1108.2508v1

443 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
443
On SlideShare
0
From Embeds
0
Number of Embeds
73
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

1108.2508v1

  1. 1. accepted to the Astrophysical Journal 10 August 2011 Preprint typeset using L TEX style emulateapj v. 8/13/10 A THE MAJOR AND MINOR GALAXY MERGER RATES AT Z < 1.5 Jennifer M. Lotz1,2,3 , Patrik Jonsson4 , T.J. Cox5,6 , Darren Croton7 , Joel R. Primack8 , Rachel S. Somerville3, 9 , and Kyle Stewart10, 11 accepted to the Astrophysical Journal 10 August 2011 ABSTRACTarXiv:1108.2508v1 [astro-ph.CO] 11 Aug 2011 Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged ‘observability’ timescale Tobs (z) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, Tobs (z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate Tobs (z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G − M20 , and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit co- moving volume for samples selected with constant number density evolves much more strongly with redshift (∝ (1 + z)+3.0±1.1 ) than samples selected with constant stellar mass or passively evolving luminosity (∝ (1 + z)+0.1±0.4 ). We calculate the minor merger rate (1:4 < Msat /Mprimary 1:10) by subtracting the major merger rate from close pairs from the ‘total’ merger rate determined by G − M20 . The implied minor merger rate is ∼ 3 times the major merger rate at z ∼ 0.7, and shows little evolution with redshift. Subject headings: galaxies:evolution – galaxies:high-redshift – galaxies:interacting – galaxies:structure 1. INTRODUCTION of dispersion-dominated spheroids (e.g. Toomre 1977; The galaxy merger rate over cosmic time is one of White & Rees 1978; Kauffmann, White, & Guiderdoni the fundamental measures of the evolution of galaxies. 1993; Mihos & Hernquist 1996; Sanders & Mirabel 1996; Galaxies and the dark matter halos they live in must Somerville et al. 2001, 2008; di Matteo et al. 2008; Hop- grow with time through mergers with other galaxies and kins et al. 2006, 2008). Because other physical processes through the accretion of gas and dark matter from the are also at work, direct observations of the galaxy merg- cosmic web. Over the past 10 billion years, the global ers are needed to understand their global importance to star-formation rate density has declined by a factor of 10 galaxy evolution and assembly. (e.g. Lilly et al. 1996; Madau et al. 1996; Hopkins & In a cold-dark matter dominated universe, massive Beacom 2006) while the global stellar-mass density has structures are expected to grow hierarchically. Numeri- increased by a factor of two (e.g. Rudnick et al. 2003; cal simulations consistently predict that the dark matter Dickinson et al. 2003) . At the same time, massive galax- halo - halo merger rate per progenitor (or descendant) ies have been transformed from rapidly star-forming disk halo at fixed halo mass changes rapidly with redshift galaxies into quiescent bulge-dominated galaxies hosting ∼ (1 + z)2−3 (e.g. Gottl¨ber, Klypin, & Kratsvov 2001; o super-massive black holes (e.g. Bell et al. 2004; Faber Fakhouri & Ma 2008; Genel et al. 2009; Fakhouri, Ma, et al. 2007; Brown et al. 2007). Galaxy mergers may & Boylan-Kolchin 2010). The dark matter merger rate be an important process that drives galaxy assembly, scales with mass and mass ratio (Fakhouri & Ma 2008; rapid star-formation at early times, the accretion of gas Fakhouri et al. 2010). More massive halos are rarer, but onto central super-massive black holes, and the formation have more frequent merger rates per halo. Minor mergers with mass ratios greater than 1:4 should be much more 1 National Optical Astronomical Observatories, 950 N. Cherry common per halo than major mergers with comparable Avenue, Tucson, AZ 85719, USA 2 Leo Goldberg Fellow mass halos. 3 Space Telescope Science Institute, 3700 San Martin Dr., Bal- However, the theoretical predictions for the galaxy timore, MD 21218; lotz@stsci.edu merger rate remain highly uncertain (e.g. Jogee et al. 4 Harvard-Smithsonian Center for Astrophysics, Cambridge, 2009; see Hopkins et al. 2010a for a review). The pre- MA, USA 5 Carnegie Observatories, Pasadena, CA, USA dicted (1 + z)3 evolution in the dark-matter halo merger 6 Carnegie Fellow rate (per halo above a fixed total mass) does not auto- 7 Centre for Astrophysics & Supercomputing, Swinburne Uni- matically translate into a (1 + z)3 evolution in the galaxy versity of Technology, Hawthorn, Australia merger rate (per galaxy above a fixed stellar mass) be- 8 Department of Physics, University of California, Santa Cruz, USA cause there is not a simple connection between observed 9 Department of Physics & Astronomy, Johns Hopkins Uni- galaxies and dark matter halos (e.g. Berrier et al. 2006; versity, Baltimore, MD, USA Hopkins et al. 2010a, Moster et al. 2010). For exam- 10 Jet Propulsion Laboratory, Pasadena, CA, USA 11 NASA Postdoctoral Fellow ple, the differences in the dark matter halo mass function
  2. 2. 2and the galaxy stellar mass function at the high mass and range of merger properties, including progenitor mass,low mass ends naturally produces a discrepancy between mass ratio, gas fraction, and orbital parameters (Cox etthe merger rates as a function of stellar and dark-matter al. 2006, 2008). Mass ratio and gas fraction are es-mass and mass ratio. pecially important for interpreting the merger fractions Many galaxy evolution models predict that the evolu- derived from morphological studies (Lotz et al. 2010a,tion of major mergers of galaxies selected above a fixed b).stellar mass (∼ 1010 M⊙ ) changes more modestly with The goal of this paper is to self-consistently determineredshift ( ∼ (1 + z)1−2 ), but these can have an order of the observational galaxy merger rate at z < 1.5 from re-magnitude variation in their normalizations (e.g. Jogee cent close pair and morphological studies. We weight theet al. 2009; Hopkins et al. 2010a). The largest source of merger timescales from individual high-resolution simu-theoretical uncertainty for semi-analytic galaxy evolution lations by the expected distribution of merger propertiesmodels is the baryonic physics required to map galaxies (including gas fraction and mass ratio) to determine theonto dark matter halos and sub-halos, and in turn, re- average observability timescale as a function of redshiftquired to match the observational selection of luminous for each method for finding galaxy mergers (close pairs,merging galaxies (Hopkins et al. 2010a and references G − M20 , asymmetry). These new calculations of the av-therein). In contrast, semi-empirical models which map erage observability timescales are crucial for interpretinggalaxies onto dark matter sub-halos by matching the ob- the observed galaxy merger fractions. We re-analyze theserved abundances of galaxies (per unit luminosity) to observations of galaxy mergers at z < 1.5 from the recentthe abundances of sub-halos (per unit mass) give reason- literature and derive new estimates of the galaxy mergerably good predictions for clustering statistics by adopt- rate. We also carefully consider the effects of parenting fairly small dispersions in the mapping function (e.g. sample selection on the inferred evolution of the galaxyZheng et al. 2007, Conroy & Wechsler 2009) and give merger rate. We conclude that the differences in thea only factor of two discrepancy in the predicted major observed galaxy merger fractions may be accounted formerger rates (e.g. Hopkins et al. 2010b, Stewart et al. by the different observability timescales, different mass-2009a). ratio sensitivities, and different parent galaxy selections. Despite more than a decade of work, measurements of When these differences in the methodology are properlythe observed galaxy merger rate and its evolution with accounted for by adopting our derived timescales, we areredshift has not converged. Current observations of the able to derive self-consistent estimates of the major andfraction of bright/massive galaxies undergoing a merger minor galaxy merger rate and its evolution.differ by an order of magnitude (Fig. 1), and estimates In §2, we define the volume-averaged galaxy mergerof the evolution in this merger fraction of at 0 < z < 1.5 rate, Γmerg , as the co-moving number density of on-goingvary from weak or no evolution (e.g. Bundy et al. 2004; galaxy merger events per unit time, and the fractionalLin et al 2004; Lotz et al. 2008a; Jogee et al. 2009; galaxy merger rate, ℜmerg , as the number of galaxyBundy et al. 2009; Shi et al. 2009; de Ravel et al. 2009; merger events per unit time per selected galaxy. We dis-Robaina et al 2010) to strong evolution ( ∼ (1 + z)3 ; Le cuss how to calculate Γmerg and ℜmerg using close pairsFe´re et al. 2000; Conselice et al. 2009; Cassata et al. v and disturbed morphologies. In §3, we review the recent2004; Kartaltepe et al. 2007; Rawat et al. 2008; Bridge literature estimates of the galaxy merger fraction usinget al. 2010; L´pez-Sanjuan et al. 2009 ). It has been o quantitative morphology (G−M20 , asymmetry) and closedifficult to understand the source of these discrepancies, pairs of galaxies and discuss the importance of the parentas the various studies often employ different criteria for sample selection. In §4, we review the results from the in-counting galaxy mergers and different selections for the dividual high-resolution galaxy merger simulations. Weparent galaxy samples. present new calculations of the cosmologically-averaged These observational studies identify galaxy merger merger observability timescale Tobs (z) for close pairs,candidates either as galaxies in close pairs (in projected G−M20 , and asymmetry, using the distribution of galaxyor real 3-D space) or galaxies with distorted morpholo- merger properties predicted by three different galaxy evo-gies (measured quantitatively or by visual inspection). A lution models (Croton et al. 2006; Somerville et al. 2008;key obstacle to the consistent measurement of the galaxy Stewart et al. 2009b). In §5, we derive the fractionalmerger rate has been the poorly constrained timescales and volume-averaged major and minor galaxy mergerfor detecting galaxy mergers selected by different meth- rates for galaxy samples selected by stellar-mass, evolv-ods. Close pairs find galaxies before they merge, while ing luminosity, and constant co-moving number densitymerger-induced morphological disturbances can appear at z < 1.5. We compare these results to the predictedbefore, during, and after a galaxy merger. Moreover, major and minor galaxy merger rates. Throughout thismorphological studies use a variety of tracers to clas- work, we assume Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 kmsify galaxies as mergers (such as G − M20 , asymmetry, s−1 Mpc−1 , except for close pair projected separationstidal tails), which have differing sensitivities to different where h = H0 /100 km s−1 Mpc−1 .merger properties such as mass ratio and gas fraction.Thanks to new high-resolution hydrodynamical simula- 2. CALCULATING THE GALAXY MERGER RATEtions of galaxy mergers which model realistic light pro- The volume-averaged galaxy merger rate Γmerg is de-files including the effects of star-formation and dust (e.g. fined as the number of on-going merger events per unitJonsson et al 2006), it is now possible to estimate the co-moving volume, φmerg , divided by the time Tmerg fortimescales for detecting galaxy mergers with a variety of the merger to occur from the initial encounter to the finalclose pair and morphological criteria (Lotz et al. 2008b; coalescence:Lotz et al. 2010a, b). These simulations also span a φmerg Γmerg = (1) Tmerg
  3. 3. 3Note that Tmerg , the time period between the time of ages. Such disturbances can be found through visualthe initial gravitational encounter and coalescence (from inspection by human classifiers, or by quantitative mea-“not merging” to “merged”) is not well defined. surements of galaxy structures. Several different quanti- More accurately, the number density of galaxies identi- tative methods are commonly used to measure galaxyfied as galaxy mergers φmerg will depend on the average morphology and classify galaxy mergers. Rotationaltimescale Tobs during which the merger can be observed asymmetry (A) picks out large-scale high surface bright-given the method used to identify it, such that ness asymmetric structures (e.g. Abraham et al. 1994; Conselice, Bershady, & Jangren 2000; Conselice 2003); Tobs the combination of the Gini coefficient (G; Abraham et φ′ merg = φmerg (2) Tmerg al. 2003; Lotz et al. 2004) and second-order moment of the brightest 20% of the light (M20 ) selects galaxiesA galaxy merger may be identified at discontinuous with multiple bright nuclei (Lotz et al. 2004). Both ofstages (as in the case of close pairs), therefore Tobs is these methods require high signal-to-noise and high spa-the sum of the observability windows. tial resolution images generally only achievable with the Thus, the galaxy merger rate Γ can be calculated from Hubble Space Telescope (HST ) at z > 0.3, as well as athe observed number density of galaxy merger candidates training set to distinguish ‘normal’ galaxies from mergerφ′ merg as follows: candidates. The merger fraction, fmerg , is the fraction of galaxies φ′ merg Tmerg φ′ merg identified as mergers for a given galaxy sample, and is Γmerg = = (3) Tmerg Tobs Tobs often presented instead of the number density of observed merger events. Thus φ′ merg depends on both the merger The majority of past merger calculations have assumed fraction and the co-moving number density of galaxies in Tobs to be a constant value ranging from ∼ 0.2 Gyr to 1 the selected sample, ngal :Gyr, without considering the differences in methodology,the effect of merger parameters, or redshift-dependent φ′ merg = fmerg ngal (4)changes in the ability to detect mergers. In §4, we presentdetailed calculations of Tobs as a function of redshift for For both morphologically-selected and close pairdifferent methods using theoretical models of galaxy in- merger candidates, a correction factor is applied to theteractions and the evolving distribution of galaxy merger merger fraction to account for contamination from ob-properties. jects that are not mergers. For morphological merger Galaxy mergers can be directly identified as close selection, this correction is applied prior to calculatinggalaxy pairs that have a high probability of merging fmerg based on visual inspection or a statistical correc-within a short time. Galaxies with similar masses that tion. For close pairs, the fraction of pairs (fpair ) or thelie within a hundred kpc of each other and have relative fraction of galaxies in a pair (Nc ∼ 2fpair ) is multipliedvelocities less than a few hundred km s−1 are likely to by this correction factor Cmerg , such thatmerge within a few billion years. Individual close galaxypairs may be found by counting up the numbers of galax- Nc fmerg = Cmerg fpair ∼ Cmerg (5)ies with companions within a given projected separation 2Rproj and within a relative velocity or redshift range. We will adopt Cmerg = 0.6 throughout this paper. Nu-However, spectroscopic determination of the relative ve- merical simulations and empirical measurements suggestlocities of close pairs is observationally expensive, and that Cmerg is ∼ 0.4−1.0 for close pairs selected withprone to incompleteness due to slit/fiber collisions andbiased detection of emission-line galaxies (e.g. Lin et al. projected separations < 20−30 kpc h−1 (Kitzbichler &2004, 2008; de Ravel et al. 2009). Photometric red- White 2008, Patton & Atfield 2008; see Bundy et al. 2009shifts are often used as a proxy for spectroscopic velocity for discussion). It is worth noting that close pair samplesseparations (e.g. Kartaltepe et al. 2007, Bundy et al. are likely to be biased towards objects in groups or clus-2009). However, even high precision photometric red- ters (Barton et al. 2007), although simulations suggest δz that the majority of these objects will merge (Kitzbichlershifts ( 1+z ∼ 0.02) are only accurate to 100-200 Mpc & White 2008).along the line of sight. Therefore significant statistical Multiple authors have estimated the fractional mergercorrections for false pairs are required for photometrically rate ℜmerg instead of Γmerg whereselected pair studies (e.g. Kartaltepe et al. 2007). Fi-nally, two-point angular correlation studies of large sam- fmerg Cmerg fpairples of galaxies have also been used to determine the ℜmerg = = (6) Tobs Tobsstatistical excess of galaxies within a given dark matterhalo (e.g. Masjedi et al. 2006, Robaina et al. 2010). (e.g. L´pez-Sanjuan et al. 2009, Bundy et al. 2009, oThese studies are less prone to line-of-sight projection Bridge, Carlberg, & Sullivan 2010, Conselice et al. 2009,issues, but cannot identify individual merging systems. Jogee et al. 2009). In principle, the fractional merger Morphological disturbances also indicate a recent or rate ℜmerg circumvents variation in ngal , which mayon-going merger. Galaxy mergers experience strong change from field to field with cosmic variance and isgravitational tides, triggered star-formation, and the re- a factor of two or more lower at z ∼ 1 than z ∼ 0.2 fordistribution of their stars and gas into a single relaxed fixed stellar mass or passive luminosity evolution selec-galaxy. This gravitational rearrangement results in mor- tion (Figure 2). Semi-analytic cosmological simulationsphological distortions – e.g. asymmetries, double nuclei, also have difficulty simultaneously reproducing the cor-tidal tails – which are detectable in high-resolution im- rect galaxy number densities at all mass scales, but may
  4. 4. 4be more robustly compared to observations for relative identifies merging systems for only a short period whiletrends such as ℜmerg . double nuclei are evident (Lotz et al. 2008; Lotz et al. Γmerg traces the number of merger events per co- 2010a, b).moving volume above some mass/luminosity limit, By applying the G − M20 technique to high-resolutionwhile ℜmerg traces the number of merger events per HST Advanced Camera for Surveys V (F606W) and I(bright/massive) galaxy. It is often implicitly assumed (F814W) images of the Extended Groth Strip (Davis etthat any evolution with redshift is not dependent on al. 2007), Lotz et al. (2008a) found fmerg = 10±2% for angal (z) or the galaxy selection either because the par- sample of galaxies at 0.2 < z < 1.2. This work concludedent galaxy samples are selected in a uniform way or be- that the galaxy merger fraction and rate evolved weaklycause the merger rate is not a strong function of galaxy over this redshift range: fmerg (z) ∝ (1 + z)0.23±1.03 . Theluminosity, mass, or number-density. However, several parent sample was selected to be brighter than 0.4L∗ (z), Bstudies have found that the fraction of mergers increases assuming passive luminosity evolution of galaxies andsignificantly at fainter absolute magnitudes/lower stel- rest-frame B luminosity functions calculated for the Ex-lar masses (Bridge et al. 2010; de Ravel et al. 2009; tended Groth Strip (MB < −18.94 − 1.3z; Faber etLin et al. 2004; Bundy et al 2005), while other studies al. 2007). Only rest-frame B morphologies were con-have found increased merger fractions for more massive sidered in order to avoid biases associated with intrin-galaxies (Bundy et al. 2009; Conselice et al. 2003). If sic morphological dependence on rest-frame wavelength.the observed merger fraction depends upon luminosity The merger fractions were corrected for visually- andor stellar mass, comparison of different observational es- spectroscopically-identified false mergers (∼ 20−30% oftimates of Γmerg or ℜmerg will require careful consider- initial merger candidates, similar to photometric redshiftation of the parent galaxy sample selection criteria. We pair corrections). G − M20 identified merger candidateswill return to this issue in §3.5. with visually-identified artifacts or foreground stars were removed from the sample. Also, G − M20 merger candi- 3. GALAXY MERGER OBSERVATIONS dates with multiple spectroscopic redshifts within a sin- gle DEEP2/DEIMOS slit were identified and used to sta- Despite the large number of galaxy merger studies, tistically correct the resulting merger fractions (see Lotzthere is little consensus on the galaxy merger rate or et al. 2008a for additional discussion.) The statisticalits evolution with redshift at z < 1.5. In part, this is uncertainties associated with galaxies scattering from thebecause many studies have compared the galaxy merger main locus on normal galaxies to merger-like G−M20 val-fraction fmerg (z) (Figure 1) or the galaxy merger rate for ues are also included in the merger fraction error. Thegalaxy merger samples selected with different approaches fmerg and ngal values from Lotz et al. (2008a) are givenand/or with different parent sample criteria. In this sec- in Table 2.tion, we review the selection of galaxy mergers and their For this paper, we have also computed fmerg (G − M20 )parent samples for a variety of recent merger studies at for a parent sample selected above a fixed stellar massz < 1.5. We will focus on works that identify merger Mstar > 1010 M⊙ for the same HST observations of thevia quantitative morphology (G − M20 , A) or close pairs, Extended Groth Strip. (Stellar masses were calculatedbut briefly discuss results from other approaches. Almost using Bruzual & Charlot 2003 spectral energy distribu-all of these studies have calculated either the evolution tions and a Chabrier 2003 initial mass function; see Salimin the merger fraction (fmerg or fpair ), thereby ignoring et al. 2009, 2007 for details). We estimated ngal us- Tobs (z) , or the merger rate Γmerg or ℜmerg by assuming ing the galaxy stellar mass functions v. redshift givena constant Tobs with redshift. by Ilbert et al. (2010) for the same redshift bins. We note that these were derived using a different field (COS- 3.1. G − M20 -Selected Mergers MOS), but are consistent with the galaxy stellar mass One quantitative morphological approach to identify- function computed for the Extended Groth Strip withing galaxy mergers in high-resolution images has been larger redshift bins (Bundy et al. 2006).the G − M20 method. The Gini coefficient G is a mea-surement of the relative distribution of flux values in the 3.2. Asymmetric Galaxiespixels associated with a galaxy, such that uniform sur- Another commonly-used measure of morphological dis-face brightness galaxies have low G and galaxies with disturbance is the rotational asymmetry, A. Asymmetryvery bright nuclei have high G (Abraham et al. 2003; measures the strength of residuals when a galaxys profileLotz et al. 2004). When G is combined with M20 , the is subtracted from its 180-degree rotated profile (Abra-second-order moment of the brightest 20% of the light, ham et al. 1994; Conselice et al. 2000). Merger simula-local spiral and elliptical galaxies follow a well-defined se- tions suggest that high A values may last for a longer pe-quence and local mergers have higher G and and higher riod of time than G− M20 detected disturbances (Lotz etM20 values (Lotz et al. 2004). Simulations of galaxy al. 2008b, 2010a,b). As we discuss in §4, A is highly sen-mergers revealed that the G − M20 technique primarily sitive to gas fraction and, for local gas fractions, probesidentifies mergers during the first pass and final merger mergers with a different range of mass ratio than G−M20 .(Lotz et al. 2008b) and is sensitive to mergers with bary- Early studies of small deep HST fields by Abrahamonic mass ratios between 1:1 - 1:10 (Lotz et al. 2010b). et al. (1996) and Conselice et al. (2003, 2005) showedIt has been noted by multiple authors that the merger strong evolution in the fraction of asymmetric galaxiessample found by the G − M20 technique is incomplete at 0 < z < 3 with stellar masses > 1010 M⊙ . Subsequent(Kampczyk et al. 2007; Scarlata et al. 2007; Kartaltepe studies based on larger HST surveys confirmed this ini-et al. 2010). This is consistent with the results from tial result at 0 < z < 1.2 (Cassata et al. 2005, Conselicegalaxy merger simulations, which predict that G − M20 et al. 2009, L´pez- Sanjuan et al. 2009; but see Shi et o
  5. 5. 5 Fig. 1.— Left: The galaxy merger fraction (fmerg ) or close pair fraction (fpair ) v. redshift for samples selected by stellar mass(Mstar > 1010 M⊙ ). Right: Same, for samples selected with an evolving luminosity limit (see text). Large asterisks are G − M20 -selectedmergers, filled circles are for close pairs, and open diamonds are for asymmetric galaxies. For both stellar-mass and luminosity-selectedparent samples, fmerg and fpair vary by a factor of 10 for different merger studies.al. 2009). For this paper, we consider the measurements values. Also, rather than visually inspecting the asym-for three recent studies: Conselice et al. (2009), L´pez- o metric merger candidates for false mergers, they employSanjuan et al. (2009) and Shi et al. (2009). These studies a maximum-likelihood approach to determine how manycompute A in rest-frame B. Low signal-to-noise images normal galaxies are likely to be scattered to high asym-and redshift-dependent surface-brightness dimming can metry values via large measurement errors and infer aproduce strong biases in the asymmetry measurements. high contamination rate (> 50%). Consequently, theirEach of these asymmetry studies makes different assump- merger fractions are much lower than Conselice et al.tions about how to correct for these effects, and it is (2009), but follow similar evolutionary trends with red-therefore perhaps not surprising that they draw different shift.conclusions about fmerg (z). Shi et al. (2009) also examine the fraction of asymmet- Conselice et al. (2009) computed asymmetry fractions ric galaxies in HST images of the GOODS fields. How-for galaxies at 0.2 < z < 1.2 selected from the COS- ever, they select galaxies based on an evolving luminosityMOS (Scoville et al. 2007 ), GEMS (Rix et al. 2004), cut (MB < −18.94−1.3z) and apply different correctionsGOODS (Giavalisco et al. 2004) and AEGIS (Davis et for the effects of sky noise and surface-brightness dim-al. 2007) HST surveys. They find that the fraction of ming to the asymmetry measurements. Shi et al. (2009)galaxies with stellar masses > 1010 M⊙ that have high find that the fraction of asymmetric galaxies has notasymmetry increases from ∼ 4% at z = 0.2 to 14% at evolved strongly at z < 1 with fmerg (z) ∝ (1 + z)0.9±0.3 ,z = 1.2, with fmerg (z) ∝ (1+z)2.3±0.4 . These asymmetry but find asymmetric fractions 2 − 3 times higher thanfractions are corrected for an assumed mean decrease in Conselice et al. (2009). Shi et al. (2009) note that inasymmetry with redshift due to surface-brightness dim- addition to a redshift-dependent surface-brightness dim-ming ( δA = −0.05 at z = 1). False merger candidates ming correction to the measured asymmetry values, cor-scattered to high A values are visually identified and re- rection based on the signal-to-noise of the image may bemoved from the final asymmetric galaxy fractions, as are required. Extremely deep images (i.e. the Hubble Ultragalaxies with high A but low clumpiness (S) values. Deep Field; Beckwith et al. 2006) can give asymmetry L´pez-Sanjuan et al. (2009) also compute the frac- o values 0.05 − 0.10 higher than lower signal-to-noise im-tion of asymmetric galaxies in the GOODS fields se- ages of the same galaxy (Shi et al. 2009; Lotz et al.lected from a parent sample at z < 1 with stellar masses 2006). Based on extensive simulations of this effect, Shi> 1010 M⊙ . They find even stronger evolution in the et al. (2009) correct the observed fractions of asymmetricmerger fraction fmerg (z) ∝ (1 + z)5.4±0.4 . They ap- galaxies to that expected for high signal-to-noise obser-ply a similar redshift-dependent correction for surface- vations in the local universe. No correction for falsely-brightness dimming to the measured asymmetry values, identified merger candidates is applied, hence the Shi etbut correct their asymmetry values to the values ex- al. (2009) results may be considered an upper limit to thepected to be observed at z = 1, rather than z = 0 as fraction of asymmetric galaxies while the L´pez-Sanjuan oConselice et al. 2009 does. This results in lower fmerg et al. (2009) result may be considered a lower limit. It
  6. 6. 6is also possible that the different signal-to-noise thresh- with the same data.) We will examine only the brightolds for detecting asymmetry probe different processes sample results, as this selection (MB < −18.77 − 1.1z)(clumpy star-formation, minor mergers, major mergers). is similar to the Lin et al. (2008) study. They adopt a similar luminosity ratio for the paired galaxies (1:1 - 3.3. Close Pairs 1:4) to the Lin et al. 2008 study. They also compute the Numerous studies have attempted to measure the pair fraction fpair at several different projected separa-galaxy merger rate by counting the numbers of galax- tions. We use their values for Rproj < 100 kpc h−1 andies with close companions. However, these studies often δV ≤ 500 km s−1 because these have the smallest statis-adopt different criteria for the projected separation of tical errors and give merger rates consistent with smallergalaxies, the stellar mass (or luminosity) ratio of primary projected separation. The number density of galaxiesand companion galaxy, and the stellar mass (or luminos- was computed using the VVDS rest-frame B luminosityity) range of the parent sample. We can account for functions (Ilbert et al. 2005).different projected separation criteria in our estimates of Kartaltepe et al. (2007) used photometric redshifts tothe merger rate by modifying the dynamical timescale. select objects at 0.2 < z < 1.2 with close companionsBut without a priori knowledge of how the merger rate from deep K-band imaging of the COSMOS field. Theydepends on mass ratio and mass, we cannot compare find that the pair fraction evolves strongly with redshiftmerger studies where close pairs are selected with differ- fpair ∝ (1 + z)3.1±0.1 , in rough agreement with a laterent mass ratios or from samples with different limiting study by Rawat et al. (2008) of J-band selected pairsmasses. Here we describe the different criteria adopted in the Chandra Deep Field South. To minimize the con-by different studies, and how these criteria are likely to tamination from false pairs, they applied a stricter pro-affect our derivation of the merger rate. We divide these jected separation criteria of 5 < Rproj < 20 kpc h−1 andstudies into those selected by stellar mass and those se- δzphot ≤ 0.05. They also selected pairs of galaxies wherelected by rest-frame luminosities. We calculate Tobs (z) both objects were brighter than a fixed absolute magni-for each of the close pair selection criteria in §4, and as- tude MV = −19.8 which corresponds to L∗ at z = 0. Vsume Cmerg = 0.6 for all samples when calculating the They correct the pair fractions for contamination ratesmerger rates in §5. for each redshift bin (∼ 20−30%). The range of mass ra- 3.3.1. Luminosity-selected pairs tios is not well-defined, but > L∗ galaxies are rare, thus the majority of pairs will have luminosity ratios between Lin et al. (2008) find weak evolution in the pair frac- 1:1 and 1:4.tion between 0 < z < 1.1, with fpair ∝ (1 + z)0.4±0.2 . Because their luminosity selection does not evolve withThis work reanalyzes paired galaxies from the Team Keck redshift, the Kartaltepe study probes a fainter parentTreasury Redshift Survey (Wirth et al. 2004), DEEP2 population of galaxies at z ∼ 1 and brighter parent pop-Galaxy Redshift Survey (Davis et al. 2004; Lin et al. ulation at z ∼ 0.2 relative to the de Ravel and Lin et2004), CNOC2 Survey (Yee et al. 2000; Patton et al. al. spectroscopic pair studies and the Lotz et al. (2008a)2002), and Millennium Galaxy Survey (Liske et al. 2003; G − M20 study. This makes it difficult to directly com-de Propris et al. 2005) with a uniform selection criteria. pare the Kartaltepe et al. (2007) results to other stud-They require that both objects in the pair have spectro- ies which adopt evolving luminosity selection. They doscopic redshifts, relative velocities δV < 500 km s−1 , and consider the evolution of fpair when an evolving lumi-projected separations 10 < Rproj < 30 kpc h−1 . In or- nosity cut MV < −19.8 + 1.0z is adopted, and find thatder to restrict their sample to major mergers, they select their conclusions about the evolution of fpair (z) do notonly galaxies and their companion within a limited rest- change. In this work, we will use the COSMOS pairframe B luminosity range corresponding to a luminosity fractions selected with MV < −19.8 − 1.0z (J. Kartal-ratio 1:1 - 1:4. Based on the evolution of the rest-frame tepe, private communication) to compare with the otherB galaxy luminosity function with redshift observed by merger studies. Because no published rest-frame V lu-DEEP2 (Willmer et al. 2006; Faber et al. 2007), they minosity function is available for the COSMOS field, weassume that the typical galaxy fades by 1.3MB per unit estimate ngal for MV < −19.8 − 1.0z from the Ilbert etredshift, and therefore have a redshift-dependent lumi- al. (2005) rest-frame V -band luminosity function of thenosity range −21 < MB + 1.3z < −19. An additional VVDS field. We will return to the issue of parent samplecomplication is the correction for paired galaxies where selection and its effects on the evolution in the observeda spectroscopic redshift is not obtained for one galaxy galaxy merger rate in §3.5 .in the pair, either because of the spectroscopic survey Patton & Atfield (2008) select z ∼ 0.05 close pairssampling (not observed) or incompleteness (not measur- with spectroscopic redshifts from the Sloan Digital Skyable). This correction is a function of color, magnitude, Survey. These are required to have δV < 500 km s−1 ,and redshift, and therefore is not trivial to compute. We 5 < Rproj < 20 kpc h−1 , and rest-frame r-band lumi-give Nc (uncorrected) values and completeness-corrected nosity ratios between 1:1 and 1:2. The parent sample ispair fractions fpair from Lin et al. (2008) in Table 1. drawn from galaxies with −22 < Mr < −18. They derive de Ravel et al. (2009) recently completed a similar a completeness-corrected value of Nc = 0.021 ± 0.001.study, using galaxies with spectroscopic redshifts 0.5 < Patton & Atfield argue that between 50-80% of thesez < 0.9 from the VIRMOS VLT Deep Survey (VVDS). pairs are line-of-sight projections, higher than the 40%They find that the evolution in the pair fraction depends (Cmerg ∼ 0.6) assumed here and in other works.on the luminosity of the parent sample, with brighterpairs showing less evolution (fpair ∝ (1 + z)1.5±0.7 ) thanfainter pairs (fpair ∝ (1 + z)4.73±2.01 ). (See also L´pez- o 3.3.2. Stellar-mass selected pairsSanjuan et al. 2011 for an analysis of minor mergers
  7. 7. 7 In order to avoid assumptions about galaxy rest-frameluminosity evolution, Bundy et al. (2009) select galaxypairs in the GOODS fields based on a fixed stellar massand find that the pair fraction does not evolve strongly atz < 1.2, with fpair ∝ (1+z)1.6±1.6 . They compute stellarmasses by fitting the galaxies’ spectral energy distribu-tions (0.4 − 2 µm) with Bruzual & Charlot (2003) stel-lar population models, assuming a Chabrier (2003) stel-lar initial mass function. The galaxy sample is selectedabove a fixed stellar mass limit of Mstar ≥ 1010 M⊙ .Close pairs are selected to be within 5 < Rproj < 20kpc h−1 and with stellar mass ratios between 1:1 and1:4. Bundy et al. (2009) includes paired galaxieswith both spectroscopic and photometric redshifts whereδz 2 < σz,primary + σz,satellite and the typical photomet- 2 2ric redshift error σz < 0.08(1 + z). We estimate thenumber density of GOODS galaxies with stellar masses> 1010 M⊙ from Bundy et al. (2005). In addition to their luminosity-based selection, deRavel et al. (2009) also select spectroscopic VVDSgalaxy pairs by stellar mass. The derived pair fractionevolution depends on the stellar mass limit of the sample,with more massive pairs showing weak evolution (fpair ∝(1 + z)2.04±1.65), consistent with the Bundy et al. (2009)results. Their stellar masses are computed with similarpopulation synthesis models and multi-wavelength pho-tometric data to the Bundy et al. (2009). de Ravelet al. (2009) assumes a modest evolution of stellar massand selects a parent sample with an evolving stellar masslimit log[Mstar /1010 M⊙ ] > 0.187z. As for the luminosity Fig. 2.— Top: Number of galaxies per co-moving unit volumeselected sample, we use de Ravel et al. ’s spectroscopic ngal v. redshift for the evolving luminosity selection calculatedpairs with Rproj < 100 kpc h−1 and δV ≤500 km s−1 . from Ilbert et al. 2005 (VVDS V -band selected, red diamonds;Galaxy pairs are required to have stellar mass ratio be- VVDS B-band selected blue diamonds) and Faber et al. 2007 (DEEP2 B-band selected, green asterisks); Bottom: ngal (z) fortween 1:1 and 1:4. We estimate the number density of galaxies selected with Mstar > 1010 M⊙ from Bell et al. 2003galaxies from the Pozzetti et al. (2007) K-selected stellar (2MASS, black square), Bundy et al. 2005 (GOODS, black filledmass functions computed for the VVDS. circles), Ilbert et al. 2009 (black diamonds), Pozzetti et al. 2007 (VVDS, open circles), and Bundy et al 2006 (DEEP2, black aster- 3.4. Visually Classified Mergers isks). The visual classification of morphologically disturbedgalaxies has a long history (e.g. Hubble 1926), and Bridge et al. (2010) study is based upon very deephas increased in scale and sophistication. Several recent ground-based images from the CFHT Legacy Survey,studies have estimated the galaxy merger fraction and therefore has worse spatial resolution than HST -basedrate using large samples of visually-classified mergers at studies but reaches comparable limiting surface bright-z < 1.5, including the Galaxy Zoo project (Darg et al. nesses over a much wider area. They identify merg-2010; also Jogee et al. 2009; Bridge et al. 2010; Kartal- ing and interacting galaxies via extended tidal tails andtepe et al. 2010). However, studies of the evolution of bridges for a sample of ∼ 27,000 galaxies with i < 22visually-classified mergers also reach contradictory con- Vega mag. They find the merger fraction of galaxiesclusions. with i < 22 and stellar mass > 3 × 109 M⊙ increases Jogee et al. (2009) visually classified galaxies with stel- rapidly from ∼ 4% at z ∼ 0.4 to ∼ 19% at z ∼ 1, withlar masses > 2.5 × 1010M⊙ at 0.24 < z < 0.80 in V -band an evolution ∝ (1 + z)2.25±0.24 .HST ACS images from the GEMS survey. They iden- We will not attempt to incorporate these results intotify mergers as objects with asymmetries, shells, double our study here. Visual classification of galaxy mergersnuclei, or tidal tails but exclude obvious close or inter- is qualitative by nature, and the exact merger identi-acting pairs. They find that ∼ 9% of the sample were fication criteria applied for each study depends on thevisually-disturbed with little evolution between z ∼ 0.2 human classifiers as well as the spatial resolution andand z ∼ 0.8. Between 1-4% of the sample are classified as depth of the imaging data. Therefore visual classifica-major mergers and 4-8% are classified as minor mergers. tion observability timescales are unique to each studyThey conclude that while most massive galaxies have un- and less straightforward to calculate than for the quanti-dergone a major or minor merger over the past 7 Gyr, tative and easily reproducible (but possibly less sensitive;visually-disturbed galaxies account for only 30% of the Kartaltepe et al. 2010) methods that we use in this work.global star-formation at those epochs. Bridge et al. (2010) also visually identify galaxy merg- 3.5. The Importance of Sample Selectioners at z < 1, but reach fairly different conclusions. The
  8. 8. 8 Often the merger fraction fmerg is measured over a from merger-induced starburst. This effect could biasrange of redshifts where the galaxy mass and luminosity luminosity-selected samples similarly, and give differentfunctions change significantly (e.g. Faber et al. 2007; merger rates than samples selected by stellar mass. How-Ilbert et al. 2010). If the galaxy merger rate is a func- ever, merger simulations suggest that luminosity bright-tion of stellar mass or luminosity (e.g. Lin et al. 2004; ening in the rest-frame optical is mitigated by dust ob-Bundy et al. 2005; de Ravel et al. 2009; Bridge et al. scuration of the starbursts (Jonsson et al. 2006 ). In2010), then one must be careful about comparing studies §5, we find little difference between the merger rates forwith different parent selection criteria. In an attempt to luminosity and stellar-mass selected samples, implyingsample similar galaxies over a wide redshift range, the that luminosity brightening does not introduce significa-parent galaxy sample may be selected to be more mas- tion biases to the merger rate.sive than a fixed stellar mass (e.g. Bundy et al. 2009, Finally, it is also important to note that the standardConselice et al. 2009, de Ravel et al. 2009, Jogee et selection of galaxy sample for galaxy merger studies (e.g.al. 2009, Bridge et al. 2010) or by adopting an evolving above a fixed stellar mass) is not well matched to theluminosity selection based on a passive luminosity evo- way that dark matter halos are selected from simulationslution (PLE) model in which galaxies of a fixed stellar for dark matter halo merger studies (e.g. above a fixedmass are fainter at lower redshift due to passive aging of halo mass). We know that typical blue galaxies are nottheir stellar populations (e.g. Lotz et al. 2008, Lin et al. evolving purely passively, but form a significant number2008, de Ravel et al. 2009, Shi et al. 2009). of new stars at z < 1 (e.g. Lilly et al. 1996 ; Noeske We compare the number densities of galaxies selected et al. 2007). Therefore the relationship between stellarwith passive luminosity evolution assumptions (Fig. 2, mass and host dark matter halo mass also evolves withupper panel) and with a fixed stellar mass (Fig. 2, lower redshift (Zheng, Coil, & Zehavi 2007; Conroy & Wechslerpanel). The number densities for the PLE cuts MB < 2009; Moster et al. 2010). Given that the co-moving−18.94 − 1.3z and MV < −19.8 − 1.0z and the fixed number density of galaxies with stellar masses > 1010 M⊙stellar mass cut Mstar ≥ 1010 M⊙ are similar at z < 1, or selected based on PLE assumptions is as much as asuggesting that the evolving luminosity selections of Lin factor of four lower at z ∼ 1.5 than z ∼ 0, it is clear thatet al. 2008, Lotz et al. 2008, Kartaltepe et al 2007, neither of these galaxy samples select the progenitor andShi et al. 2009, and the fixed stellar-mass selection of descendant galaxies across the range of redshifts.Bundy et al. 2009, Conselice et al. 2009, de Ravel et al. Galaxy samples selected with a constant number den-2009, and L´pez-Sanjuan et al. 2009 probe similar galaxy o sity may do a better job of matching descendant-populations. However, the number density of galaxies progenitor galaxies over a range of redshifts (vanselected by the de Ravel et al. (2009) MB < −18.77 − Dokkum et al. 2010; Papovich et al. 2010), and matching1.1z cut is higher at higher z than the other selections. galaxies to constant mass halos (at Mhalo ∼ 1011−12 M⊙ ;When a fixed luminosity (‘no evolution’) cut is adopted, Zheng et al. 2007). This is not a perfect selection crite-as in Kartaltepe et al. 2007 and Rawat et al. 2008, rion, as it assumes galaxy mergers do not destroy signif-the differences in the parent sample at z ∼ 1 are even icant numbers of galaxies and that stochasticity in themore significant, which could explain the difference in luminosity/mass evolution of galaxies does not stronglythe derived evolution of the mergers. We will return to affect the sample selection. In §5.4, we present galaxythis issue in §5.4. merger rates for parent galaxy samples selected with a An additional complication is that merging galaxies roughly constant number density at z < 1.5, and com-increase in stellar mass and luminosity as they merge, pare these to the rates derived for the fixed stellar massas well as undergo shorter-lived starbursts. Therefore and PLE samples.late-stage mergers and merger remnants will be moremassive and luminous than their progenitors. Mor-phological disturbances are often late stage mergers 4. MERGER OBSERVABILITY TIMESCALESwhose nuclei are counted as a single objects, while Knowledge of the average merger observabilityclose pairs are early-stage mergers (e.g. Lotz et al. timescale Tobs is crucial for calculating the galaxy2008). Thus morphologically-disturbed mergers at a merger rate. This timescale will depend upon the methodgiven mass/luminosity are drawn from a less-massive used to select galaxy mergers, as close pairs pick out dif-progenitor population than close pairs selected at the ferent merger stages from objects with disturbed mor-same mass/luminosity limit. In the worst case of equal- phologies. For a given merger system, the individualmass mergers, the morphologically-disturbed mergers observability timescale will also depend on the param-will have progenitors 50% less massive and up to a mag- eters of the merger, such as the initial galaxy masses,nitude fainter than close pairs. The inferred merger morphologies and gas fractions, the merger mass ra-rate from morphologically-disturbed objects could be bi- tio, the orbit, and the relative orientation of the merg-ased to higher values than the close-pair merger rate if ing galaxies. The initial properties of the merging sys-the number density of merger progenitors increases with tem are difficult to reliably recover from observationslower stellar mass. However, as we discuss in the next of an individual merging system, particularly after thesection, both G−M20 and A are sensitive to minor merg- merger has progressed to late stages. Moreover, the ob-ers as well as major mergers. Therefore the difference served merger population is a mixture of merger eventsbetween the typical (primary) progenitor’s and the rem- with a broad distribution of parameters which may benant’s stellar mass is less than 25% for morphologically- evolving with redshift. Therefore the mean observabilityselected samples, assuming a typical merger ratio 1:4. timescale Tobs given in Eqn. 3 should be treated as aA related issue is short-lived luminosity brightening of cosmologically-averaged observability timescale weightedboth close pairs and morphologically-disturbed galaxies by the distribution of merger parameters at each epoch.
  9. 9. 9 Because the observations of a given galaxy merger tion and time-step were run through the Monte-Carloare essentially an instantaneous snapshot at a particu- radiative transfer code SUNRISE to simulate realisticlar merger stage, we cannot know how long that merger ultraviolet-optical-infrared images, including the effectsevent will exhibit disturbed morphology or other obvious of star-formation, dust, and viewing angle. The details ofmerger indicators. And, depending on the merger stage the SUNRISE code and the predicted effects of dust onand viewing angle, it can be difficult to determine its ini- the integrated spectral energy distributions are describedtial conditions. Therefore, the best way to determine how in Jonsson 2006, Jonsson, Groves, & Cox 2010. In Lotzthe morphology and projected separation of a merger et al. (2008b, 2010a, 2010b), the simulated broad-bandprogresses and how this depends on the merger condi- SDSS g images were used to calculate the time duringtions is by studying a large number of high-resolution nu- which each individual galaxy merger simulation would bemerical simulations of individual mergers where the ini- counted as a merger candidate by the quantitative mor-tial merger conditions are systematically explored. Also, phology G − M20 and asymmetry methods. We also cal-we do not yet have good observational constraints on the culate close pair timescales for several different projecteddistribution and evolution of galaxy merger parameters separation criteria (5 < Rproj < 20, 10 < Rproj < 30,such as gas fraction or mass ratio. Thus we will use 10 < Rproj < 50, and 10 < Rproj < 100 kpc h−1 ); alltheoretical predictions from three different global galaxy simulations have merging galaxies with relative veloci-evolution models of the distribution of galaxy proper- ties less than 500 km s−1 . Note that for the close pairties and their evolution to constrain the distribution of and G − M20 methods, the observability windows are notmerger parameters with redshift. contiguous in time and therefore the observability time In this section, we summarize the results of recent cal- is the sum of the times when the merger is selected, e.g.culations of the individual observability timescales from as a close pair before and after the first pass.a large suite of high-resolution disk-disk galaxy merger We found that, for a given method, Tobs depended mostsimulations for the G − M20 , A, and close pair methods. on the mass ratio of the merger (Lotz et al. 2010a)Then we examine the predicted distributions of two key and on the gas fractions of initial galaxies (Lotz et al.merger parameters – baryonic gas fraction and mass ratio 2010b). Orbital parameters (eccentricity, impact pa-– and their evolution with redshift from three different rameters) and total mass of the initial galaxies had lit-cosmological-scale galaxy evolution models (Somerville tle effect on Tobs for morphological disturbances. Weet al. 2008; Croton et al. 2006; Stewart et al 2009b). will refer to the baryonic mass ratio of the mergerFinally, we use these distributions to weight the individ- Msatellite /Mprimary , where major mergers have baryonicual observability timescales and derive the average ob- mass ratios between 1:1 and 1:4 and minor mergers haveservability timescales as a function of redshift Tobs (z) baryonic mass ratios less than 1:4. We have chosen tofor each galaxy evolution model and approach to detect- characterize the merger mass ratio by the initial bary-ing galaxy mergers. We compare the predictions of the onic mass ratio rather than total or stellar mass ratiodifferent galaxy evolution models and discuss the uncer- as a compromise between observational and theoreticaltainties associated with Tobs (z) . The derived Tobs (z) limitations. The total mass ratio of mergers is difficultare applied to the observed merger fractions described in to estimate (or even define) observationally because this§3 to compute merger rates in §5. requires a dynamical estimate of mass associated with 4.1. Merger Timescales from Dusty Interacting Galaxy each interacting galaxy. On the other hand, the stellar GADGET/SUNRISE Simulations masses and stellar mass ratios predicted by cosmologi- cal galaxy evolution models can be quite sensitive to the The individual merger observability timescales Tobs uncertain physics of star formation and feedback (see,were calculated for a large suite of high-resolution N- for example, Benson et al. 2003). As a result, a galaxybody/hydrodynamical galaxy merger simulations in Lotz merger with a total mass ratio of 1:3 may correspond toet al. 2008b, 2010a, b (also known as DIGGSS, Dusty a stellar mass ratio of anywhere from 1:10 to 1:2 (StewartInteracting Galaxy GADGET/SUNRISE Simulations; 2009a). While baryonic mass ratios suffer the same com-see http://archive.stsci.edu/prepds/diggss for simulation plication, one may expect the ratio of baryonic-to-totalimages and morphology measurements). Each GAD- mass to vary less strongly with redshift, since higher gasGET simulation tracks the merger of two disk galaxies fractions at earlier times help offset the proportionatelywithin a box of ∼ (200 kpc)3 with a spatial resolution smaller stellar-to-total masses of ∼ L∗ galaxies.∼ 100 pc and a particle mass ∼ 105 M⊙ , over a several Likewise, we characterize the merger gas fraction asbillion year period in ∼ 50 Myr timesteps. Cold gas is the initial fraction of the baryons in cold gas. We defineconverted into stars assuming the Kennicutt-Schmidt re- the initial baryonic gas fraction fgas of the merger aslation (Kennicutt 1998). The effects of feedback fromsupernovae and stellar winds using a sub-resolution ef- (Mgas,1 + Mgas,2 )fective equation of state model is included, but feedback fgas = (7) (Mgas,1 + Mgas,2 + Mstar,1 + Mstar,2 )from active galactic nuclei (e.g. Di Matteo et al. 2008)is not. The full suite of simulations span a range of ini- This is the average gas fraction of the system priortial galaxy masses and mass ratios, gas fractions, and to the merger, when the galaxies first encounter eachorientations and orbital parameters and are described in other. Because these simulations do not accrete addi-detail in Cox et al. 2006, 2008. The DIGGSS simulations tional gas and gas is converted into stars, the baryonicdo not include any fgas < 0.2 simulations or spheroidal gas fraction at the final merger is lower than the ini-merger simulations. tial value. For this work, we use a sub-set of DIGGSS The GADGET predictions for the ages, metallicities, which have parabolic orbits, tilted prograde-prograde ori-and 3-D distribution of stars and gas for each simula- entations and initial galaxy parameters tuned to match
  10. 10. 10 Fig. 3.— The observability timescales Tobs for individual prograde-prograde disk-disk galaxy merger simulations v. baryonic mass ratio(Mprimary /Msatellite ) from Lotz et al. 2010a,b. The simulations were run with three different baryonic gas fractions fgas = 0.2 (reddiamonds: G3G3Pt, G3G2Pt, G3G1Pt, G3G0Pt, G2G2Pt, G2G1Pt, G2G0Pt), 0.4 (green squares: G3gf1G3gf1, G3gf1G2, G3gf1G1) , and0.5 (blue asterisks: G3gf2G3gf2, G3gf2G2, G3gf2G1). Fig. 4.— The observability timescales Tobs for individual prograde-prograde disk-disk galaxy merger simulations v. baryonic gas fractionfgas from Lotz et al. 2010a,b. Here, the points designate three different baryonic mass ratios Msatellite /Mprimary 1:1(red diamonds:G3G3Pt, G3gf1G3gf1, G3gf2G3gf2), 3:1 (green squares: G3G2Pt, G3gf1G2, G3gf2G2), and 9:1 (blue asterisks: G3G1, G3gf1G1, G3gf2G1).SDSS galaxies, but span a range of galaxy mass (Mstar ∼ ability timescales Tobs for G − M20 , A, and close pairs1 × 109 − 5 × 1010 M⊙ ) and baryonic mass ratios (1:1 - with 10 < Rproj < 30 kpc h−1 depend on baryonic mass1:39): G3G3Pt, G3G2Pt, G3G1Pt, G3G0Pt, G2G2Pt, ratio and fgas . Note that these are averaged over 11G2G1Pt, G2G0Pt. These simulations have gas fractions different viewing angles (see Lotz et al. 2008b). Thetuned to local galaxies, with the initial baryonic gas frac- error-bars on Tobs in Figures 3 and 4 are the standardtions fgas ∼ 0.2. We also use the subset of DIGGSS deviation with viewing angle of Tobs for each simulation.which have the same parabolic orbits, tilted prograde- G−M20 and close pair observability timescales are largelyprograde orientations, and mass ratios but higher gas independent of gas fraction but are sensitive to mass ra-fractions (fgas ∼ 0.4, 0.5) : G3gf1G3gf1, G3gf1G2, tio, while asymmetry A is sensitive to both gas fractionG3gf1G1, G3gf2G3gf2, G3gf2G2, G3gf2G1. See Lotz et and mass ratio. G − M20 detects mergers with baryonical. (2010a, b) and Cox et al. (2008) for more details of mass ratios between 1:1 and at least 1:10, and does notthese simulations. show a strong correlation of Tobs with baryonic mass ra- In Figures 3 and 4, we show how the individual observ- tio above 1:10. Mergers are not found with the G − M20
  11. 11. 11criteria for the two simulations with baryonic mass ratios 4.2. Predicted Distribution of Merger Propertiesless than 1:10 (G2G0Pt, G3G0Pt), therefore we conclude We calculate the cosmologically-averaged observabilitythat Tobs ∼ 0 for mergers at these mass ratios. The sim- timescale Tobs (z) for each method for finding mergersulations imply that G − M20 detects mergers at the stage from the individual Tobs given in Figures 3 and 4 and as-when two bright nuclei are enclosed in a common enve- sumptions about the distribution of galaxy merger masslope, and that satellites with masses greater than a tenth ratios and fgas as follows:of the primary galaxies are bright enough to be detected(see Lotz et al. 2008a, Lotz et al 2010a for discussion). Dynamical friction and the effects of projection largely Tobs (z) = wi,j (z) × Ti,j (8)drive the close pair timescales, hence their insensitivity to i,jfgas . The close pair timescales are correlated with massand mass ratio such that minor mergers appear as close where wi,j (z) is the fraction of mergers at redshift z withpairs for a longer period of time than major mergers, baryonic mass ratio i and baryonic gas fraction j, and Ti,jas do lower-mass major mergers (Table 5 in Lotz et al. is the observability timescale for a merger with baryonic2010a). mass ratio i and baryonic gas fraction j. (Although the The behavior of A observability timescales is more timescales do not change much with progenitor mass, incomplicated because of their dependence on both mass practice we also sum over two bins in primary progenitorratio and gas fraction. The simulations suggest that baryonic mass based on the input simulation primaryhigh asymmetries are the result of large-scale distur- galaxy masses of 2.0 × 1010 , 6.2 × 1010 M⊙ ).bances, including bright star-forming tidal tails and dust We currently have very little empirical knowledge oflanes, thus asymmetry is higher for more gas-rich mergers the distribution of baryonic mass ratios or gas fractionswhich are more likely to form strong tidal features (see for merging galaxies. Therefore we assume the rela-Lotz et al. 2010b). At gas fractions expected for typical tive distributions of mass ratios, gas fractions, and masslocal disk galaxies (fgas ∼ 0.2), A detects primarily ma- as a function of redshift predicted by three differentjor mergers with baryonic mass ratios between 1:1 and cosmological-scale galaxy evolution models: Somerville1:4, and has Tobs ∼ 0 for more minor mergers with bary- et al. 2008 [S08]; Croton et al. 2006 [C06]; and Stewartonic mass ratios 1:10 (Figure 3, red points, center panel). et al. 2009b [St09]. Note that for the timescale calcu-But for simulations with fgas ≥ 0.4, A detects both 1:1- lations, we make use of only the relative distributions of1:4 major mergers and 1:10 minor mergers (Figure 3, merger properties from these simulations and thereforecenter panel, green and blue points). The observability are independent of their predicted galaxy merger rates.timescale for A is strongly correlated with fgas (Figure Each of these models starts with a mass distribution4, center panel), with high gas fraction mergers showing and merger history (merger tree) for the dark matterhigh asymmetries for significantly longer periods of time central and sub-halos. S08 uses an analytically-derivedthan low gas fraction mergers. Therefore knowledge of dark matter merger tree (Somerville & Kolatt 1999) withboth the merger gas fraction and mass ratio distributions a Sheth & Tormen (1999) dark matter halo mass func-is required to estimate Tobs for asymmetry. tion; the C06 and St09 merger trees are derived from For this work, we will ignore the effect of the orbital pa- N-body simulations (the Millennium Simulation fromrameters and relative orientations of the merging galax- Springel et al. 2005 and an Adaptive Refinement Treeies on the observability timescales. All of the simulation N-body simulation from A. Klypin described in Stew-timescales adopted here are for the G-series prograde- art et al. 2008, respectively). These dark matter halosprograde orientations, with e = 0.95 and pericentric dis- are populated with galaxies, either via a semi-analytictances ∼ 0.01 − 0.05 times the viral radii of the pro- approach that adopts physical prescriptions for galaxygenitors. In Lotz et al. (2008b) and (2010a), we found formation (C06, S08) or via a semi-empirical approachthat different orbits and orientations had a weak effect that matches the expected clustering and abundanceson the observability timescales for G − M20 and A. How- of dark matter halos to the observed galaxy popula-ever, galaxies merging on circular orbits or with large tion (St09). In the semi-analytical models, gas coolsimpact parameters were identified as close pairs for 15- onto the dark matter halos and is converted into stars40% longer than parabolic orbits with smaller impact assuming the Kennicutt-Schmidt law (Kennicutt et al.parameters, depending on the projected separation re- 1998). The semi-analytic models also adopt similar pre-quirements. Large-scale numerical simulations find that scriptions for feedback from supernovae and both high-the majority of dark-matter halo mergers are parabolic luminosity quasars and lower luminosity active galacticas opposed to circular (Khochfar & Burkert 2006; Ben- nuclei. The S08 models are tuned to match the gas frac-son 2005; Wetzel 2010), with only modest evolution in tions of local galaxies. By contrast, the semi-empiricalthe typical orbital eccentricity out to z ∼ 1.5 (Wetzel model of St09 assigns the stellar masses and gas masses2010). Our adopted e is consistent with the mean value of galaxies based on observationally-derived correlations,for dark matter halo -satellite mergers from Wetzel (2010; with stellar masses following the abundance matchinge ∼ 0.85), while our pericentric distances are smaller technique of Conroy & Wechsler (2009), and cold gasthan mean (∼ 0.13 Rvir ). If true pericentric distances fractions following an empirical fit to the results of Mc-are significantly larger than our assumptions here, our Gaugh (2005) at z ∼ 0 and Erb et al. (2006) at z ∼ 2simulations imply that this could systematically increase (see Stewart et al. 2009a,b for additional details).the merger timescales (and decrease merger rates) by up For each galaxy evolution model, we select galaxyto 10-40% for close pairs and a factor of 3-4 for G − M20 mergers with total stellar masses (Mstar,1 + Mstar,2 )selected major mergers (Lotz et al. 2008b). ≥ 1010 M⊙ , baryonic mass ratios ≥ 1:10, and 0 < z < 1.5. The galaxy stellar mass functions at z < 1.5 from all of
  12. 12. 12 Fig. 5.— The normalized distribution of baryonic mass ratios for galaxy mergers selected from the Somerville et al. 2008 (black histogram),Croton et al. 2006 (blue), and Stewart et al. 2009b (red) models. The mergers were selected to be in two redshift bins ( 0.2 < z < 0.6;solid lines; 0.6 < z < 1.4 dashed lines), with total stellar masses (Mstar,1 + Mstar,2 ) > 1010 M⊙ ), and baryonic mass ratios ≥ 1:10. Thereis good agreement between all three models, and little evolution in the distribution with redshift. (Baryonic mass ratios greater than unityarise when the more massive galaxy has less baryons but more dark matter than its companion). z < 1.5 and for galaxies with masses above ∼ 1010 M⊙ (see Fontanot et al. 2009, Kitzbichler & White 2007). We compare the distribution of baryonic mass ratios and gas fractions for the three models in Figures 5 and 6. In Figure 5, we find that the S08, St09, and C06 models predict similar baryonic mass ratio distributions despite the different derivations of the dark matter halo mass function, merger tree, and baryonic masses. We find a small increase in the relative fraction of minor mergers ( Msat /Mprimary < 0.25) at higher redshifts for the S08 and St09 models, while C06 predicts no change in the mass ratio distribution. However, the models make different predictions about the merger gas properties (Figure 6). In all the models, fgas increases significantly with redshift such that the mean baryonic gas fraction of the mergers roughly dou- bles from z = 0 to z = 1. The mean fgas values for all 1:1 - 1:10 mergers predicted by the S08 and St09 models are in good agreement. On the other hand, the mean fgas in the C06 models is much lower at all redshifts. Both S08 Fig. 6.— The predicted mean baryonic gas fraction fgas v. and C06 predict that major mergers with baryonic massredshift for 1:1 - 1:10 baryonic mass ratio mergers (solid) and ma- ratios less than 1:4 have lower mean gas fractions thanjor 1:1-1:4 baryonic mass ratio mergers (dashed line). All modelspredict strong evolution in fgas with redshift, but the Somerville minor mergers. On the other hand, St09 predict thatet al. 2008 (black lines) and Stewart et al. 2009b (red lines) merg- major mergers have fgas similar to the overall mergerers have higher fgas than the Croton et al. 2006 models (blue population.lines). For comparison, we have plotted the observed fgas at z > 1 In Figure 6, we also compare the predicted mean gasfor the Tacconi et al. 2010 (squares) and Daddi et al 2010 (as-terisks) samples, and the average fgas and standard deviation for fractions to recent measurements of the cold gas fractionthe McGaugh 2005 sample of local Mstar > 1010 M⊙ disk galaxies for massive disk galaxies at z ∼ 1 − 1.5 from Tacconi(diamond). et al. (2010) and Daddi et al. (2010). Although these pioneering studies have small and biased samples, they indicate that the typical baryonic gas fractions of massivethe models are in good agreement with each other. St09 disk galaxies are several times higher at z ∼ 1 − 1.5adopts the sub-halo mass - stellar mass matching rela- than locally (e.g McGaugh et al. 2005), in reasonabletionship from Conroy & Wechsler (2009), based upon the agreement with the Somerville et al. (2008) and Stewartobserved stellar mass functions at 0 < z < 2 (Bell et al. et al. (2009b) models.2003, Panter et al. 2007, Dory et al. 2005, Borsch et al. For each model, we compute the weight wi,j (z) for2006, P´rez-Gonz´lez et al. 2008, Fontana et al. 2006). e a three bins in baryonic mass ratio and four bins in fgasThe S08 and C06 predictions for the galaxy stellar mass for δz = 0.2 redshift bins from z = 0 to z = 1.6, nor-functions (assuming a Chabrier initial mass function and malized to all merging systems in each redshift bin withBruzual & Charlot 2003 SEDs) are found to be in good (Mstar,1 + Mstar,2 ) ≥ 1010 M⊙ and baryonic mass ratiosagreement with these same observed measurements at
  13. 13. 13 Fig. 7.— The fraction of mergers wi,j with baryonic mass ratio i and baryonic gas fraction j v. redshift from the Somerville et al. (2008)models (top panels), the Croton et al. (2006) models (middle panels), and Stewart et al. (2009b) models (bottom panels). The weightshave been calculated for three baryonic mass ratio bins ( 1:1-1:2, left panels; 1:2-1:6, center panels; 1:6-1:10, right panels) and four baryonicgas fraction bins (fgas < 0.1, red lines; 0.1 < fgas < 0.3, orange lines; 0.3 < fgas < 0.45, green lines; fgas > 0.45, blue lines.) The blacklines in each panel show the fraction of mergers of all gas fractions for that panel’s mass ratio bin.≥ 1:10 (Figure 7). The spacing of these bins is deter- models predict that lower gas fraction mergers dominatemined by the simulation parameter space for the SDSS- the z = 0 merger population (red and yellow lines). How-motivated galaxy mergers: 1:1 - 1:2 (major), 1:2-1:6 (in- ever, S08 predicts strong evolution in the gas propertiestermediate), and 1:6-1:10 (minor) baryonic mass ratio of mergers, such that by z ≥ 1, the merger populationbins; and 0.0-0.1, 0.1-0.3, 0.3-0.45, and 0.45-1.0 fgas bins. is dominated by high gas fraction (fgas > 0.45) inter-The three baryonic mass ratio bins are plotted in sepa- mediate and minor mergers (blue lines, middle and rightrate panels (major:left, intermediate:center, and minor: panels). Because C06 predicts low mean fgas at z < 1.5,right). The four fgas bins are plotted with different color they predict that the lowest gas fraction mergers con-lines in each mass ratio panel. The resulting weights are tinue to dominate at z > 1 (red lines). Like S08, theshown for the three galaxy evolution models (S08: top, St09 model predicts higher mean fgas at z ≥ 1. ButC06: middle, St09: bottom). St09 has a different distribution of fgas at a given red- For all three models, the baryonic mass ratio distribu- shift. St09 has fewer very gas-rich mergers and moretion changes little with redshift, and intermediate mass very gas-poor mergers at z ∼ 1, and predicts that mostratio mergers (1:2 - 1:6; middle panels) are 50% of the mergers at 0 < z < 1.5 have intermediate fgas ( ∼ 0.2)total (1:1 -1:10) merger population at all redshifts. The in all mass ratio bins (yellow lines). As we will discusspredicted weights wi,j (z) vary most in the predicted dis- in the next section, the relative frequency of gas-rich in-tribution and evolution of merger gas fractions. All three termediate and minor mergers at z ≥ 1 has important
  14. 14. 14implications for the interpretation of asymmetric galax- mass ratios is not predicted to evolve with redshift. Theies at this epoch. timescales for close pairs selected with baryonic mass ra- tios between 1:1 and 1:4 are ∼ 0.33 Gyr for 5 < Rproj < 4.3. Average Merger Timescales Tobs (z) 20 kpc h−1 , and ∼ 0.63 Gyr for 10 < Rproj < 30 kpc h−1 (Table 1; Figure 8). We compute Tobs (z) for G − M20 , asymmetry, and We find that Tobs (z) for G − M20 is also very similarclose pairs with 5 < Rproj < 20, and 10 < Rproj < for all three model weights, and does not evolve with30 kpc h−1 , using Eqn. 8, the Ti,j computed from redshift. This is not surprising as G − M20 Tobs does notthe GADGET-SUNRISE simulations as a function of correlate with fgas nor baryonic mass ratio between 1:1baryonic mass ratio and gas fraction (Figures 1 and and 1:10. Therefore, the G−M20 observability timescales2), and the relative weights wi,j computed from each are not sensitive to the underlying assumptions about theof the cosmological galaxy evolution models. These distribution of merger gas fractions or mass ratios. Forcosmologically-weighted timescales Tobs (z) are plotted mergers with stellar masses ≥ 1010 M⊙ at 0 < z < 1.5,as a function of redshift for the three different models for Tobs (z) is ∼ 0.21 Gyr for G − M20 (Table 2; Figure 9each method for finding mergers (Figures 8 and 9). upper panel). The relative weights wi,j are adjusted for the mass ra- The cosmologically-averaged timescales for asymmetrytio sensitivity for each technique, so that the resulting are the most sensitive to the assumptions about the jointmerger rates are not extrapolated to mass ratios below distribution of merger gas fractions and mass ratios (Fig-what is detected. Therefore the weights for G − M20 and ure 9). The uncertainty in the asymmetry timescales ofA are normalized for all mergers with baryonic mass ra- fgas < 0.1 gas-poor mergers changes Tobs (A) by lesstios between 1:1 and 1:10, and assume no mergers with than 0.1 Gyr (dotted lines), and therefore is not a majormass ratios ≤ 1:10 are detected by these methods (same contributor to the uncertainty in Tobs (A, z) . However,as Fig. 7). The weights for close pairs are normalized to the Tobs (A, z) calculated with the S08 weights (blackbaryonic mass ratios between 1:1 and 1:4 or between 1:1 lines) are significantly higher than those calculated withand 1:2, depending on the stellar mass and luminosity the C06 (blue lines) and St09 (red lines) weights. Thisratios adopted by the studies presented here (Table 1). arises from the strong dependence of A timescales on the Both the gas fraction and morphological make-up of fgas and the different predictions for the distribution ofmerger progenitors are expected to change significantly fgas (z) for the different models. The strong evolutionbetween 0 < z < 1.5. The number density of red of the mean fgas and higher frequency of very gas-richsequence (presumably gas-poor) galaxies more massive minor mergers predicted by S08 result in the strong evo-than ∼ 1010 M⊙ roughly doubles over this time period lution of Tobs (A, z) with redshift. The low mean fgas(Bell et al. 2004, Faber et al. 2007), and the fraction of and its weak evolution predicted by C06 results in shortbright galaxies which are spheroid dominated increases Tobs (A, z) that evolves weakly with redshift. The St09from ∼ 20% at z ∼ 1.1 to ∼ 40% at z ∼ 0.3 (Lotz et models predict similar evolution in the mean fgas to S08,al. 2008a). The cold gas fractions measured for small but has fewer high gas fraction intermediate/minor merg-numbers of disk galaxies at z ∼ 1 − 1.5 are ∼ 40%, three ers, and therefore predicts lower values for Tobs (A, z) .times higher than today’s ∼ 10% (Tacconi et al. 2010; In summary, the average observability timescales forDaddi et al. 2010; McGaugh 2005). G − M20 and close pairs are not expected to evolve with For G − M20 and close pairs, the individual observabil- redshift between 0 < z < 1.5, and are relatively insensi-ity timescales Ti,j are not a strong function of fgas . We tive to the distribution of merger properties. The averageassume that fgas < 0.1 mergers have the same observabil- observability timescales for A, on the other hand, are ex-ity timescales as fgas = 0.2 mergers of the same mass ra- pected to increase between 0 < z < 1.5 as the mean gastio. We note that gas-free spheroid-spheroid merger sim- fraction of mergers increase, and are highly sensitive toulations presented in Bell et al. (2005) imply ∼0.2 Gyr both the distribution of merger gas fractions and masstimescales for visual classification of double nuclei, con- ratios. If the typical gas fractions of galaxy mergers atsistent with our adopted G−M20 timescale for fgas < 0.1. z ≥ 1 are as high as 0.4, as suggested by recent molecular However, the A timescales are a strong function of gas observations, then typical timescales for identifying afgas . Therefore, we compute upper and lower limits to merger as asymmetric should more than double. If very Tobs (z) by assuming that that fgas < 0.1 mergers have gas-rich minor mergers are also more likely at z ≥ 1,the same observability timescales as fgas = 0.2 merg- than the contribution of minor mergers to the asymmet-ers (Figure 9; upper limit, solid lines) and by assuming ric galaxy population will also increase with redshift.that fgas < 0.1 mergers are not detected by A (Fig-ure 9: lower limit, dotted lines). We note that Bellet al. (2006) found visual-classification timescales for 5. GALAXY MERGER RATESgas-poor spheroid-spheroid major merger simulations of In the previous section, we calculated cosmologically-Tobs ∼ 0.15 Gyr, intermediate between the Tobs = 0 and averaged merger observability timescales that accountTobs ∼ 0.3 Gyr for fgas = 0 adopted here. for differences in merger identification techniques and The cosmologically-averaged timescales for close pairs the distribution of merger mass ratio and gas fraction.do not evolve with redshift and do not depend on the In this section, we use these improved estimates ofadopted cosmological galaxy evolution model (Fig. 8). Tobs (z) to re-analyze recent studies of the evolutionThis is not surprising given that the close pair timescales of the galaxy mergers (reviewed in §3). In Tables 1, 2,do not depend on gas fraction (which evolves strongly and 3, we give Tobs (z) calculated specifically for eachwith redshift). The individual close pair timescales do merger study/technique, the resulting fractional mergerdepend on mass ratio, but the relative distribution of rates, ℜmerg (z), and the merger rates per co-moving vol-

×