Your SlideShare is downloading. ×
0
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Graphical Method
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Graphical Method

22,859

Published on

Published in: Health & Medicine, Technology
3 Comments
3 Likes
Statistics
Notes
No Downloads
Views
Total Views
22,859
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
512
Comments
3
Likes
3
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. GRAPHICAL METHOD
  • 2. Limitation of Graphical Method <ul><li>Graphical solution is limited to linear programming models containing only two decision variables. </li></ul>
  • 3. Procedure <ul><li>Step I: Convert each inequality as equation </li></ul><ul><li>Step II: Plot each equation on the graph </li></ul><ul><li>Step III: Shade the ‘ Feasible Region ’. Highlight the common Feasible region. </li></ul><ul><ul><li>Feasible Region : Set of all possible solutions. </li></ul></ul><ul><li>Step IV: Compute the coordinates of the corner points (of the feasible region). These corner points will represent the ‘ Feasible Solution ’. </li></ul><ul><ul><li>Feasible Solution : If it satisfies all the constraints and non negativity restrictions. </li></ul></ul>
  • 4. Procedure (Cont…) <ul><li>Step V: Substitute the coordinates of the corner points into the objective function to see which gives the Optimal Value . That will be the ‘ Optimal Solution ’. </li></ul><ul><ul><li>Optimal Solution : If it optimizes (maximizes or minimizes) the objective function. </li></ul></ul><ul><ul><li>Unbounded Solution : If the value of the objective function can be increased or decreased indefinitely, Such solutions are called Unbounded solution. </li></ul></ul><ul><ul><li>Inconsistent Solution : It means the solution of problem does not exist. This is possible when there is no common feasible region. </li></ul></ul>
  • 5. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x 2 x 1 Example Max z = 5 x 1 + 7 x 2 s.t. x 1 < 6 2 x 1 + 3 x 2 < 19 x 1 + x 2 < 8 x 1 , x 2 > 0 Every point is in this nonnegative quadrant
  • 6. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x 2 x 1 x 1 < 6 (6, 0) Example (Cont…) Max z = 5 x 1 + 7 x 2 s.t. x 1 < 6 2 x 1 + 3 x 2 < 19 x 1 + x 2 < 8 x 1 , x 2 > 0
  • 7. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 2 x 1 + 3 x 2 < 19 x 2 x 1 (0, 6.33) (9.5 , 0) Max z = 5 x 1 + 7 x 2 s.t. x 1 < 6 2 x 1 + 3 x 2 < 19 x 1 + x 2 < 8 x 1 , x 2 > 0 Example (Cont…)
  • 8. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x 2 x 1 x 1 + x 2 < 8 (0, 8) (8, 0) Max z = 5 x 1 + 7 x 2 s.t. x 1 < 6 2 x 1 + 3 x 2 < 19 x 1 + x 2 < 8 x 1 , x 2 > 0 Example (Cont…)
  • 9. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 2 x 1 + 3 x 2 < 19 x 2 x 1 x 1 + x 2 < 8 x 1 < 6 Max z = 5 x 1 + 7 x 2 s.t. x 1 < 6 2 x 1 + 3 x 2 < 19 x 1 + x 2 < 8 x 1 , x 2 > 0 Example (Cont…)
  • 10. 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x 2 x 1 Example (Cont…) A (0,0) (6,0)B (6,2)C (5,3)D (0,6.33)E
  • 11. <ul><li>Objective Function : Max Z= 5x 1 +7x 2 </li></ul><ul><li>Corner Points Value of Z </li></ul><ul><li>A – (0,0) 0 </li></ul><ul><li>B – (6,0) 30 </li></ul><ul><li>C – (6,2) 44 </li></ul><ul><li>D – (5,3) 46 </li></ul><ul><li>E – (0,6.33) 44.33 </li></ul><ul><li>Optimal Point : (5,3) </li></ul><ul><li>Optimal Value : 46 </li></ul>Example (Cont…)
  • 12. Example <ul><ul><li>Max Z=3 P1 + 5 P2 </li></ul></ul><ul><ul><li>s.t. P1 < 4 </li></ul></ul><ul><ul><li>P2 < 6 </li></ul></ul><ul><ul><li>3 P1 + 2 P2 < 18 </li></ul></ul><ul><ul><li>P1, P2 > 0 </li></ul></ul>
  • 13. Example P1 P2 0 Every point is in this nonnegative quadrant <ul><ul><li>Max Z=3 P1 + 5 P2 </li></ul></ul><ul><ul><li>s.t. P1 < 4 </li></ul></ul><ul><ul><li>P2 < 6 </li></ul></ul><ul><ul><li>3 P1 + 2 P2 < 18 </li></ul></ul><ul><ul><li>P1, P2 > 0 </li></ul></ul>
  • 14. Example (Cont…) P1 P2 (0,0) <ul><ul><li>Max Z= 3 P1 + 5 P2 </li></ul></ul><ul><ul><li>s.t. P1 < 4 </li></ul></ul><ul><ul><li>P2 < 6 </li></ul></ul><ul><ul><li>3 P1 + 2 P2 < 18 </li></ul></ul><ul><ul><li>P1, P2 > 0 </li></ul></ul>(4,0)
  • 15. Example (Cont…) P1 P2 (0,0) <ul><ul><li>Max Z= 3 P1 + 5 P2 </li></ul></ul><ul><ul><li>s.t. P1 < 4 </li></ul></ul><ul><ul><li>P2 < 6 </li></ul></ul><ul><ul><li>3 P1 + 2 P2 < 18 </li></ul></ul><ul><ul><li>P1, P2 > 0 </li></ul></ul>(4,0) (0,6)
  • 16. Example (Cont…) P1 P2 (0,0) <ul><ul><li>Max Z= 3 P1 + 5 P2 </li></ul></ul><ul><ul><li>s.t. P1 < 4 </li></ul></ul><ul><ul><li>P2 < 6 </li></ul></ul><ul><ul><li>3 P1 + 2 P2 < 18 </li></ul></ul><ul><ul><li>P1, P2 > 0 </li></ul></ul>(4,0) (0,6) (2,6) (4,3) ( 6,0)
  • 17. Example (Cont…) P1 P2 (0,0) (4,0) (0,6) (2,6) (4,3) ( 6,0) A B C D E
  • 18. Example (Cont…) Objective Function : Max Z= 3 P1 + 5 P2 Corner Points Value of Z A – (0,0) 0 B – (4,0) 12 C – (4,3) 27 D – (2,6) 36 E – (0,6) 30 Optimal Point : (2,6) Optimal Value : 36
  • 19. Example Min z = 5 x 1 + 2 x 2 s.t. 2 x 1 + 5 x 2 > 10 4 x 1 - x 2 > 12 x 1 + x 2 > 4 x 1 , x 2 > 0
  • 20. 5 4 3 2 1 1 2 3 4 5 6 x 2 4 x 1 - x 2 > 12 2 x 1 + 5 x 2 > 10 x 1 Example Min z = 5 x 1 + 2 x 2 s.t. 2 x 1 + 5 x 2 > 10 4 x 1 - x 2 > 12 x 1 + x 2 > 4 x 1 , x 2 > 0 x 1 + x 2 > 4
  • 21. 5 4 3 2 1 1 2 3 4 5 6 x 2 x 1 Feasible Region This is the case of ‘Unbounded Feasible Region’. Example (Cont…) Min z = 5 x 1 + 2 x 2 s.t. 2 x 1 + 5 x 2 > 10 4 x 1 - x 2 > 12 x 1 + x 2 > 4 x 1 , x 2 > 0 A (35/11 , 8/11) B (5,0)
  • 22. Example (Cont…) Objective Function : Max Z= 5x 1 +2x 2 Corner Points Value of Z A – (35/11, 8/11) 191/11 (17.364) B – (5,0) 25 Optimal Point : (35/11,8/11) Optimal Value : 191/11=17.364
  • 23. Example Max z = 3 x 1 + 4 x 2 s.t. x 1 + x 2 > 5 3 x 1 + x 2 > 8 x 1 , x 2 > 0
  • 24. Example x 1 3 x 1 + x 2 > 8 x 1 + x 2 > 5 5 5 8 2.67 Max z = 3 x 1 + 4 x 2 s.t. x 1 + x 2 > 5 3 x 1 + x 2 > 8 x 1 , x 2 > 0 Feasible Region This feasible region is unbounded, hence z can be increased infinitely. So this problem is having a Unbounded Solution .
  • 25. Example Max z = 2 x 1 + 6 x 2 s.t. 4 x 1 + 3 x 2 < 12 2 x 1 + x 2 > 8 x 1 , x 2 > 0
  • 26. Example Max z = 2 x 1 + 6 x 2 s.t. 4 x 1 + 3 x 2 < 12 2 x 1 + x 2 > 8 x 1 , x 2 > 0 x 2 x 1 4 x 1 + 3 x 2 < 12 2 x 1 + x 2 > 8 3 4 4 8 In this example, common feasible region does not exist and hence the problem is not having a optimal solution. This is the case of infeasible solution.

×