Your SlideShare is downloading. ×
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
19960042711 1996066507
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

19960042711 1996066507

286

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
286
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. /'/ NASA Contractor Report 198300 Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines Joe W. Hough AlliedSignal Contract April Phoenix, NAS1-20102 1996 National Space and Donald Engines, Aeronautics and Administration Langley Research Center Hampton, Virginia 23681-0001 S. Weir Arizona .-//
  • 2. AIRCRAFT NOISE PREDICTION PROGRAM (ANOPP) FAN NOISE PREDICTION FOR SMALL ENGINES Final Report Prepared for National Aeronautics and Space Administration Langley Research Center Contract NAS1-20102 Task Order 6 By Joe W. Hough and Donald S. Weir SUMMARY ANOPP has been successfullyrevised to include a module which improves fan noise prediction capability with small turbofan engines. The modifications have been verifiedwith measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significantimprovement in overall and spectral noise predictions. The revised technique provides predictions which now coincide with the measured data spread from the AlliedSignal engines. The most notable revisions to the Heidmaun method include the reduction of peak discrete tone levelsand combination tone levels.
  • 3. TABLE OF CONTENTS Pa.e 1.0 STATEMENT 1.1 I. 2 1.3 2.0 OF WORK 1 1 1 2 Background Objective Summary RESULTS 2.1 2.2 3 Technical Update of 2.2.1 2.2.2 2.2.3 Approach Small Engine Data Base 2.2.4 2.2.5 From ANOPP 2.2.6 2.3 Engine Fan Design Dominant Engine Fan Noise ANOPP And GASP Predictions From Engine 1 ANOPP And GASP Predictions From Engine Generalized Develop 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 3.0 REVISED 3.1 3.2 3.3 SMALL Engine 2 And GASP Small Inlet Inlet Inlet Discharge Discharge ENGINE 6 6 7 Versus Data Versus Data 8 Engine Fan Noise 9 I0 Revisions Prediction Method Discrete Tone Noise Combination Tone Noise Broadband Noise PREDICTION Engine Engine Engine Frequencies Versus Data Predictions 3 Small Engine 3 5 Discrete Broadband 13 17 20 23 25 Tone Noise Noise COMPARISONS WITH MEASURED 11 DATA 28 28 29 30 1 2 3 REVISION TEST CASE REFERENCES 31 32 iii
  • 4. OF C_S (Contd) APPENDICES I ANOPP II MEASURED ENGINE THEORETICAL DATA I, MANUAL VERSUS UPDATE (15 pages) REVISED PREDICTION, GASP, AND HEIDMANN, (20 pages) III MEASURED DATA VERSUS ENGINE 2, (28 pages) REVISED PREDICTION, GASP, AND HEIDMANN, IV MEASURED DATA VERSUS ENGINE 3, (20 pages) REVISED PREDICTION, GASP, AND HEIDMANN, V MEASURED DATA VERSUS ENGINE 1, (5 pages) REVISED PREDICTION, GASP, AND HEIDMANN, VI MEASURED DATA VERSUS ENGINE 2, (7 pages) REVISED PREDICTION, GASP, AND HEIDMANN, VII MEASURED DATA VERSUS ENGINE 3, (4 pages) REVISED PREDICTION, GASP, AND HEIDMANN, VIII SMALL ENGINE REVISION; FAN REVISION USER'S NOISE PREDICTION TEST CASE (9 pages) IX SMALL ENGINE DEVELOPMENT X (15 MANUAL AND ANOPP CODE pages) INTERIM PREDICTION METHOD FOR FAN AND COMPRESSOR SOURCE NOISE, M. F. HEIDMANN, LEWIS RESEARCH CENTER (SELECT FIGURES ONLY) AND AIRCRAFT NOISE PREDICTION PROGRAM THEORETICAL MANUAL, W. E. ZORUMSKI, LANGLEY RESEARCH CENTER (SELECT TABLES ONLY) (20 pages) iv
  • 5. FINAL REPORT AIRCRAFT NOISE PREDICTION PROGRAM(ANOPP) FAN NOISE PREDICTION FOR SM_LL ENGINES 1.0 STATEMENT 1.1 Background In OF 1982, WORK AlliedSignal Company) produced Aviation Aircraft," Research Center This ion a "Computer (NASA under study procedure in to correlate ANOPP fan 1.2 NASA to noise modify method of fan have Noise Heidmann NASA noise Program in measurements need Lewis (GASP). predict(ANOPP) engines the General Program fan from Engine of with Synthesis confirmed smaller the Prediction noise Turbine contract Additional time for the Noise range. that Predict Aviation Aircraft thrust since to Garrett under General measurements 6000-pound AlliedSignal Program a need the (then CR-168050) the identified better Engines the 3000- made to to revise by the engines. Objective The large NASA ANOPP transport has aircraft. transport and fan prediction noise tegrate a ANOPP. business fan Four been Update (2) Develop (3) Code of (4) Document and has capability. of for ANOPP to demonstrated The prediction subtasks successfully Application aircraft noise (1) used objective capability predictions smaller a need of for to this small engine engine validate and report a data fan base noise revised results 1 prediction ANOPP fan noise the is in- engines include: small regional improve task smaller of method module to into
  • 6. 1.3 S_ary ANOPP has improves The fan been noise prediction modifications separate have show revised to capability been engines. a significant shows the include with verified fan AlliedSignal prediction noise successfully with small a turbofan measured of in which engines. data Comparisons improvement module from the overall three revised and spectral predictions. Figure 1 Heidmann and predictions GASP which AlliedSignal method The noise data and revised the of compared data discrete to revisions The test case have revised has been _ been module from the tone levels included been for into verified the with W .... demonstration purposes. m -- I::llS_8_ON GASP (lt]r)d : 1.5 _% -I-I" 9s.o i ..o 85.0 I I I I I I I l 0.7 0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Rotortip retatJve inletroachnumber,Mtr I 1. and R_isionimpmv_fannoisepredi_onby2_SdB Revised In Fan AlliedSignal Noise Module Small Shows Engine 2 I Overall Prediction. ANOPP measured • .... ..... ...... Figure the Heidmann o/total soundpower levelsfor threesmallAE engines I05.0 , incorporated has B ----"'" •,- the provides spread revisions peak to technique measured notable reduction engine module. a most as levels. small fan with The the tone The coincide engines. combination prediction predictions. now include improved Improvement
  • 7. 2.0 RESULTS 2.1 Technical The Approach proposed revision are fan intended noise prediction under contract data from Heidmann noise prediction to improve procedures with NASA prediction upon originally NASA-Ames Lewis revisions and under the procedure the by improved direction of noise is the small engine well-established developed later fan in The F. divided Boeing Company full-scale by M. source engine Heidmann. into In five the separate modules: o Broadband o noise Discrete emitted tone noise from the emitted inlet from and the discharge inlet and inlet ducts discharge duct ducts o Combination Predictions spectrum then is levels vision from dure. radius calculated within each only of this some engine-to-engine, The the engines procedure, total the five influential from and were prediction one-third level, octave and source. logarithmic summation a band free-field Total fan of the noise sound modules. and available these a the parameters of the spectrum procedure were from provide one-meter performance within three a of emitted module through engine specified that a noise each function, at Several are within shape directivity tone and drive for parameters not fully parameters engine the build predictions. AlliedSignal's did not investigated are parameters shown proposed appreciably in this below: Given revary proce-
  • 8. Performance Parameters o Mass flow o Total o Design rate temperature rotor remained ±5 Engine percent. (Mtr) vary Presence of do Mach number three made to - This engines, modify parameter (Mtr) the d - Heichnann 1.5 cor- used (RSS) to inlet Mach of Inlet number - flow During into the not examined have separate use this AlliedSignal's spectrum module data for revised level, based (ICD) spectrum the en- corrections which effects; static AlliedSignal eliminate inlet with flow and uses flow effects AlliedSignal without the an distortion distortion investigation. ICD does and can studies. predictions on to this future did AlliedSignal"s (ground data engine engines adjusted. testing, Therefore, in the Distortion device inlet. were be three correction. (IGVs) acoustic control the Therefore, not Flow for RSS Vanes IGVs. could RSS the Guide have IGVs - improve Inlet to Presence each fan the relative not due inlet within was tip enough operation) the d was Spacing Rotor-Stator vary to for attempt rotor gines o inlet constant where the Parameters not o across relative No Operating Build o tip nearly rections o rise shape, measured 4 concentrate on and directivity data of three the adjustments adjustments small engines.
  • 9. No attempt was made to add new modules porate different prediction procedures approach. 2.2 Update Of Subtask 1 nesses of engine it with is same and that discharge fan engine content, for noise tone to a large on full-scale data degree, weak- AlliedSignal fan data. does data. inlet and engine fan noise fan the small noise Clearly, not obey the Specifically, significantly levels, lesser of fan routine noise and, Lewis strengths based comparison NASA small of predictions a of the fan identification shows or to incorthe Heidmann Base GASP function Heidmann spectrum 2 correlation evident spectrum the and Figure the Data for Heidmann correlation current and the calls data. data Engine Small to the prediction not related to the overpredicts buzz-saw peak broadband peak inlet noise noise and level content. Correlation of total sound power levels for/Ulk_lS_md fan data " Engine #1 u Engine #2 a Engine #3 I _ DmaCowelatm PWL = 98.5 + 101og_TI,aTo) + 101og(SHP) 140 .= "3" :.1. • 0 ,30 o o A u & A A A & o o. 120 1000 5OOO 1OOOO Shaft Horsepower, SHP NASA-Lewis Data Correlation is Nearly 5 dB Higher Than AIIiedSignal Data Figure 2. ItlliedSignal Well With Small HASALewis Engine Fan 5 Data Data. Does Not Correlate J
  • 10. 2.2.1 Engine Fan Provided three has Desiqn in Table AlliedSignal a single ground IGVs and test stage. idle to Each at Total Pressure Ratio, PR engine 0.3-1.2 or varies with FAN ranges geared the 400 engines use of for do an fans pounds at not have inlet flow testing. DESIGN PROPERTY R&NGES Vane-to. Blade Ratio, VIB Blade Passage Frequency, fin Hz Cut-Off Factor, 6 RotorStator Spacing Factor, RSS, percent 2.0-2.5 1.45-1.53 the ungeared from These acoustic Rotor Tip Design Relative Rotor Tip inlet Macl Math Number Number, (Mtr)d Idt 100-22C 1.5 - 1.6 the speed. eliminated AlliedSignal Mass Flow Rate, Iblsac of property output full for static design thrust pounds 1. fan engines. is TABLE 1,2, and3 the distortion device Fan are Corrected 6500 inlet control 1 3600-5300 0.77-1.15 170-214 Inlet Guide Vanes None 214Z790-001 2.2.2 Dominant Engine All_edSignal in the are engine In tribute up lower bands provided a this is to ~3 the reflecting from figures and kHz in strong noise bands, 1 kHz are to computed All determined engine aft 10 multimicrophone engine operating noise kHz. from components fan performs noise, for frequencies jet most above noise can 1 con- arc. by is other engine shown only Overall this for points, microphone noise array routinely that source contributions fan a AlliedSignal engine the with plane. has dominant speed frequency noise arrangement. the lower Frequencies engine separation some Given tave in speeds, kHz. the over measured source Noise measures far-field noise Fan for noise frequency levels range. sources one-third shown in oc- in the
  • 11. 2.2.3 _NOPP And Figure and the 3 shows For consistently higher the than pass be the 4 test noise subsonic and tip data. the Enqine 1 levels for using the the data. a Examination harmonics noise an levels Heidmann and routines the 6- GASP to 7-dB predictions average and GASP maximum of shows 1 and Heidmann predictions Engine 2- spectrum to for 6-dB content over appear well. supersonic and Frc_ power sound speeds, Broadband as of power their data. mismatched tip fan Data predictions sound measured measured dB fan tones For Versus correlation provide measured to Predictions the associated routines. blade GASP speeds, However, the fan combination tone predictions tones are noise fair still spectra better against overpredicted are slightly by higher 2 than data. Fan Noise C.,ormlalbnfix Test F.ngine#1 iD Heiclmann u GASP x Measured 150 ! > o..z- _m = 140 X D m a X 130 _ g'" il g X 0 120 x 1000 I I 1500 2OO0 I 2500 I I :3000 3500 I I 4000 I 4500 5000 Shaft Horsepower, SHP Discrete Figure 3. Tones and Combination Heickk_nn _nd Overprediction _ For Tones Show Slight Engine 1. Require To Revision Moderate Fan I Noise to
  • 12. 2.2.4 ANOPP And Figure 2. Unlike to 3-dB over is 4 GASP shows Engine over Prediotions 1, the measured the underpredicted overpredicted blade for Broadband fan appears sound their tip 2 levels for harmonics but Combination introduction Engine are speeds, speeds. early Engine power and tip the Frc_ subsonic for supersonic only 4- to tone of buzz-saw 27-dB noise and increases. is to of tones data speed noise distribution pass during as Data correlation measured data Versus predicted peak at a well, lower however, frequency than the spectral 2.5f b. Fan Noise Correlali_ tot Test Engine#2 J m Heidmann u GASP 140 • I O | D _. D x b. x X D x is0 o ®5 0 120 I 1000 I I I I I I I 1500 2000 2500 3000 3500 4000 4500 5000 ShaftHorsepower,SHP Broadband Spectral Distribution Figure 4. HeidBann And Overprediotion and Combination GKSP Show For 8 Engine Tones Require Revision Moderate 2. Fan Noise J
  • 13. 2.2.5 ANOPP and Figure 3. The the 5 is at the the especially for 2 supersonic 7 dB the lower of sound for all fan fan but Engine power is engine. measurements. speeds From speeds this fan high Data tip with to above Versus correlation spectra by well Predictions to noise overpredicted well shows transition fan noise GASP for least Fan Engine evident tones and Broadband are levels the speeds 3 are in still combination noise overpredicted tone levels by 3 to match 5 speeds. Fan Noise Cormlal_onfor Test Engine I" Heidmann aGASP x I 140 ! t R 130 g x x x x _o" 0 120 ! 1000 I 1500 I 2000 I 2500 3000 I 3500 I I 4000 4500 Shaft Horsepower, SHP Discrete Figure 5. Tones and Combination Heicksann And Overprediction Tones Require GASP Show Significant For Engine 3. 9 Revision Fan Noise I 5000 dB
  • 14. 2.2.6 Generalized For are each of necessary spectrum well to were and in noise the peak to clear that levels, broadband or did midarc the fan review angles, revisions high not and the the measured below. Inlet of predictions data, Further overpredicted and in and spectra frequency. match test data combination a summary discussion prediction and is revisions that their of dominated agreement the or required supplied relative they tone spectra. noise so noise too functions many directivity, peak centered directivity were with provided example, 100-degree is pressure sometimes Following agreement sound a of it overpredicted tone 70- Revisions engines, For either predictions O three the discharge a majority is the Engine distribution. content Inlet Small in to revisions paragraph the dis- 2.3. Heidmann ap- proach: Peak pressure of the creased by of the first to 9.2 harmonic has been de- has been increased from 3 dB Rolloff of the second Rolloff u tone 6 dB Rolloff fundamental of the remaining Tone directivity Peak pressure harmonic has of significantly of dB remains slightly 3 dB modified combination tone noise has been decreased Peak 1.6 harmonics been the is by pressure 3 the broadband noise has been decreased dB Broadband noise spectrum quency 10 has been shifted lower in fre-
  • 15. o Discharge prediction revisions relative to the Heidmann ap- proach: Peak pressure of the creased by 4 Rolloff of the first to 9.2 harmonic of the second of the remaining Tone m directivity Peak m pressure by 2 has been de- has been increased from 3 dB Rolloff m tone dB Rolloff D fundamental harmonic 1.6 harmonics has been the of is broadband dB remains slightly 3 dB modified noise has been decreased dB Broadband noise spectrum small has engine been shifted lower in fre- quency The detail see changes in Appendix 2.3 Develop The two-stage (a) Lc + Figures = 20 in 6 the to 19. The revision ANOPP manual module has are been provided updated as in well, I. Small Engine procedure for Fan Noise predicting Prediction inlet and Method discharge fan noise is process: Calculate log(aT/AT the o) + characteristic i0 log(m/m one-third O) + Fl[Mtr, octave (Mtr)d] band + SPL, F 2[RSS] + L c F 3[e] C where: L one-third octave band c pressure radius, level of dB 11 a characteristic single-stage partial fan at sound 1-meter a
  • 16. AT = AT ° = m total temperature rise mass rate = o value = m reference reference value rotor relative flow tip Mtr = (Mtr) d RSS = = design e = directivity point of across T, rotor-stator fan, m, of spacing or ib/sec ib/sec mach value °R I°R through of fan, number Mtr in polar percent angle at rotor relative tip to inlet axis, degrees correction C The or function broadband values of spacing noise Mtr with Calculate The spectrum of the combination shape function, passage tone shape for F4, discrete determined influence of F3 by the rotor-stator determines the function, SPL(f) b) which contributor, is For component is distortion. each frequency. noise F1 discharge contributor. L c + F4(f/f level the or is centered supersonic included Lc, on a is multiple rotor and has then tip its given value speeds, own spectral function. The for pressure shape blade = inlet of flow noise spectrum SPL(f) sound variance inlet each the peak F 2 determines on for the The (Mtr) d. function where a level. and IGVs determines a dependency directivity (b) F1 for the process five of fan calculating Lc noise components tone (1) Inlet discrete (2) Inlet combination (3) Inlet broadband (4) Discharge discrete (5) Discharge broadband and SPL(f) is performed listed: noise tone noise noise tone noise noise 12 (when applicable) separately a
  • 17. Total fan five noise band sound noise is obtained components. pressure These levels of through the energy calculations the summation provide free-field of these one-third noise at a octave one-meter rad- ius. To based accelerate Excel Each of file, the each component fan accuracy of in ponent and process ment was with diction in revision or are 2.3.1 a the total which fan revision. noise in noise both the PC- modules. a file. were verified in a separate As influ- corresponding readily observed. the documented against library. revisions data until noise. The a The sections from were the three and for is significant are to each com- engines. This a agree- revised pre- improvement each referred further to prediction result revisions Suggestions made satisfactory achieved. provides following fan programmed fan changes was times was was contributions measured many Heidmann created to in component as small improvements are engine in this requested. Inlet The the and spreadsheet, data small provided tone repeated method AlliedSignal GASP with measured to spreadsheet the AlliedSignal sources noise temporary compared GASP linked fan the the the modified, total process, noise was were version noise of component file and Using model five parameters The revision spreadsheet and ence the Discrete Tone characteristic Noise peak sound pressure level for the fundamental is: L c -- 20 log(AT/ATo) + i0 log(m/mo) + F l[Mtr 13 , (Mtr) d] + F 2[RSS] + F 318]
  • 18. (a) Changes the to Fl[Mtr, normalized chosen tone due Notes for Mtr is even better 1.0. The be Figure function, overall a data MOre of of all FI: indicates possibly investigation approximation A this is to of three A to reduction the was fundamental engines. between that the this value required transition revisions value to of 0.72 for prediction 0.72 of value 0.9 determine value. Lc = 20log(AT/AT o) + 101og(m/mo) +lF,[Mtr,(Mtr)d]l+ • the 6-dB parameter data increased FI. for transition measured 6 shows improvement investigation as to SPL measured future used need the with functions. may peak to level (Mtr)d]: F=[RSS] + Fa[0] For (Mtr)a>l, Mtr<0.72 GASP - 60.5 + 201og(Mtr)d revision - 54.5 + 201og(Mtr)d Heidmann, • Heidmann, GASP For (Mtr)d>l, 1_0.72 - lesser of: 60.5 + 501og(Mtr/0.72) or 59.5 + 801og((Mtr)d/Mtr)) revision - lesser of: 54.5 + 501og(Mtr/0.72) or 53.5 + 801og((Mtr)d/Mtr)) I Figure Reference 6. Inlet Figure Discrete 10a shown Tone Noise 14 in Appendix Revisions X Improve 1 Peak SPL. or a
  • 19. (b) Changes to F3[0]: directivity function, function was relative slightly Notes future The F 3. to future can the shows The the slope maximum of angles be investigation used to of - pressure Lc + I0 Theta 0 10 20 30 better evaluate level log[ 10 spectrum 0.1F4(f/fb Heidmann GASP .3.0 -4.5 -3.0 -1.5 0.0 0.0 -1.5 -1.5 40 0.0 -1.5 50 60 -1.2 -2.5 -4.0 .3.5 -6.8 70 8O -14.5 -19.0 110 120 -24.5 -30.0 130 -35.5 -41.0 140 150 160 170 -8.5 -12.5 -17.0 -20.5 -24.0 -27.5 -31.0 -46.5 180 -63.0 Reference 7. -6.0 -10.5 90 100 Figure (20 F3: the to to the directivity 40 degrees) Narrowband the tone data rolloff is: ) ] Lc : 2Olog(AT/ATo) + 1Olog(m/mo) + F,[M.,(I_,)_] I revisions studies. sound SPL(f) 7 decreased. for analysis Figure -34.5 -38.0 -52.0 -57.5 Figure -41.5 -45.0 13a shown 15 +IF,[0] ! Revision -3.0 -1.5 -1.5 -1.5 -1.5 -2.0 -3.0 -4.0 .6.0 -9.0 -12.5 -16.0 -19.5 -23.0 -26.5 .30.0 -33.5 .37.0 -40.5 in Appendix Inlet Discrete Tone Noise Directivity Correction. + F,[RSS] × Revisions 1 J Improve in
  • 20. (c) Changes to F4(f/fb): rotor-stator levels. interaction Rolloff from 3 and the Notes Figure to 9.2 of dB. for engines the operating level low is may require other rolloff a closer SPL(f) H0idmsnn, for the of 3-dB F4: speed rolloff been increased is 1.6 one does of not rolloff. the three completely For 1/3-octave this band broadband sources, operating for at low-speed follow-up points studies. [1010"IF4(U ) J] GASP Revision Harmonic Level, L 2 3 Harmonic 4 5 6 1 order, k L=Lc-8;k=I L =Lc+3-3k; k>2 } 2 3 4 5 6 Harmonic order, k L=Lc L = Lc - 8 L = Lc + 3- 3k; 8> 1.05 8< 1.05 8 > 1.05'_ k=l 8 < 1.05 J L = Lc- 9.2; L=Lc -3k- 1.8; k=2 k>3 Reference Figure 8a shown in Appendix X Figure 8. Inlet And Discharge Improve Interaction Discrete Tone Tone Harmonic 16 fan tone 4 1 dB, fans. examination 4 the rolloff. Only above fans : I. c + 10 log a to harmonic harmonic fundamental two revision has third tone visible the harmonic fan the the tone retain harmonic speed, with tone of low barely inconsistent Harmonic at revised at second investigation operating exhibit the harmonics future shows discrete Rolloff remaining 8 Noise Revisions Levels.
  • 21. 2.3.2 Inlet The tone Combination Tone characteristic peak Noise sound pressure level for the fundamental is: Lc = (a) 20 log(_T/ATo) Changes sions to to levels cantly. better + I0 Fl[Mtr]: the for log(m/m Figures normalized the The 1/2, 1/4, slopes match the the "201og[Mtr]" bution which is o) of peak + F l[Mtr] 9, peak and 10, SPL 1/8 the 11 also revi- The reduced were rather Heidmann the F 1. were levels. + C show function, curves measured distribution used in the and tones F 1 + F 2[el significhanged Furthermore, than curves. the peak "Mtr to note distri- (f/fb = 1/2) B E Lc = 201og(AT/ATo) + 101og(m/m o) +IF,[I_]I+ F2[0] + C Combination tone noiselevelsat 1/2 of bladepassagefrequency I O_ &GASP X Smmll_ _ ) , , 80.0 -J _ m 70.0 _ ,_.o 4o.0 Z .j_ 30.0 I 0.0 I I ! I I 1.0 2.0 3.0 4.0 5.0 6.0 2010g(Rotor RelativeMachNumber) Tip I Figure 9. Reference Figure 15a shown in Appendix X Inlet Combination SPLCorrection. Tone 17 Noise Revisions } Improve Peak
  • 22. Notes for tone levels = 1.0 future currently for 1/2 The measured not be solely investigation slopes of investigation are and data 1/4 dependent tones, the will Mtr the GASP to - of the level peak 3.0 actual value reveal peak The by and that on normalized FI: predicted suggests likely the of occur for peak Mtr. need combination at 1/8 to tones. levels Also, Mtr may further improve the curves. (f/fb = 1/4) +IFI[M ]I+ F2[0] Lc : 201og(ATIATo) + 101og(mlmo) + C Combination tone noise levels at 1/4 of blade passage frequency X GASP • Small Engine Revision I I 13 Heidmann . 'A 80.0 .oo 600 "_ so.o m ._ E,O Z o " 40.0 30.0 I I I I I 1.0 0.0 I 2.0 3.0 4.0 5.0 6.0 20log (Rotor Tip Relative Mach Number) I Figure Reference I0. Figure Inlet Combination SPL Correction. 15a shown Tone 18 in Noise Appendix X Revisions J Improve Peak
  • 23. (f/fb = 118) L© = 20log(AT/•To) + 101og(m/mo) +IF,[Mt,]I+ F2[0] + C Combination tone noise levels at 1/8 of blade passage frequency x GASP I Small Engine Revision I 80.0 ._- '.L. m • D Heidmann o _! i _ 70.0 60.0 so0 ....... _ •I ...... "_ " ° " _ ....... • ............ "& ............ t ............ • 40.0 Z_ I I I 4.0 5.0 6.0 30.0 0.0 1.0 2.0 3.0 20log (Rotor Tq:) Relative Mach Number) I Figure (b) Reference 11. Inlet Combination SPL Correction. Changes to The were Figure = pressure Lc to combination tone Noise function, sound Changes was in 12 F 2. Appendix X I Revisions shows the The slope spectrum of Improve Peak revision the to function the has is: decreased. SPL(f) (c) 15a shown Tone F2[e]: directivity been Figure + F 3(f/fb ) F3(f/fb): tone decreased spectrum. not level Figure noise from The 13 spectrum 301og 1/4 151og and 1/8 19 the content. to changed. shows for revision The the combination 1/2 to the distribution combination tone spectra
  • 24. Lc = 201og(ATIATo) + 10log(mira Theta Heidmann 10 20 3O 40 5O 60 7O 8O 90 100 110 120 130 140 150 150 170 180 Figure Notes for levels were spectral data 2.3.3 Inlet The 20 so Broadband Tone highly Revisions were of overpredicted not thoroughly significant room for Improve F3: The that Directivity combination revisions to investigated. improvement tone the Measured for F 3. Noise characteristic log(AT/AT -4.5 -3.O -1.5 0.0 0.0 0.0 0.0 -2.5 -5.0 -6.0 -6.9 -7.9 -8.8 -9_ -10.7 -11.7 -12.6 -13.6 investigation content suggests stage Lc : future C Figure 16 shown in Appendix X Inlet Combination Correction. 12. _ GASP, Revision -_5 -7.0 -5.0 -2.0 0.0 0.0 -,%5 -7.5 -9.O -9.5 -10.0 -10_ -11.0 -11._ -12.0 -12.5 -13.0 -1:L5 Reference o) + FI[M_] peak sound pressure level for the single fan is: o) + i0 log(m/m o) + 20 F l[Mtr, (Mtr)d] + F 2[RSS] + F 3[e]
  • 25. (f/fb = 1/2) SPL(f) = Lc +IFa=(flfb) I , I Revision: "151og(f/fb) I 0 Relative 1/3 Octave Band -10 -20 g(flfb) I -30 0.1 0.5 Dimensionless I Figure (a) Inlet Combination Spectrum Content. Changes was to the made for an The measured frequency, flfb Tone Noise (Mtr)d]: peak overall parameter SPL Revisions 14 the Figure function, improvement of Mtr = = pressure Lc level + F 4(f/fb spectrum ) 21 J Improve shows F I. of 0.9 data. sound SPL(f) Fl[Mtr, normalized noise. The 5.0 Reference Figure 14a shown in Appendix X 13. to 1.0 is: is A the 3-dB inlet agreeable revisions decrease broadband with the
  • 26. L c = 201og(ATIATo) + 101og(m/m o) +IF,[M_,(I_)_]I+ • For (M_)_.I, F=[RSS] M_0.9 - revision 58.5 + 201og((l_) - Heidmann, GASP + F318] 55.5 + 201og((l_r)d) For (1_)_1, d) M_0.9 Heidmann, GASP - 58.5 + 201og((l_r)d) - 201og(M,] revision - 55.5 + 201og((M_)d) - 201og(Mtr ) I Figure (b) 14. Changes Reference Inlet to spectrum center f/fb" Broadband Noise F4(f/fb): content Sound Revisions Figure has been level below in Appendix X 15 correction. frequency quencies Figure 4a shown shifted rolloff f/fb' and Improve shows The down SPL. to normal from been increased Peak revision the log has I distribution 2.5 f/fb decreased for the to for frequencies 2.0 fre- above f/fb" Notes for analysis follows at 2.5 future suggests two log f/fb measured engine suggests the bution and investigation that normal the of F4: broadband spectral distribution other data agree possible need function. 22 with the a near log second Lewis data noise content one centered functions, centered for NASA 20 f/fb" distribution spectrum The but distri-
  • 27. SPL(f) = Lc +_ • Heidmann, GASP for all f - 101og(exp(-0.5(In(fl2.5fh))2)) In2.2 • Revision - 101og(exp(-O.35(In(f/2.0fh))2)) In2.2 - 101og(exp(-2.0(In(fl2.0fb))2)) In2.2 I Figure 2.3.4 tone for f > 2f b Reference Figure 3a shown in Appendix X J Inlet And Discharge Broadband Noise Improve Spectrum Content Correction. 15. Discharge The for f < 2f b Discrete characteristic Tone peak Revisions Noise sound pressure level for the fundamental is: L c = 20 log(AT/AT F318 (a) ] Changes to the chosen level + o) + I0 log(m/m o) + F l[Mtr, (Mtr)d] + F 2[RSS] + C to Fl[Mtr, normalized due with to (Mtr)d]: peak the measured SPL overall Figure function, improvement data. 23 16 shows F 1. A of the 4-dB the revisions rolloff blade was passage
  • 28. ++ c I-c: 201og(ATIATo)101og(rn/mo) + • For (M_)d>l, Mv<I Heidmann, GASP - 63.0 + 201og((Mtr) d) revision - 59.0 + 201og((Mtr) d) • For (l_r)d >1, M_I Heidmann, GASP - 63.0 + 201og((l_r) _) - 201og(l_r) revision I Figure 16. (b) - 59.0 + 201Og((lVltr) d) - 20lOg(My) Reference Discharge Changes Discrete to below slightly The sound (c) = the 17 F 3. peak Revisions shows The level I Improve the slope angles Peak revisions of (110 the to SPL. to the directivity 130 degrees) decreased. pressure Lc Noise Figure function, was SPL(f) Tone F318]: directivity function Figure 10b shown in Appendix X level + F4(f/f Changes to harmonic rolloff is: b) F 4 (f/fb) is spectrum : Revisions provided 24 in Figure to the 8. discrete tone
  • 29. i. c = 201og(ATIL_T o) + 101og(m/m Theta Iteidmann 10 20 30 40 50 6O 70 8O 9O 100 110 120 130 140 150 160 170 180 I Figure 2.3.5 The stage -28.5 -24.q -20._ -16.5 -12.5 -8.5 -S.5 -2-5 -0.5 0.0 0.0 0.0 -2.0 -_5 -9.0 -I:L0 -18.0 C Revision -3O.O -2_0 -22.0 -1_0 -14.0 -10.5 -6.5 -4.0 -1.0 0.0 0.0 0.0 0.0 -1.0 -3J -7.0 -11.0 -16.0 Figure 13b shown in Appendix X Discharge Directivity Discrete Tone Correction. Broadband Discharge d] + F2[RSS ] _ GASP -,15.0 -31.0 -27.O -23.0 -19.0 -15.0 -11.0 -_0 .9.O -_0 -1.0 0.0 0.0 -2.0 o5_ -9.0 -1_0 -18.0 Reference 17. o) + FI[Mu,(I_) Noise characteristic peak sound Noise I pressure Revisions level Improve for the (Mtr)d ] single fan is: Lc = 20 log(AT/AT F318] (a) + the to the + i0 log(m/m O) + F l[Mtr, + F 2[RSS] + C Changes to O) Fl[Mtr, normalized peak improvement peak sound of (Mtr)d]: SPL Figure level inlet broadband 25 shows F 1. function, pressure the 18 A was noise made with the 2-dB for revisions decrease an measured in overall data.
  • 30. • For (Mtr)d >1, I_r<l Heidmann, GASP - 60.0 + 201og((Mtr)d) revision - 58.0 + 201og((Mtr)d) • Heidmann, For (Mtr)d>l, I_1 GASP - revision I Figure 18. (b) Changes The Figure function, below the Revisions 19 F 3. maximum Improve shows The the slope level I angle Peak SPL. revisions of the (130 to the directivity degrees) has decreased. sound SPL(f) (c) Noise F3[0]: directivity been 201og((Mtr)d) - 201og(M_) Figure 4b shown in Appendix X Broadband to function + - 58.0 + 201og((l_r)d ) - 201og(Mtr ) Reference Discharge 60.0 Changes spectrum = pressure Lc + to level F4(f/f F4(f/fb): content are spectrum is: b) Revisions provided 26 to in the Figure discharge 15. broadband
  • 31. Lc = 201og(AT/ATo) + 101og(m/m o) + FI[M_,(IV_)d] + F2[RSS] Fs_rrr_ Theta Heidmann, 10 20 3O 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 Reference Figure 19. GASP -29.5 -26.0 -22.5 -19.0 -15.5 -12_0 -8.5 -5.0 -3.5 -2_5 -2.0 -1.3 0.0 -3.0 -7.0 -11.0 -15.0 -20.0 -36.0 -32.0 -28.0 -24.0 -20.0 -16.0 -11.5 -8.0 -5.0 -2_7 -1_. -0_ 0.0 -2_0 -6.0 -10.0 -15.0 -20.0 Figure 7b shown Discharge Directivity in Appendix X Broadband Noise Correction. 27 Revision Revisions I_prove C
  • 32. 3.0 REVISED The data and PREDICTION small from inlet 120 levels IV. These and AdB fan speeds angles, 10 to Engine 60 1 Five 65 speeds, 160 percent but the Conversely, noise with fair show noise as At this predictions the the well 95 revised and noise inlet power III, and AdB SPL spread of in a Tabulated differences V, in the 99 inlet have inlet fan 1/3for VI, and 28 to and an 160 all VII. 75 shows percent a fan degrees. combination midangles method. ranged over-predicted abrupt tones speeds method slightly speeds discharge improvement. 65 buzz-saw percent prediction and the 100 the Fan prediction remains to speed, engine. for angles, for and II, speed. of exhaust, sound cover Appendices revised seems seen and differences level this still engine point. for inlet exhaust behavior speed noise the and Appendices design in predicted - midangle inlet points overall The noise particular cut-on improvement in the the degrees arc) measured And used speed. in data provided II were discharge for of of between spectral The and are (40 noise band kHz. Appendices 99 levels provided percent degrees, (See but I0 against Differences exhaust are differences improvement improved band 100 points to This saw to verified midangle 1/3-octave kHz data especially cent engines to level significant noise of 1 from band from midangle from octave 3.1 - near show been pressure degrees three plots PWL sound - the _ engines. 80 degrees for have AlliedSignal arc, WITH revisions far-field noise and engine three measured COMPARISONS for noise has 85 prediction perhas worsened. show a Predictions discrete the tone tones significant for and buzzbroad-
  • 33. Notes for Inlet o and still o future overpredicted Inlet improvements: discharge and dicted o prediction discrete for discharge for fan tone low fan and broadband noise are speeds broadband higher Combination tones noise is slightly underpre- speeds noise is still overpredicted for higher fan speeds 3.2 2 Seven from Engine data points 100 percent 61 to (See J_ndices significant is were the noise 61 severe the to 88 for percent the rolloff in slightly 65 begins to for this for The all but as characteristics ranged fan shows speeds, tone fan for rolloff speed similar to a but especially discrete speeds, speeds method underpredicted points. show Fan prediction noise marginally percent engine. revised discharge speed 75 V I) The to to And used speed. improvement inlet III is not increases, the revised An improve- prediction. Buzz-saw ment of 10 For broadband Notes o noise dB the and prediction more higher noise for and Inlet fan seen speeds improvement future slightly o fan show Inlet is has prediction discharge underpredicted broadband noise in improved the tremendously. peak inlet combination tone fundamental the with tones, prediction revised levels. harmonics and method. improvements: discrete for is tones lower slightly speeds 29 and fan harmonics are now speeds underpredicted for lower
  • 34. 3.3 Engine 3 Four from data 60 to excellent also has is (See points 87 percent improved Discrete and the as by o VII) for this The 60 higher tones only Broadband to engine. revised 75 fan Fan speeds prediction percent speeds fan method speeds. where ranged the shows Agreement buzz-saw noise are 2 still being to 5 instead noise dB has overpredicted of but improved 9 is to with 15 still dB the with slightly well. for future Inlet and still O And dB. but GASP. overpredicted Notes the fundamental method, Heidmann 10 used speed. for for over IV were agreement improved revised ]qopendices slightly Combination prediction discharge tone improvements: discrete overpredicted noise is tone for high overpredicted 30 and broadband fan noise speeds for the 1/4 tone are
  • 35. 4.0 SMALL A ENGINE sample revision Appendix noise prediction has been CASE test to compared case using measured the Engine small 1 engine data, see VIII. the predictions four TEST fan module Using Revision REVISION supplied were made modules. tables engine with The and O Third-octave O Third-octave the results figures parameters which sound for Heidmann, of show power these the level Engine GASP, 1, and predictions fan noise Small are Engine provided in following: spectra sound pressure level spectra 40 degrees from sound pressure level spectra 80 degrees from sound pressure 120 degrees from inlet O Third-octave inlet O Third-octave inlet The revisions Appendix spectra - ANOPP in level theoretical the IX Small manual Engine contains a has Revision description 31 been modified procedure, of the see ANOPP to reflect Appendix code the I. changes.
  • 36. 5.0 • REFERENCES Interim F. Prediction Heidmann, NASA Method Lewis For Fan Research And Compressor Center, NASA Source TM Noise, X-71763, M. June 1975. • Aircraft Noise Zorumski, NASA Prediction Technical Program Memorandum 32 Theoretical 83199, Parts Manual, 1 and 2. W. E•
  • 37. APPENDIX ANOPP THEORETICAL I _ 33 UPDATE
  • 38. ¢D (D _1 _ T-- O O T-- VI VI Y y '1- VI y Y VI y Y T-- iim o3 T" _p- ql_ t_ C iin oE: • X U v V | LI. o o o o o o O Illl C O t_ IlK E iin "O ul ft. C in C ILl 3: m m O 13. t_ 34 | O
  • 39. (_1 U) ¢9 C O tn ¢_1 _m _m VI C: O VI V V (9 VI V V VI V V ¢9 li (0 C am (m) A A A C_l =E & (_ ,.: v :E 18 ,ira =E 5 V (D _F ,we | LI.. o O | | O O | O O O _1 _ II10 m_ HI C C I1. (n ,:1: E Ilmmm (.1 c; | O (n im > (11 "O in rr 4) :3 1.1. im O) C !.- UJ 3: m m O a. 35
  • 40. O VI v, C am E_ O w i | | | | | | O O O O O O O O O mlnl C C m @ mm E om lanDeD llm C C EL llm L_ C W m m @ a. 36
  • 41. iim 0 Z C 0 A I-I-- C 0 C C O0 IIm lmlm C .(2.(2 II llmm Ilmll EoEo I,i. •. _o° n _ 0 3'7
  • 42. llm O Z A G) (1) _Z C oo C C OO IE_II C Ilm II _lll C Ilm A A A 88 mm o O < 38
  • 43. (1) iim 0 Z C C O0 I-- I-[Z _Z O0 ,4-,I ,4,,,I m c c .Qr_ iim iim EE A C 0 O0 t_C_ (1) A A U. IJ, _0 Eo _o. .A_o (/9 D 0 0 39 _
  • 44. U) 0 iim Z "0 C .Q "0 0 Im 4) O m,, "1_ 1,1= .It X X tim a. 0 4o
  • 45. s_ 0 0 _J u_ 0 rr' r-. __.o ii _" • c_ X C Ill E 0 0 • --- II n ¢0 43.
  • 46. 0 Z _ m o w,,,.=.. m i1_ m rc X 0 n_ o x nn iim 0 0 42
  • 47. 0 ,4_ 0 0 rr rr yi . o X • o O. III l= II II D 0 0 43 _ _ It
  • 48. mm mm mm .it i 44 i i i I i i i
  • 49. im 0 Z C 4) 0 I- 0 Im im 0 rt45
  • 50. C O IIm (.1 C q,. ibm mid V m 1.1. AI _ b Imam _ (.1 N p,,,-- I Q. U) "O C .Q "O U)'_' gm in O > c; I_ X -- d k,. rn 4) [3) C o X X Im O U) iim (2 "O C (0 m Ed "0 •,- II d II (/) G) C: imB 46 II U) (/)
  • 51. li,=, 0 ,imp ,,,,,, C 0 '11 _ II C ^ C II II C A C o A 0:3 n'u. !._ d b le_ b ,11.=. X m I X I i __ _i i_ 0 0 II 0 0 I I I 0 O ,_o_ I I 0 0 I 0 _) II _o _ o. ,-: o. _. GrJ II II II II l= Ii i rr. 4"7
  • 52. C 0 iim 0 t_ I,i. m A 0 Vl iim 0 A 0 Vl 0 A 0 a. im I_, | mm t_ ClJ- _ CO C t_ II A Eo E 0 m C m 48 m
  • 53. APPENDIX MEASURED DATA VERSUS II REVISED PREDICTION, GASP, ENGINE 1 1/3-OCTAVE BAND LEVEL DIFFERENCES FROM 1 TO 10 kRz, dB 49 AND RR.IDMANN
  • 54. o o o o C II ro er o o o em 11) "0 a. e- w o (D "o II oo u_ "0 o i) O'J o o im > IlC C C E o i 0 I I I I o cN I q o. o o 0") I q 0 o r u0!_!pea_epuN 50 uo!_!peJ_e^O -- m
  • 55. r_ "O m oo a. OA _,,_ o !_. | Q; U LG .E O a. 14J "O g) > Q_ im u0!p!peJclJeAo 51
  • 56. m II _llm o °i g I_. U,I "0 W um Q IIC e- E -r | I I I I o o o o q q q 0 0 0 0 0 0 0 "- V uo!_',_peJd_epuNm .,_ 52 uo!:lo!peJc:lJeA 0
  • 57. (01 r_l rr IJJ OA *.r. 11.-I *O m > mm ira I:I: E Q) "I" iii uo!_,o!peJcbepun 53 uo!_,o!peJcbeAO
  • 58. iw m o o o o O. ¢0 II 0 V,I 54
  • 59. _o. _III A "OC -_o= ff _.- -_ g 0=--I "0 o o II I]) uo!;o!peJ_eAO 55
  • 60. W mo. _ "r _, II_) .Oe _ (p I_ a. ® 0,,--I "0 ffJ m I1: ee- E ID III m,-I uo,_'!pe.lcbepun _ 5_ uo!;o!peJ_eAO
  • 61. i1) _o. "D mm m.-I v uo!_,o!pe,,_epun 57 uo!],o!peJcLleAC)
  • 62. ==,=41= m m m lu C_ "10 i -,-_ E | g_ I .Q 11.111 "0 (I) lib > I C rE "1o -iII uo._peJdJepurl 58 uo!},o!peJ_eAO
  • 63. _w a W _ II_ _._ ._ _E g II nW "0 mm > lera E ID 11 uop,o!peJdJeAO 59
  • 64. "o II rr LU I Ill I •Iz-_ _c 'i i t il | I '_ q) Ue_ im o 0 I n_UJ "0 o W > q) rr rc (0 em E I "1- i w o o o o o o uo!io!peJ_epun 60 -i o o fn.-J *00= "<IU) uo!lo!pe.icLieAo
  • 65. r_ "0 C .o II rr i Q.W o o tC im rr E "0 °_ -r m o o o o o o o o "- m-J uo!_,o!peJdJepuA <_m 61 uop, o!peJclJe^o
  • 66. ,--',ll- "0 ,I II C n(P C O_ n lu "10 LLI n == _= ,. i t_ =_, el_ m C nljU "0 U} iim (I) n- rC E '10 ¢D II I I i i o o c'J c_ uo!],o!peJdJepun 62 uop,0!peJdJeAO
  • 67. e_ P, W _lm _ i A il(_ -_oe- _._ _ CO 0,,--I "0 mm re- > E "0 0 i uo!;o!peJcbepuN 63
  • 68. m m II C 11, e- w =.o _c O. °i 8 8 -r_ 0,i_ L 1 .QE_ I im 0 I= C e- 1 E i I I _ o l l o o uo!_Tpe_d_epun_ < 64 UOp, O!peJd_eAO
  • 69. tO B_ O. II C LU (Do a.w -o 8m o C c E -r 8 uop,_'._peJdJepuR 65 m,-I "0_. <_ uop,o!peJ_a^O
  • 70. D "10 C .o 03 neD c O) fLU O. cA ,¢1: _= ,. _= = O. 1.1.1 "0 m == JB c m E "I- iii uo!_!pe.JdJepul'l 66 uo!_!peJ_eAO
  • 71. L_ 0') 8 8 P, 8 W 8 _lm A -Or- _.- _ II1 "0 im > o c e- E I1) I i i i I I 0 0 0 0 0 0 o o o o o o uo!_!peJcbepun 6"7 (/) 0 "- uo.._._ej-_.eA_ U !.l._!l_ u._
  • 72. "o oo oo oo o oo O,,W "0 om uo!io!pea_epuFl 68 m=J "Oa. <_(/3 V uop,0!peJdJeAo
  • 73. C_ II i rrE G) JJJ i I CO-J II1...._ uo!_,o!paJdJapurl <_e 69 uop,o!pej(:lJe^O
  • 74. _PPENDIX MEASURED _ VERSUS III REVISED PREDICTION, ENGINE 2. I/3_VE FROM GASP, BRRD LEVEL DIFFERENCES I TO I0 kHz, dB 70 ARD HEIDMRJN
  • 75. a o o _D c o u) c O on c C_ n_ c/) m .-_o LU n m _8 m E 2 (D <C C (D " n- Im ._'_) (.1 ,m. C oo O L.. £: a. uJ "0 (I) U) > m mm C rr E -a O a) l O i | m, o u0!_!peJcbepuN "/1 o o. o uo!_.o!peJ_eAO "-
  • 76. Q "10 8 o: == OA _=gE g = "_ 0,, I11 "0 W > Q im I= rr- E o "I- 11 uo!_.lpeJdJepul'l '72 uo!:_o!peJ_eAO
  • 77. E_ 0 {P, i OA _.- ._ g 1 CO .="_ O,,UJ im II} ee- E o T III uo{;o{peJcbepuN 73 UO{_O{peJd.leA0
  • 78. a ._g w 13. e- LLI < =$8 _'-E _.o :S _ O,,w "0 rc im > E IE i m,-I uoi;o!peadJepuN ?4 uo!_!peJdJeAO
  • 79. ._o eeW (n m n _o II 8 'D =_ __ g o a. ul "0 (¢1 m t,¢III E "0 (1) i uo!),o!peJ_epurl '75 uo!_,o!pajclJa^O
  • 80. e- ._o II W i _°ii _" o° m No a,,w im 0 C e- E "I- 11 V uo!_'!peJ_epuN "76 uop,o!peJcbeAO
  • 81. 011_ 8 _O 0.1,1 m,.i uo!_.lpeJcbepurl ?'7 uop,o!peJcbeAO
  • 82. C3 "10 .:_o g3 > _0 rr == ,I _= ,,== 8 °i ._==_, .===_ a.w -[3 C r- mm == Q E IZ: "I- l m,=,l .oa. uo!J,o!pe.=(:bepun "/8 uo!_!peJcbeAO
  • 83. {= ._o °_ (D rr e" e_ O. (0 LU m m < (.o. _. ==,. =m _ ,, "0 a. UJ "0 lie > IZ: r-. rE (I) -r- III (_ tO lO (_ _ tO v uo!),o!pe.]_epurl ?9 < _" uop, !peJcbeAO o
  • 84. +m > (D n- mo. o _- _itm ° C ..r iii m-J uo!io!pe_epun 8O uo!;o!pe._cbeAO
  • 85. m ml m m m I I .o U) °_ 0 a'r" 0 C a. (0) e-- LLN < m n E 00 "0 N ,v--A -r -oe"m- _ (i,) ,,In o o. mmm "0 amm > Jr' I C E '-r mlm uo!;o!peJcbepuN 81
  • 86. '10 O O O =,- ._o II e,O n- O ou .-_o C O _D "10 13. LU 13. =o ¢D 1D == •,-_o = ¢O -==-e, .=- =. oE "0 = == O,. 1,1.1 1O O O ¢,D W == O ce- mB E 0 "1- i 0 0 0 0 c_ O 0 O_ 0 0 C3 C3 o. o. o 0 0 0 "- m,.-I u0!_',lpeJcbepuFI 82 UOJ_!pgJ_JJgA 0
  • 87. a "0 U_ im nm i. C O. w II O: uo!},_peJdJepun 83 uop,o!peJcbeAO
  • 88. _u m _M "O f/3 o II ll == LU D. m o "_ r f/l C IZ: E 11 | o o o o o o m.-I "OD. u0p,0!pe.Jcbepul'l 84 u0.r.lo!peJ_eAO
  • 89. m m i , (I) ._= LLI ' 4 "0 (P 0 0 II > rr C E -r- II uo!),_peJ_epun'_(_ 85 uo!),o!pej_Ve^o
  • 90. C_I QI IDI > e- I1. eU.I mo _ e_'_ _ ®_ "o Q im e- Q IE E -r II m,.J -o_. uo!_!peJdJepuN 86 v uo!_o!pejclJe^O
  • 91. e- ._o rom e- W I E C II Cd "0 I im C E ® -r n ! ! uo!l_peJd.lepurl 87 UO!lO!pe.i_eAO
  • 92. o o o o C .o I O: 0 C I1. C LU II .| C C m > E O: "1- l m--I "On uo!_!peJdJepurl 88 uo!_!pejclJe_O
  • 93. "3a "0 P, t I= _A II (I) .Oe,, o. _,- ._ a,,w im ID 1= e-. c E -r II m.-I uo!;_peJ_epurl 89 "o_. ._(/) uo!_,o!peJdJeAO
  • 94. m r_ "0 UJ O.-J C C m > E rr -r l m-J V uo!_!peJdJgpur'l < u_ 90 UO!_,O!_JCLIeA 0
  • 95. "0 o o o o e- .9 (/) II C 0 o_ 11. C LU < o co "o n o c_ E (0 o m co *0 'ID a. (o < C =o) Oct" im 0 _= v 41 im O=U,I "0 im > C E n- -r- I uop,0!pe._cl.,epun UO!;o!pe.EbeAo 91
  • 96. ._g II 8 _mm _._ _E .8= ._ g 1 "O C e- II E IT" I i a)-J V uop, o!pe.=d.=epuN 92 UOp,O!peJdJeAO
  • 97. =o oo 0= ,,11,,= = "OC -r_o IJ. .8 = o_ IZI ¢q,_. .,O oo o .= ===-.. a.w o m-I uo! . eJ_epun 93 uo!],0!pe._eAO
  • 98. i C ' .o C c w Im E l m,-i "o_. u0!_l.lpeJdJepul"l 94 r uo!_!p_JcLieA 0
  • 99. O U_ "Oc L_ am O.c W II rr 95
  • 100. "o ._g II ! m,_ _" -rlU_ ® / o o tU mi re- E III m-J uo!_!peadJepuN <_e 96 uo_!pe._d_e_::)
  • 101. m P, i m _ II_ "OC Q_U _-- _ 0 im I_, eW ee- E I]) -r III I11_-1 r uo!_o!peJdaepuN 97 UO!p!pe_d_eAO
  • 102. o o o o C ._o .E 0 0 o ID t- O. r- W n oo _'- ._ 8 m oo 0 "U m W > Q I1: o o ee- E ID $ o 0 o 0 o 0 o 0 m,-I u0!_!peJdJepurl 98 "IDa. <3U) V UO!:lO!peJ_eAO
  • 103. APPENDXX MEASURED DA_% VERSUS I/3_VE IV REVISED PREDICTION, GASP, ENGINE 3 BAND LEVEL DIFFERENCES FROM 1 TO I0 kHz, dB 99 RJND HEIDMANN
  • 104. _u a -lo i00
  • 105. o o o o o co Oi (n mm. _,im o "0= "vmm < e.. o 0 c-_ J-. 4..' u Q,) .-_o o r.- 4 r'C E "0 11 I01
  • 106. 0 L_ ¢- ._o (D O. C O.m 8 _o= _._ ©E !-° 1 n_l. -o ec mm > E llC ID i uo!_o!peJdaepurl 102
  • 107. _M m m C_ E oo o O_ °i | m o 11.111 m > 103
  • 108. "o 0 o o co L N 0 O.W o o Q W mi o 104
  • 109. "1o w mo. .__ ,, _mm _U _;.- m _ O,,Ul "D em r- ID E -r III uop,o!pe._cbeAO 105
  • 110. w m m _M mq _,,m "o= o 8. • "_ .-_ uo!_!paJdJepun 106
  • 111. 0 o o o O. C ILl E =o. Im c O: E -r l 107
  • 112. w m p C o n,C O. ILl ¢n n =,. W 2 a.l"0 0 W == Illm ¢.C ¢= E o '-r- II q q o o 0 0 0 0 V uo._._pe.J_epul"l 108 uo!_!pe._cbeAO
  • 113. 0 a. .oe- ®_.- 0 ¢_-ul tD ii 109
  • 114. 8 oo II e- g I1. ,< 8 m_ fill .= 8 "o= •I-_Q 8. ® oo -o g oo 0 a. ul oo q -- 0 uo!p!p_JcLIeA 0 110
  • 115. "0 II 0 o= C o) t- LIJ n 8 | 03 oo m o 0 ¢) 0 lid 0 0 0 q 0 0 o O. o 0 o "- m.-I "0O., u0!_,0!pe._cL=epurl iii u0!],0!peJdJeAo
  • 116. C .o q) C O. = N II O. UJ "0 q) m n- ¢; E q) -i- il r uo!m!peJ_epuN 112 uo!;o!pe.JcbeAO
  • 117. "0 n" LU =i I1_ _.= o° .__ " 13. O3 < _9 C 0 0 _- mm _ _ _o = n" o 41 U .--CO U o° O. UJ "0 Im C C > rr E 3: i u0!_0!pejclaepun 113 0
  • 118. a R_. m 0 0 0 0 (i) C ._o r- ._o I1) .c_ I1. "0 C W m I < / E N '!'- A "l- •o e_ _. lie W 8 oC 0 II.m "0 ID mm fD erE III o o q o 0 0 0 0 UO!_O!p@J_@AO 114
  • 119. "0 > n- °i a. 1.1.1 -o Ill > C C E ii 115
  • 120. i i m / , w , ! II uJ O. LU Q a) im 0 13: C C E "1" 116
  • 121. a ¢¢) 0 0 0 0 eo II > eo e_ 0 0 0 Dm ID ee- U) UJ II J • _ _ _ < I _ 1 CL _oe- a. i m 0 oo a.w ' J 0 0 ' | 0 0 ' | 0 0 I 0 0 lWl _ q i q m 0 0 m-I uo!_!pe._epuN _ (_ 117 uo!_,0!peJ_eAO 0 0 "
  • 122. w mm. .m oo °i mm .Ea, "0 W II ID ee- E I -1- III uo!_o!peJcUepuNe < 118 UO!p!peJ_gAO
  • 123. "E" "0 (/) o n" e,- (n ILl =E_ (1) n ,, D. Ill "0 (/) > (D iiim n- e- E 3= 11 uo!_!pejcbepuN 119
  • 124. APPENDIX MEASURED DATA VERSOS V REVISED PREDICTIOI, GASP, BGINE 1 I/3-OCClVE BAND LEVEL DIFFERENCES 1 TO 10 kCz, cB 120 ARD RRIDM_RN
  • 125. 8 ! -i _ 121
  • 126. ° __ . ! ° _0_ i_ _o_ I ! • • .o . _ _ _ _ o. _ _. _. -. • -_ ! - 122
  • 127. 0__0_ S_, e) T_T-- 0 qr o o _ o c0 o p _1' , _ 8 ¢9 _ c) --. --. _ --. _. --. m. --. _ _ m. -TT_ ' --_-- _ o o. _ _. _. e_ _ _. _ _. ,_. _ _ i oooo,o 1 123
  • 128. _!.o.o __. ti®-'°®®®''' i - 124 ® o
  • 129. o __ "_ " "_ E 125
  • 130. _%PPEHDIX ME/_SORED D3L_I VERSOS VI REVISED PREDICTION, GILSP, ENGIRE 2 1/3-OC21VE BARD LEVEL DIFFERIWCES FROM 1 TO I0 EHZ, dB 126 Z%RD HEIDMAB_
  • 131. o___ ff / II ,li I 127
  • 132. R ,_. _. _. e.:. e_ o. _. _. _o__ z _ _'___ _ _o_o_o_ i i°°,0,0,,,,, I I i ooo,,o 128
  • 133. • ._ • _ o s_=_®___ E g " 129 'o ._ o . . . . .
  • 134. _o ® 8 q ,':. q q q _q-- w ,e q o _ ® ® ,, o. ,, o _ _ ,e:o.,/_ 8_¢_'_'_'_'_''_ "i "_ 8 _2_m__ | , _ i / ,p -- -- ------_--_ ff iioooo,oooo,o 130
  • 135. 131
  • 136. 132
  • 137. 133
  • 138. J_PPERDIXVII MEASURED _ VERSUS REVISED PREDICTION, C_LqP, ENGIRE 3 1/3-OCTAVE BARD LEVEL DIFFERENCES FRCE I TO I0 EHZ, dB 134 AND HEIDMANN
  • 139. •- ,i_,#_ ._ , _'_'_'_'_':_'_ 8 8 '0 _ _II_ _ _,,. ,_ ,_ L_ ID _ 0 in _. _, i_ ff [ I! o 135 "i _ "
  • 140. _._ o _ _Z |t ! _ --" ® =""-- ®"-- _ e._.-.o-_--® |J ,,_ ,,,_ .... _®..®oo... _ _ _=,,_ _,,.. _,1 ,,. C_ _. _,_ _ _ _ 0 " iio °o,,, ° ,_ ,,, ! o 136 __
  • 141. • ._ .... _ @ .._.. _ _ T T E c_ li,,..!!'''1 i '''°' i'i 137 1
  • 142. __ °°_- __ _ __ _lll| _ ....... _T_T_--V--T _N_ _V__ •. _ ..... _--__ _4"_ , _ __o_ _T--T--TT--T--T ._- ...... ' 1 138
  • 143. 139
  • 144. APPEHDIX S_LL _GIHE R_VlSIOM TEST VIII F/%N NOISE C2&SE 140 PREDICTION
  • 145. Engine #1 Input parameters for Small Engine Revision Engine Information: Fan blade #: Stator blade #: Fan speed,rpm: Fan blade pass,Hz: Fan physical flow,lb/s: Fan diameter,R: Inlet total temp,°R: Discharge total temp,°R: Rel. Tip mach #: T,°R: Rel. Tip mach # (design): RSS, %: Reference mass flow,lb/s: Reference total temp,°R: GASP(G), Heidmann(H), or Small Engine Revision(J)?(G,H,J): 141 test case Enqine #1 3O 61 10006 5OO3 132.48 2.455 537 617 1.200 80 1.44( 17(
  • 146. ID e- E -_ Q) D. ._=. i I I I % im 0 Z I]) e_ ID I I _1 0 0 I 0 0 0 0 0 c5 o c5 o o CO _ _" CO Od [Mdl. :eJ] BP 'leAe"l JeMOd pun0s 142
  • 147. "'8 E Ill i / 7" - '- l 8 ,,, _ i I I ° t ",.r _-._ <I I,,I,,. :I 0 0 0 0 0 O '_-- o o c_ o 0 (3) _0 I_ 8P 'le^e-I 143 eJnsseJd punos T- 0
  • 148. ,z, .F:; _rr E I--¢_ I In 0 Z "0 C I.I. =E 8P 'leAe'l eJnsseJd punos 144
  • 149. ID C E / < •E . i- LL .= "_ "E 8 => c3 8 ep 'IeAe'I eJnsseJd punos 145
  • 150. 0 146
  • 151. 147
  • 152. ooo ++, O0_ IIII III 000 +÷+ _MM mm •-4 _ ,-¢ ... IIII ca _J I-4 0 2= Z III z I _ o o _ _ ooo oo_ o o o0o o 000 +++ IIII 0 + IIII GZG_ +++ ooo oo_ oo_ o_o lllllllll 148
  • 153. Z 0 E_ qP r-q 0 ...... °oo°°o°° .... °o ..... 0 ,,..4 ! 0 _J U3 0 0 t,a Z 0 0 :°: 0 .... o° ................... 0 r_ 0 °oo.oo. ...... oo ........ °° 0 0 0 .t,M • _9 M 0 Z M r_ ¢'4 ° Z 0 g :a: o 0 ........ ! X o..,0 ........... , ! 0 0 I-4 _X g_ Z ,_ ,_ Z _ Z Z Z U_ ZO ....................... 0. 0 r_ I/) I-I 0 Z • 0_' • Z 0 O_ 0 ,_ 0 0 Z :°: 0 0 0 ° 0 0 0 .................... 0 I .L:, • .... 0 0 ...... . .................. o 0 i 0 ...................... 0 0 .... e, ° .................... 0 m o _ A _000000000000000000000000 _000000000000000000000000 0_ __mwmo_om_oomo0 149 • ..
  • 154. 000 ++, illI Ill 000 @++ M_M ,-I v I-I r_ vvv ,.i o-lZO-IF-4 rzl_rJlf,#) llll Ill r_r_r_ _ _ _| °°°° 00_ 0 • " " 0 llll IIII v_ 000 +++ 000 l I l l I I I l l 150
  • 155. 0 Z O ,-4 0 O | _D .J 0 u_ ,-4 _D Z O m O m O Z Z ,% D: _a _a D _ I-4 0 0 • M ba D O c_ 0 0 + O 0 _ ° Z 0 ! 0 0 0 ! 0 I-4 Z r_ Z r_ _a _a t) 0 0 Z 0 Z ,_ Z • O_ • 0 4_ a3 I_ _ C_ O_ 0 _0 I-4 m 0 0 0 ,-4 0 f, 0 e_ 0 ! M 0 z Z 0 0 I-4 e_ M 0 o z 0 e_ 0 0 g OX_ 151
  • 156. APPENDIX SNALL ENGXI_ _NOPP REVISION CODE IX USER'S DKVKLOPMKHT 152 MANUAL
  • 157. The small ANOPP engine revision through input section. T the Under provides routine USER discussed PARAMETERS USER in this data report input can be as shown accessed in the in attached data PARAMETERS_METHOD: the original the Heidman AJliedSignal method whereas, '2' provides The specific changes Appendix I. following approval An used electronic of the in the version proposed Small small Engine engine of the small Method. method coded engine 153 have changes revision been will provided be provided module. in to NASA
  • 158. _ee PURPOSE ° PREDICT AXIAL THE BROADBAND FLOW COMPRESSOR REFERENCE METHOD HEIDMAN AUTHOR - NASA FOR FAN NOISE AND OR FAN BY TM AND X-71763, PURE THE TONES HEIDMAN INTERIM COMPRESSOR FOR AN METHOD PREDICTION SOURCE NOISE, M. F. M (FT) - CBF(L03/00/00) DSW( ) INPUT USER PARAMETERS AE - ENGINE RS - DISTANCE AFAN - FAN INLET CROSS-SECTIONAL DIAM MD - FAN FAN ROTOR ROTOR DIAMETER RELATIVE - POINT (RS) ROTOR-STATOR RSS REFERENCE FROM AREA (RS), SOURCE TO M**2 (RS), AREA (RS), RE TIP MACH SPACING (FT**2) OBSERVER (RS), (RS), SQRT(AE) NUMBER RE RE AT MEAN AE DESIGN ROTOR BLADE CHORD MDOT - MASS MA N - AIRCRAFT ROTATIONAL FLOWRATE (RS), DELTAT CA - TOTAL TEMPERATURE AMBIENT SPEED OF RISE SOUND ACROSS (RS), REOA METHOD - AMBIENT DENSITY (RS), PREDICTION METHOD FLAG KG/M**3 i, - ORIGINAL 2, NBANDS RE REOA MACH NUMBER (RS) SPEED (RS), RE ALLIEDSIGNAL NUMBER OF SHIFT HEIDMAN CA * AE CA/DIAM FAN (RS), M/S (FT/S) RE TA (SLUG/FT**3) METHOD SMALL 1/3 * OCTAVE ENGINE BANDS METHOD (I) NENG - NUMBER OF ENGINES NB - NUMBER OF ROTOR NV - NUMBER OF STATOR IGV - INLET i, GUIDE FOR A VANE INDEX FAN WITH NO FOR FAN 2, A FOR (I) VANES (I) WITH - INLET i, . STIME - SOURCE TIME IOUT - TABLE OUTPUT AND (I) INLET INLET FLOW DISTORTION IF THERE IS NO GUIDE GUIDE VANES VANES (RS) . FREQUENCY (I) BLADES DIS TONE 2, IF THERE IS INDEX (I) INLET FLOW DISTORTION INLET FLOW DISTORTION PRINT OUTPUT OPTION 0 -i -2 . GENERATE TABLE HDNFAN(XXXNNN) PRINT OUTPUT IN DIMENSIONLESS -3 . NO PRINT BUT PRINT OUTPUT NOT BOTH GENERATE OPTIONS TABLE HDNFAN -i AND -2 1 RDNFAN(XXXNNN) PRINT OUTPUT 3 - PRINT 2 IPRINT OUTPUTIN GENERATE TABLE BOTH OPTIONS 1 OUTPUT 3 IUNITS INPUT 2 SCRXXX DB IN UNITS FORM BUT DO (XXXNNN) AND GENERATE DIMENSIONLESS FORM TABLE AND RDNFAN(XXXNNN) AND 2 PRINT FLAG (I) 0 NO PRINT DESIRED 1 SCRNNN (I) GENERATE TABLE HDNFAN(XXXNNN) IN DB UNITS, BUT DO NOT PRINT BOTH ONLY PRINT INPUT - INTEGER VALUE, - UNIT THREE MEMBER LETTER - MEMBER INPUT NAME UNITS ONLY AND NNN, NAME CODE OUTPUT .GT. ENGLISH 2HSI, SI UNITS 154 USED HDNFAN(XXXNNN) XXX USED TO HDNFAN(XXXNNN) FLAG 7HENGLISH, PRINT 0 UNITS TO FORM FORM TABLE TABLE UNIT
  • 159. (THE NEXT (. FALSE. SIX CODES HAVE THE FOLLOWING VALUES) (. TRUE. INRS INCT INDIS COMBINATION INLET FLOW IDBB DISCHARGE IDRS t DO NOT INCLUDE INCLUDE IN TOTAL PREDICTION INLET ROTOR-STATOR INTERACTION DISCHARGE ROTOR°STATOR INLET BROADBAND NOISE INBB REAL USER PARAMETER TONE NOISE DISTORTION BROADBAND PARAMETER LIMITS MINIMUM AE TONES NOISE INTERACTION TONES UNITS MAXIMUM 0.01 RS - SI ) ) TONES 50.0 DEFAULT 0.785398 i00.0 0.1 i0.0 DIAM 0.3 4.0 MD 0.5 2.0 1.0 RSS 0.2 i0.0 MDOT 0.0 I0.0 1.0 0.2 MA 0.0 0.9 0.0 N 0.0 0.5 0.3 DELTAT 0.0 i. 3 CA e 0.01 AFAN 0.0 RHOA REAL USER PARAMETER 500.0 LIMITS - ENGLISH 0.2 340.294 1.225 0.0 MAXIMUM 0. 1076 500.0 0.03281 1.128 UNITS MINIMUM AE RS i. 5 -i00.0 PARAMETER 1.0 400.0 0.0 STIME 0. 886227 DEFAULT 8. 454 328.084 2.908 AFAN 0.I DIAM 0.3 MD 0.5 2.0 1.0 RSS 0.2 10.0 1.0 MDOT 0 .0 I0 . 0 0.2 MA 0.0 0.9 0.0 N 0.0 0.5 0.3 DELTAT 0.0 I. 3 CA 0.0 RHOA STIME INTEGER/LOGICAL/ALPHA PARAMETER I0.0 1.0 4 .0 1312 0.0 .336 0 .0029105 -I00.0 0.2 1116.45 0. 0023769 500.0 0.0 MINIMUM LIMITS MAXIMUM METHOD 1 2 1 DIS 1 2 1 IGV 1 2 1 -3 3 3 IPRINT 0 3 NB 2 IOUT NBANDS PARAMETER i. 128 SCRNNN 3 i00 20 -3 3 1 6 NENG NV DEFAULT i0 200 001 999 0 1 50 001 INRS •TRUE INDIS .TRUE IDBB e .TRUE INCT .TRUE IDRS .TRUE INBB •TRUE SCRXXX 3HXXX IUNITS 2HSI 155
  • 160. DATA BASE UNIT MEMBERS (DESCRIBED SFIELD ( FREQ UNDER ) SFIELD BASE STRUCTURES) (THETA) SFIELD DATA (PHI) OUTPUT USER PARAMETERS RS DISTANCE SYSTEM FROM .TRUE., IMPLIES DURING BASE UNIT AN MODULE .FALSE., OBSERVER NO ERROR SEE NOTE FORMAT MEMBER FROM e USER OUTPUT BY BASE ERROR WAS ENCOUNTERED EXECUTION ENCOUNTERED MEMBERS HDNFAN(XXXNNN) DATA TO PARAMETERS NERR DATA SOURCE DATA BASE XXXNNN IS PARAMETERS OF USER UNDER NAME SCRXXX THIS IS STRUCTURES. FORMED TABLE PARAMETER AND SCRNNN. CONTROLLED IOUT. STRUCTURES SFIELD(FREQ) - 1 RECORD MEMBER IN CONTAINING VALUES CENTER FREQUENCIES e SFIELD(THETA) " SFIELD(PHI) - 1 RECORD CONTAINING ANGLE 1 RECORD MEMBER CONTAINING - TYPE 1 ACOUSTIC (i) IN IN VALUES DIRECTIVITY OCTAVE BAND DEG *RS FORMAT OF THE IN ANGLE DEG TABLE CONTAINING PRESSURE AS A FREQUENCY, AND FORMAT MEMBER IN *RS FORMAT VALUES OF THE POLAR DIRECTIVITY HDNFAN(XXXNNN) *RS OF 1/3 IN HZ (3) (2) AZIMUTHAL AZIMUTHAL MEAN SQUARE FUNCTION OF DIRECTIVITY ANGLE ANGLE ERRORS NON- FATAL i. INSUFFICIENT 2. MEMBER LOCAL MANAGER DYNAMIC ERROR STORAGE. OCCURRED ON SPECIFIED UNIT MEMBER. FATAL - NONE REMARKS REFERENCES HEIDMAN, M. AND JUNE HOUGH, J. SMALL JANUARY LDS F., INTERIM COMPRESSOR 1975. AND PREDICTION SOURCE WEIR, ENGINES, 1995. D., METHOD NOISE, ANOPP NASA FAN ALLIEDSIGNAL TM NOISE ENGINES FAN PREDICTION REPORT FOR 21-8700, REQUIREMENTS LENGTH " (NFREQ + + * NTHETA NFREQ NTHETA + NTHETA * NPHI) + + (NTHETA NPHI + 3 * NFREQ - NUMBER OF FREQUENCY NTHETA - NUMBER OF DIRECTIVITY NPHI - NUMBER OF AZIMUTHAL ANGLES VALUES FOR TABLE HDNFAN(XXXNNN) ANGLES REQUIREMENTS SUFFICIENT ALLOCATION **e 156 * ( NFREQ WHERE GDS FOR X-71763, NPHI) * NTHETA )
  • 161. APPENDIX INTERIM FAN ARD AI_ X PREDICTION METHOD CXJMPRESSOR SOURCE (FIGURES} FOR 1 NOISE- NOISE PREDICTION_PROGRAM THEORETICAL lu_nJ_L(TABLES) 157
  • 162. o o o ¢q J_ 0 / _1_ O" =e ¢0 r- ,- W C .E C3 I ! _ I b 'T, "T _, o _p 'u0.qnq.u;s!o pue8 ehe_.nO 8/I. A!;eleEI e 158 o
  • 163. q 0 0 A n" I-- o ','-n,- n'- V ,,i,m o "4o E C> "_,_. V _c itO rE d ..-.a._ o ,,l==, ',r-- "1o ® ._c ._> .=_ E- v_ E_o_o °_ ,,,==, _° o z ._+ 1.0 l.O O0 O0 ICi L_ II II + IZ') aO LO II o n- o o o, ,_= 0 o c_ q m q o I_. ill:) 0 ¢4) 8P '(otu/tu)OOlOl.-Ol m /.L 5010_--IdSO0 t/L) 0"1 'le^el es!ou )leed pez!leU.UON 159 d tO
  • 164. O O A n'I-- :E qo: ,,i== ,-,i "10 =) V ni- co :E A q) ..o nI- E :E:E o :3 t" "IO a) r- CO E T,== o v ,=._o) =:_.. o 'tO a) E G) a) o') o_ O == 0_ 11- o z O nv_ _o_o ..+ 000 + ddo II II II O q q q q 8p '(ouJ/uJ)OOl01,-O.L/J. 5OlOE--IclSOO _I.) 0"1'leAel es!ou )feed pezfleu.uoN 160 O O I.O
  • 165. O o O T_ 05 .__ 0 ec.Q C 0 .,0 Or) _- O mS "o _Oo _ j_ 8 _.- (J 0. U) C 0 _c = 0 ¢t0 °_ o o I1: 0"-" ] I i ] BP 'uo!]oeJJoo6u!oeds JOlels-JoloEI 161 0
  • 166. b_ m C "0 =.I- < Z 0 0 I 0 0 0 0 v 8P 'uo.qoeuoo _!O 162 0
  • 167. 0 CO G:) b 0 .m t"' CO CO "tO G) _J,< c) < z 0 0 0 O0 0 G:) J 0 0 0 17,, 8P 'uo!_oeJJoo/_!^!J,o_J!(:] 163 0
  • 168. ¢0 I I I ! I I I I I I I l I ! ! ! I I I I I m ? m> _'_ c_ "*- (-- ._ 0 : _° f- c I v, I b,. "I CO "C_ I c_ I G_ 0 t.0 I • I o_ C_ "I" # i I c_ I I I I I o ',^ I I cu ^ _II "_ .. ! I t ' I •.-_ 03 o ._J _+ _J 3 3 t t ! t ! t I t ! I I I t 1:0 "1_ co t "1 'le^el _uou.ueH % t 164 -._¢ c?
  • 169. q 0 d q) V E mi- --i re" 0 d t- o_ o..-V ._> ie,_ 0_ d a 0 n- n-" v=E _o =Eo °. LO I,,0 cSd C.O (.0 II II 0 0 ...I _1 0 165
  • 170. -- O o o A n!(3 _E "O =z 4) ..Q E tO "10 4) r- I-- _=_ e.4Z O Iv E o D >= "O =E cc_. o == o ..cq z C) O rt- a rr E3 _-. ¢3) O) -.... C_I C_I I " + + ooo e6 e6 II II II _1 _J --! I i I Q. Q. o. q C) I_ Iz3 QD O (D LO 143 8p '(ow/w)6oloL-ol // 6olOEo'ldSO0 01 'leAel es!ou )feed pez!leU.UON 166 O _/L)
  • 171. 0 0 0 _" o CO rr _0 o o o_, o .__ _ "_o oo = Q. ¢/) o_ J N o rr I J o J =7, 8P 'uo!loeJJoo6u!oeds JOle_s-Jo;oEI 167
  • 172. T _ { o o o ._m o O_ t'CO "0 CO CO 'ID C/) a) < co o_ Q 0 Z _,_ 0 0 0 { 0 ' { _ 0 i 0 BP 'uo_-_uoo _{^{{0_J{O 168 ' 0 0
  • 173. 0 I "{ { { F 0 .,e,,=. ¢/) m f-. m m m ._> _{- 00 < z a 0 0 0 0 0 0 0 BP 'u0p,0e_o0 _}A{IOaJ{O 169 0
  • 174. 0 i 4 .Q o e- qe- II _t .=_ o= .e "6 iX3 ¢/3 >= _e _e e= o °_ j_o ¢) 13. ._E E3 0 i I 0 I 0 0 I 8P 's,lclS pueq eAe_0 170 8/I. e_._eleEl d 0
  • 175. 1--- > "- E e¢- o ecO Q,. o_ <_ e- .o_ r. o .¢3 E 0 (3 o 0 0 0 0 eP '(otu/uJ)6olOL-O.L ol "ldS 0 /.L. 6OlOE-"idSSO _tged _Z!leU_0N 171 0 0 £/1.)
  • 176. T _ 'F- 1° _D 0 "l"- 8 tt_ ® "0 "0 °_ .> --I- ,( Z 0 0 ,,m" 0 l 0 , 0 { 0 8P 'uo_.uoo 172 _{^.q0,_J{Cl 0 0
  • 177. g--. A ,--4 if-. ',.D c; V c; c_E A Vl o C_ E E OE VI Vl _D OD v o c; V! _0 _0 O_ o _D OO A VI ',O S t_ t, v V! A VI A v v V V p_ L S ._o _'_ ,.=4 ,-I v I ,-'4 _.O I _" P'_ ,.=4 I $.1 pm v _ 0 0 I-I {_, l_ 0 ,-,-I O0 c; _ S I I O O O 0 Z .Q J 0 n_ 0 Z 0 I-4 v v m _ ,-4 ,'4 Z r_. I____1 ,o Z o, E-* Z r_ Z 0 U m u,% v A _ 6 if3 I'N _D A _ o (N c; _ v I I 0 ! 0 X x ! I 0 O X x OD O0 O _O 0 0 0 0 I _D 0 .6) _ _U 0 0 4.J _J 0 _ m -_ 0 I= _ -,-I 0 -,-._ 0_ _0_0 • .-I 0 m ,-t 173 • E 0 U O _
  • 178. A A v ,-4 v ,--4 _-N ,-4 Vl /_ 1,4 A Vl VI A Vl :E _. =E =E I-I _-, =E :E =E Vl Vl v 1.4 v ! UD i f_ I I r-i =£ v i.-I I I I o O (_1 1 I O ,-4 O o O I 1,4 I-I ,"4 'O '13 I: 0 O v r--'----q r_ 0 0 "I I.-I A A O ,,-I O r_ ,o o, i i v E, L._ r-_ r CO u"1 6 6 6 A L_ ,-I ,J (",,I CO c; ,-T ,_ 0 _1 ,q L_ f_ ! I O I ! 0 0 ,.-I X X X e_ u_ x 0 0 P'1 O O ,4 0 e. o ¢) O= _0 '0 ! O I.,I 4J _ I 0 4.1 _ -,_ 0 _n 0 ,., _: 8 8 --4 174 I0 e' U _I_ tO 0 _-I m -,-_ 0 _Oee O0_O _-_
  • 179. 0 C 0 >, _ _ o,-¢ _ 0 I t,ueu.-I,-.ee-eOOO I I I O I I I • • • oe fnc_NN,..eP.l,=40 I I J I I e • I I I I O I • OO I -O O I I _ I I I .-4 0 0 _3-,4 • 00_ o 0 ee I • e • • • OO.DOO¢),-'l,-I • • • • i I I J "0 i-.i 0 Z o C 0 Z -,..4 _. 0>,-4 .,.4-,..4 _ o c_ 0 -,-4 _ ,-4 • • O_DOOO • I I I • • OOO • • • • • OOOO I I • egg I I l O• g I I I O• I • OO • I I ._-,_ [E 0 > C >, 0 .U -,4 - C_ >,-4 0 H I I-4 ,-.4 o _ o u) •,4 C_ o o _,_ 14 .,._ ,_ ._ .,.4_ ,O.u > 0 0,-4 O_ 0 ,...4 o ,.-4 0 O_ OOO _,.t,,O_O • _ e_) er ._ • "" _er_"_O_"_O_t_ou'_ ¢_10.,lr _o en _ "C_ I I " I " e-_ I I "=:" " " "Z 000."4 ¢.6_O O I qD 175 I I I oleo _r_ O,O,"et" _o._t'O" I "_J I I N I " I " I " I 0_ l I ",,4,- ,_" 1_ _,A'_ " " "" I m I I I I I
  • 180. TABLE IV.- SPECTRUM FUNCTIONS Source FOR Spectrum FAN NOISE function Inlet broadband S(D) = 0.116 exp -0.DE in 2.2 noise Inlet nu rotor-stator interaction S(n) = tones _ S (n,i,j) n=n£ where -o.499 S(l,i, j) 0.136 = 0.799 10.250 S(n,i,j) 0.387 0.432 x = 0.101 i0 -0"3 (n-2) (n > I) 0.307 m iInlet flow nu distortion S (n) tones = 9 _ i0 -n n=n£ 1/8 funda- (TI -< 0.125) mental S(_) combination tone = ! 0"405(8n)5 0.405(8n) -3 noise 176 (_ > 0.125)
  • 181. TABLE IV.- Source 1/4 Spectrum funda- 1/2 (4q) (q -< 0.25) 0.52O (4n) -5 (rl > = combination tone function 0. 520 s(q) mental Concluded funda- (n -< o.5) s(n) mental = combination tone 0.25) noise I 0"332(2n)3 O. 332 (2n)-3 (n > 0.5) noise •C Discharge broadband noise S(q) = s(n) 0.116 = Discharge rotor-stator interaction exp -0.5_ in 2.2 J nu S(n,i,j) n=n£ tones where -0.499 S(l,i, j) 0.136- = 0.799 0.387 -0.250 0.432 m S (n,i, j) x = 0.i01 0.307 177 I0 -0" 3 (n-2) (n > i)
  • 182. REPORT DOCUMENTATION 1. AGENCY USEONLY(LNm blank) 2. REPORT ATE D Apd11996 4. TITLE ANDSUBITTLE Aircraft Noise Prediction Program (ANOPP) Engines FormApproved OMBNo. 0704-0188 PAGE 3. REPORT YPE T ANDDATES COVERED Contractor Report 5. FUNDING NUMBERS Fan Noise Prediction for Small NAS1-20102, 53803-11-01 Task 6 6. AUTHOR(S) Joe W. Hough and Donald S. Weir 7. PERFORMING ORATION NAME(S) ANDADORESS(ES) Lockheed AeronauUcal Systems Company 86 South Cobb Drive Marietta, GA 30063 (SubconlTactor) AlliedSignal Engines P.O. Box 52181 Phoenix, AZ 85072 9. SPONSORING/MONITORING AGENCY NAME(S) ANDADDRE$S(ES) National Aeronaubcs and Space Administration Langley Research Center Hampton, VA 23681-0001 8. PERFORMING ORGAWZATION REPORT UMBER N 21-8700 10. SPONSORING I MoNrrORING AGENCY REPORT UMBER N NASA CR-198300 11. SUPPLEMENTARY NOTES Langley Technical Monitor: Robert A. Golub Final Report 12a.DISTRIBUTION I AVAILABILJTY STATEMENT 12b. DISTRIBUTION COOE Unclassified-Unlimited Subject Category 71 13. ABSTRACT I'Mwxknum 200words) The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report descdbes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions. 14. SUBJECTERMS T Jet Engine Noise, Fan Noise, ANOPP Noise Prediction, Fan Noise Spectra, Heidmann Fan Noise Code 15. NUMBER OFPAGES 180 16. PfllCECOOE A09 17. SECURITY LASSIFICATION :18.SECURITY LASSIFICATION 11. SECURrrY LASSIFICATION 20. LIMITATION FABSTRACT C C C O OFTHISPAGE OFABSTRACT OFREPORT Unclassified Unclassified NSN 7540-01-280-5500 Standardorm F 29e (Rev.2-1))) Pm_cnl_d byANSI Z3e-18 Sial. _.lrn

×