imagen, y dado que el ojo no es igual de sensible a todas las componentes de color, se calcula, para un punto concreto, a partir de la siguiente ecuación: Y(R,G,B) = 0,3R + 0,59G + 0,11B Esta señal, en banda base (sin modular), tiene un ancho de bando de 5MHZ, si bien es cierto que normalmente la imagen no tiene tanto contraste (cambios de blanco a negro) como para que ésta señal abarque todo su espectro. Crominancia: Se trata de un vector formado a partir de dos señales llamadas U y V conocidas como diferencia de azul y diferencia de rojo que, sumadas, proporcionan la información de color necesaria para producir la imagen. Se calculan como: U(B,Y) = 0,493(B - Y) V(R,Y) = 0,877(R - Y) El ancho de banda es de 1MHz cada una, y se encuentran solapadas a la señal de luminancia (en la parte alta del espectro gracias a un proceso de modulación) con la ventaja de que ocupan el espacio que deja aquella. En caso de que la señal de luminancia tenga demasiado detalle aparece un efecto llamado Moaré como consecuencia de la interferencia producida entre ambas señales.Página 14 de 18
  15. 15. Equipos de Imagen Tema 1. Señales Samuel Fernández Sincronismos: Esta señal, incluida junto con la luminancia, permite controlar que el haz de electrones recorra la pantalla de forma síncrona y que, por tanto, la señal quede perfectamente dibujada. Incluye dos tipos de sincronismos: Sincronismo Horizontal: que garantiza el retorno del haz al llegar al final de la pantalla. Ocurre 625 veces por segundo (tantas como líneas), lo que supone una frecuencia de 15.625 Hz. Es decir, que cada línea tiene una duración de de 64 s, de los cuales solamente de 52 s contiene información de imagen y, el resto, información relativo al sistema (orden de retorno y fase de información de color). Sincronismo Vertical: permite que el haz de electrones vuelva a su punto original cuando llega al final de la pantalla. Se trata de una señal que aparece 50 veces por segundo (cada 20ms), dado que cada una de las 25 imágenes completas que se dibujan por segunda, se divide en dos campos de igual duración El hecho de que el haz tenga que retornar al comienzo de la pantalla lleva un tiempo que se traduce en que no todas las líneas tendrán información de imagen; exactamente de las 625 líneas que compondrían la imagen originalmente solo 576 llevan información de imagen. El resto, contienen información útil para el sistema como son señales de test, servicios añadidos como el teletexto, subtítulos… Si a esto añadimos que el sistema está pensado para 720 columnas activas (puntos por línea), obtenemos una resolución teórica de PAL de 576x720px. (576x768px. reales a efectos de aplicación). Audio: Aunque no se trata de una información de imagen, la televisión sin sonido no sería lo que ha llegado a ser. Por este motivo, fuera del espectro de estas señales anteriores, se pueden encontrar varios canales de sonido para sistemas de audio dual (versiones subtituladas sobre un segundo canal soportado en la portadora Zweiton) con sus valores de modulación FM (generalmente FM con ±50KHz) y/o un canal NICAM (modulación de audio digital). 2. Estructura de la Señal. Estudio en el tiempo Con todo lo explicado anteriormente y partiendo de una carta de barras de grises, podemos conocer el aspecto de una línea de televisión como se refleja en al imagen: Para convertir esta señal en B&N a una señal en color, solamente tendríamos que sumar la crominancia, apareciendo una señal soportada en cada uno de los escalones que se traducirá por el color que represente. De forma general, podemos calcular las amplitudes a partor del módulo de la crominancia C=(U, V) como se muestra en la siguiente tabla.Página 15 de 18
  16. 16. Equipos de Imagen Tema 1. Señales Samuel Fernández Módulo de la Crominancia Barras de R G B Y B-Y R-Y color (| C |= (B − Y) 2 + (R − Y) 2 ) Blanco 1 1 1 1 0 0 0 Amarillo 1 1 0 0,89 -0,89 0,11 0,90 Cyan 0 1 1 0,70 0,30 -0,70 0,76 Verde 0 1 0 0,59 -0,59 -0,59 0,83 Magenta 1 0 1 0,41 0,59 0,59 0,83 Rojo 1 0 0 0,30 -0,30 0,70 0,76 Azul 0 0 1 0,11 0,89 -0,11 0,90 Negro 0 0 0 0 0 0 0 Si la imagen no cambia, las 576 líneas de imagen que tiene pal serían exactamente iguales, no siendo así con las que se encontramos durante el tiempo que el haz retorna al comienzo de la pantalla. En esta parte la señal, encontramos información necesaria para que todo funcione correctamente y que se refleja en la siguiente imagen: Solamente anotar que, por cuestiones de sencillez en el diseño de los servos electrónicos de control, la señal se invierte por lo que el impulso de borrado horizontal aparece en el nivel máximo en lugar de en el mínimo. 3. El Espectro PAL Cuando tenemos la señal en banda base, es decir sin modular, un canal PAL se va a distribuir entre 0 y 8MH (en la variación más extendida PAL G). Estos 8MHZ, se distribuyen de la siguiente manera:Página 16 de 18
  17. 17. Equipos de Imagen Tema 1. Señales Samuel Fernández 5,5 MHz serán ocupados por a señal de video cumpuesto (luminancia y crominancia) de manera que, en torno a, 4366 Mhz del comienzo de la señal, encontraremos la portadora de crominancia con 0,5MHz de señal a cada lado. Sin embargo, dicha portadora no se incluye por lo que el tipo de modulación es una modulación AM en cuadratura (señales U y V desfasadas 90º) con portadora suprimida. Para las bandas IV y V, aunque ya en desuso por la implantación de TDT desde abril de 2010, el ancho de cada canal es de 8MHz disponible para todas las señales implicadas. Cuando se incluye la información de audio y se modula la señal a un canal, la portadora de vídeo de esta modulación (y por tanto la de la luminancia) se encuentra a 1,25MHz del comienzo del canal. El audio se encontrará modulado FM a 5,5MHz de la portadora de vídeo y, por supuesto, la subportadora de color (suprimida), estará a 4,43MHz de dicha portadora de canal. En el siguiente gráfico se muestra la información para un canal PAL con una sola portadora de audio. En general podremos conocer que todos los valores de frecuencia relacionados con un canal PAL G a partir de la siguiente tabla.: Nº Canal FInicial FFinal FVideo FCrominancia FAudio FNicam n FInicial + del 21 al 420+n*8 FInicial + 8 FVideo +4,43 FVideo +5,5 FVideo +5,85 1,25 69Página 17 de 18
  18. 18. Equipos de Imagen Tema 1. Señales Samuel Fernández 4. Funcionamiento del Sistema PAL En la transmisión de datos por radiofrecuencia, los errores de fase son comunes y se deben a retardos de la señal en su llegada o procesado. Los errores de fase en la transmisión de vídeo analógico provocan un error en el tono del color, afectando negativamente a la calidad de la imagen. El nombre phase alternating line (en español línea alternada en fase) hace referencia al modo en que la información de color (crominancia) de la señal de vídeo es transmitida, siendo invertida en fase en cada línea, permitiendo la corrección automática de los posibles errores en fase al cancelarse entre sí. Aprovechando que habitualmente el contenido de color de una línea y la siguiente es similar, en el receptor se compensan automáticamente los errores de tono de color tomando para la muestra en pantalla el valor medio de una línea y la siguiente, dado que el posible error de fase existente entre ambas será contrario. De esta forma, en lugar de apreciarse dicho error como un corrimiento del tono, como ocurriría en el sistema americano original NTSC, se aprecia como un ligero defecto de saturación de color, que es mucho menos perceptible al ojo humano. Esta es la gran ventaja del sistema PAL frente al sistema NTSC . Las líneas en las que la fase está invertida con respecto a cómo se transmitirían en NTSC se llaman a menudo líneas PAL, y las que coincidirían se denominan líneas NTSC. El funcionamiento del sistema PAL implica que es constructivamente más complicado de realizar que el sistema NTSC. Esto es debido a que, si bien los primeros receptores PAL aprovechaban las imperfecciones del ojo humano para cancelar los errores de fase, sin la corrección electrónica explicada anteriormente (toma del valor medio), esto daba lugar a un efecto muy visible de peine si el error excedía los 5º. La solución fue introducir una línea de retardo en el procesado de la señal de luminancia de aproximadamente 64 s que sirve para almacenar la información de crominancia de cada línea recibida. La media de crominancia de una línea y la siguiente es lo que se muestra por pantalla. Los dispositivos que eran capaces de producir este retardo eran relativamente caros en la época en la que se introdujo el sistema PAL, pero en la actualidad se fabrican receptores a muy bajo coste. Esta solución reduce la resolución vertical de color en comparación con NTSC, pero como la retina humana es mucho menos sensible a la información de color que a la de luminancia o brillo, este efecto no es muy visible. Los televisores NTSC incorporan un corrector de matiz de color (en inglés, tint control) para realizar esta corrección manualmente. El sistema PAL es más consistente que el formato NTSC. Este último puede ser técnicamente superior en aquellos casos en los que la señal es transmitida sin variaciones de fase (por tanto, sin los defectos de tono de color anteriormente descritos). Pero para eso deberían darse unas condiciones de transmisión ideales (sin obstáculos como montes, estructuras metálicas...) entre el emisor y el receptor. En cualquier caso en el que haya rebotes de señal, el sistema PAL se ha demostrado netamente superior al NTSC (del que, en realidad, es una mejora técnica). Esa fue una razón por la cual la mayoría de los países europeos eligieron el sistema PAL, ya que la orografía europea es mucho más compleja que la norteamericana (todo el medio oeste es prácticamente llano). Otro motivo es que en los EE.UU. son habituales las emisiones de carácter local y en Europa lo son las estaciones nacionales, cuyas emisoras suelen tener un área de cobertura más extensa. En el único aspecto en el que el NTSC es superior al PAL es en evitar la sensación de parpadeo que se puede apreciar en la zona de visión periférica cuando se mira la TV en una pantalla grande (más de 21 pulgadas), porque la velocidad de refresco es superior (30Hz en NTSC frente a 25Hz en PAL). De todas formas este es un argumento relativamente nuevo ya que en los años 50 el tamaño medio de la pantalla de un receptor de televisión era de unas 15 pulgadas, siendo además que esta frecuencia de refresco de imagen se adoptó en su origen condicionada por la frecuencia de la corriente alterna en los países europeos, que es 50Hz frente a los 60Hz de los EE.UU.Página 18 de 18

×