Voltammetry
伏安分析法
Basic principle of voltammetry
Voltammetry:
A group of electrochemical methods based on
measuring current (i)- applied pot...
Polarographic analysis :
Electrolytic analysis carried out
under special conditions.
1. Polarographic analysis process and...
If the electrode potential has great changes
when infinite small current flow through the
electrode, such electrode is ref...
Three electrode
cell: Working
Reference
Counter/auxilliary
current flows between
working and counter
electrodes.
Potential...
Two special electrodes
Supporting electrolyte : Usually relatively higher
concentration of strong electrolytes (alkali met...
① ~ ② residual current
③ electrolytic current
④ ~⑤ limiting diffusion
current
Cd 2+
+2e + Hg =
Cd(Hg)
2Hg + 2Cl-
-2e = Hg2...
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4
i (µA)
0.001 M Cd2+
in 0.1 M KNO3 supporting electrolyte
V vs SCE
Working electrode is
...
E½ at ½ i
Limiting current
Related to concentration
0.5mmol 镉离子极谱图
Limiting diffusion current -- A basis of
polarographically quantitative analysis
When the applied voltage exceeds the deco...
The potential at which the current is equal to
one half the limiting current is called the half-
wave potential and given ...
How it works?
▲ The applied voltage is gradually increased,
typically by going to a more positive( more negative
decomposi...
How it works ?
The reduced species alters the surface of the
mercury electrode.
To prevent problems, the mercury surface i...
2. The diffusion current theory and
polarographic wave equation
In above equations, K is called Ilkovic constant, it is ex...
id = 607nD1/2
m2/3
t1/6
C
Average limiting diffusion
current denoting average
current on mercury drop from
drop forming to...
polarographic wave equation :
ii
i
nF
RT
EE
d −
−= ln2/1
When i = ½ id , log term in above equation is equal to zero,
corr...
● Residual current
(1) redox reactions of impurities in solution
(2) charging of Hg drop
(non-faradaic current / non-redox...
Complex artifactual
phenomenon
Less likely at low drop
rates, in concentrated
electrolyte, or low
concentration of
elect...
● Oxygen wave
Dissolved oxygen is easily reduced at many working
electrodes. Thus an aqueous solution saturated with air
e...
Factors that affect limiting diffusion
current
Characteristics of capillary
– hight of Hg
Potential of dropping Hg
electro...
Question
Why a reference electrode with large area and a
dropping mercury electrode with very small area are
used to elect...
( id ) avg = K·c
●Direct comparison method
●Calibration curve method
●Standard addition method
4. Polarographically quanti...
Fundamental studies
Inorganic applications
Organic applications
Applications in pharmaceutical and biochem fields
5. Appli...
Voltammetry
Voltammetry
Voltammetry
Voltammetry
Voltammetry
Upcoming SlideShare
Loading in …5
×

Voltammetry

1,662
-1

Published on

Published in: Technology

Voltammetry

  1. 1. Voltammetry 伏安分析法
  2. 2. Basic principle of voltammetry Voltammetry: A group of electrochemical methods based on measuring current (i)- applied potential curve during electrolysis - only a small amount of sample (analyte) is used Polarography: Invented by J. Heyrovsky (Nobel Prize 1959). Differs from voltammetry in that it employs a dropping mercury electrode (DME) as Working electrode to continuously renew the electrode surface. Read: pp. 716 –753 Problems: 25-1,2,3,6,13
  3. 3. Polarographic analysis : Electrolytic analysis carried out under special conditions. 1. Polarographic analysis process and the conditions for polarographic wave formation specific characteristics : A 、 a polarized electrode and a depolarized electrode are used as working electrode B 、 No stirring Incomplete electrolysis (only a small amount of analyte is
  4. 4. If the electrode potential has great changes when infinite small current flow through the electrode, such electrode is referred to as polarized electrode. eg. DME ; If the electrode potential does not change with current , such electrode is called ideal depolarized electrode. eg. SCE Polarized electrode and depolarized electrode
  5. 5. Three electrode cell: Working Reference Counter/auxilliary current flows between working and counter electrodes. Potential controlled by potentiostat between working and reference electrodes.
  6. 6. Two special electrodes Supporting electrolyte : Usually relatively higher concentration of strong electrolytes (alkali metal salts) serves as supporting electrolyte Dissolved oxygen is usually removed by bubbling nitrogen through the solution Voltage scanning Under unstirred state, recording voltage - current curve
  7. 7. ① ~ ② residual current ③ electrolytic current ④ ~⑤ limiting diffusion current Cd 2+ +2e + Hg = Cd(Hg) 2Hg + 2Cl- -2e = Hg2Cl2
  8. 8. -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 i (µA) 0.001 M Cd2+ in 0.1 M KNO3 supporting electrolyte V vs SCE Working electrode is no yet capable of reducing Cd2+ ⇒ only small residual current flow through the electrode Electrode become more and more reducing and capable of reducing Cd2+ Cd2+ + 2e- Cd Current starts to be registered at the electrode Current at the working electrode continue to rise as the electrode become more reducing and more Cd2+ around the electrode are being reduced. Diffusion of Cd2+ does not limit the current yet All Cd2+ around the electrode has already been reduced. Current at the electrode becomes limited by the diffusion rate of Cd2+ from the bulk solution to the electrode. Thus, current stops rising and levels off at a plateauid E½ Base line of residual current
  9. 9. E½ at ½ i Limiting current Related to concentration
  10. 10. 0.5mmol 镉离子极谱图
  11. 11. Limiting diffusion current -- A basis of polarographically quantitative analysis When the applied voltage exceeds the decomposition voltage, diffusion-controlled current is expressed as: i = K(C-C0) When the applied voltage gets more negative, C0 →0, current becomes only diffusion limited, then id = KC Id reaches a limiting value proportional to ion concentration C in bulk solution, and do not changes with applied voltage longer
  12. 12. The potential at which the current is equal to one half the limiting current is called the half- wave potential and given the symbol E1/2. Half-wave potential —polarographic qualitative analysis
  13. 13. How it works? ▲ The applied voltage is gradually increased, typically by going to a more positive( more negative decomposing potential) ▲ A small residual current is observed. ▲ When the voltage becomes great enough, reduction occurs at the analytical electrode causing a current. ▲ The electrode is rapidly saturated so current production is limited – based on diffusion of the analyte to the small electrode.
  14. 14. How it works ? The reduced species alters the surface of the mercury electrode. To prevent problems, the mercury surface is renewed by “ knocking off ” a drop –providing a fresh surface. This results in an oscillation of the data as it is collected.
  15. 15. 2. The diffusion current theory and polarographic wave equation In above equations, K is called Ilkovic constant, it is expressed as follows: id = KC We have already known: K = 607 n D1/2 m2/3 t1/6 Thus, id = 607nD1/2 m2/3 t1/6 C
  16. 16. id = 607nD1/2 m2/3 t1/6 C Average limiting diffusion current denoting average current on mercury drop from drop forming to falling (µA) Number of transferring electrons in electrode reaction(e/mol) Diffusion coefficient of electroactive analyte in solution(cm2 .sec-1 ) Mercury mass flow rate(mg.sec-1 ) Drop time (sec) Concentration of electro-active analyte(mmol.L-1 ) From above equation, we can find that when temperature, matrix solution and capillary characteristic are kept constant, id is proportional to C
  17. 17. polarographic wave equation : ii i nF RT EE d − −= ln2/1 When i = ½ id , log term in above equation is equal to zero, corresponding potential is called halfwave potential E1/2 ●E1/2 independent on the concentration ●basis of qualitative analysis
  18. 18. ● Residual current (1) redox reactions of impurities in solution (2) charging of Hg drop (non-faradaic current / non-redox current) ● Migration current The current produced by static attraction of the electrode to sought-for ions 3. Interference current in classical DC polarography
  19. 19. Complex artifactual phenomenon Less likely at low drop rates, in concentrated electrolyte, or low concentration of electroactive species Lessened by inclusion of surfactants in medium ● Polarographic Maximum (or malformed peak )
  20. 20. ● Oxygen wave Dissolved oxygen is easily reduced at many working electrodes. Thus an aqueous solution saturated with air exhibits two distinct oxygen waves. The first results from the reduction of oxygen to hydrogen peroxide: O2 + 2H+ + 2e-  H2O2 The second wave corresponds to the further reduction of hydrogen peroxide: H2O2 + 2H+ + 2e-  2H2O Sparge solutions with high purity N2 or Ar for 5-20 min
  21. 21. Factors that affect limiting diffusion current Characteristics of capillary – hight of Hg Potential of dropping Hg electrode Composition of solution Temperature Factors that affect half-wave potential Type and concentration of supporting electrolyte Temperature Forming complex Acidic of solution
  22. 22. Question Why a reference electrode with large area and a dropping mercury electrode with very small area are used to electrolyze in polarographic analysis ? Why large amount of supporting electrolyte is added to sample solution? Why does nitrogen gas pass through the solution before electrolysis ? In the process of polarographic analysis whether or not to carry out stirring the solution? Why?
  23. 23. ( id ) avg = K·c ●Direct comparison method ●Calibration curve method ●Standard addition method 4. Polarographically quantitative analytical methods
  24. 24. Fundamental studies Inorganic applications Organic applications Applications in pharmaceutical and biochem fields 5. Applications
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×