0
Parametric Simulation Study of Traction Curving of Three Axle Steering Bogie Designs   Scott Simson Colin Cole
Research Objective <ul><li>Problem </li></ul><ul><ul><li>Adhesion in tight curves </li></ul></ul><ul><ul><ul><li>limited b...
Passive Steering Bogies <ul><li>Yaw Relaxation Bogies:  Primary suspension with yaw stiffness relaxed </li></ul><ul><li>Se...
Locomotive Bogies <ul><li>EMD Radial, [self steering, 2, 1],  </li></ul><ul><ul><li>1 st  patent 1987 ~ 12 years after the...
EMD Radial Patents
US Patents ABB
US Patents M-K Rail
US Patent GE Locomotive
US Patents Bombardier
Traction Steering Papers <ul><li>EMD Radial [1989 IHHA]:  </li></ul><ul><ul><li>steering performance deteriorates with tra...
Active Steering  <ul><li>Secondary Yaw Control  </li></ul><ul><ul><li>Braghin, Bruni, Resta, VSD v44 </li></ul></ul><ul><u...
3 Angles of Idealised Steering
Perfect Steering <ul><li>Goodall, Bruni & Mei (IAVSD 2005) </li></ul><ul><li>Minimise wheel-rail creep forces </li></ul><u...
Gravitational Stiffness <ul><li>Contact angles of 10 degrees before flanging </li></ul><ul><li>Ignored in linear models </...
Traction Ideal Steering <ul><li>Longitudinal creep are not zero </li></ul><ul><ul><li>Longitudinal creep need only be +ve ...
Bogie Curving Forces
Research Program <ul><li>Traction Steering Ideal </li></ul><ul><li>Passive Bogie Simulation </li></ul><ul><li>New Bogie De...
Simulation <ul><li>117 tonne 6 axle Locomotive </li></ul><ul><li>Coupler loads </li></ul><ul><li>Steering movements subjec...
Stability Testing
Passive Bogie, Traction Steering
Steering at High Traction Bogie Pitching Steering
Simson Bogie Patent <ul><li>Active bogie yaw control </li></ul><ul><li>Forced steered  </li></ul><ul><li>Australian provis...
Control Methods <ul><li>Semi Active </li></ul><ul><ul><li>Longitudinal Creep Forces </li></ul></ul><ul><ul><li>Yaw Moment ...
Semi Active Control,  Sensing Creep Forces
Full Active Control,  Sensing Yaw Alignment of Bogies
High Traction Curving Actuated Bogies
Curvature Estimation <ul><li>Active Yaw Dampers  </li></ul><ul><ul><li>Braghin F., Bruni S., Resta F., (2006) VSD 44  </li...
Sensor, Actuator Placement <ul><li>Actuated Wheelset Yaw </li></ul><ul><ul><li>Actuators and sensors at primary suspension...
Conclusions <ul><li>Traction steering requires ideal steering </li></ul><ul><ul><li>Steering angle control </li></ul></ul>...
Upcoming SlideShare
Loading in...5
×

Traction Curving IAVSD 2007

1,406

Published on

Conference presentation of traction curving of steering bogies

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,406
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
32
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Traction Curving IAVSD 2007"

  1. 1. Parametric Simulation Study of Traction Curving of Three Axle Steering Bogie Designs Scott Simson Colin Cole
  2. 2. Research Objective <ul><li>Problem </li></ul><ul><ul><li>Adhesion in tight curves </li></ul></ul><ul><ul><ul><li>limited by AOA </li></ul></ul></ul><ul><ul><li>Current passive steering bogies loose steering control under high traction </li></ul></ul><ul><li>Active Steering Traction Bogies </li></ul><ul><ul><li>Higher adhesion in tight curves </li></ul></ul><ul><ul><li>Less locomotives needed for ruling grades </li></ul></ul>
  3. 3. Passive Steering Bogies <ul><li>Yaw Relaxation Bogies: Primary suspension with yaw stiffness relaxed </li></ul><ul><li>Self Steering Bogies: end axles cross linked together, Axles yaw in opposite directions only </li></ul><ul><li>Force Steered Bogies: end axles are cross linked together and linked to the bogie yaw angle. </li></ul><ul><li>Articulated Bogies: steering angle of bogie axles linked to the articulation angle of vehicle bodies </li></ul><ul><li>Independent Wheels: Axles with independent rotating wheels, zeros longitudinal creep forces </li></ul>
  4. 4. Locomotive Bogies <ul><li>EMD Radial, [self steering, 2, 1], </li></ul><ul><ul><li>1 st patent 1987 ~ 12 years after the Scheffel </li></ul></ul><ul><ul><li>Production 1993 </li></ul></ul><ul><li>Further Self Steer Patents </li></ul><ul><ul><li>ABB, 1993 [self steering, 3H] </li></ul></ul><ul><ul><li>MK Rail 1996, GE Locomotive 1997, [self steer 2,1] </li></ul></ul><ul><ul><li>Bombardier, [self steer 3, AWY 3] </li></ul></ul>
  5. 5. EMD Radial Patents
  6. 6. US Patents ABB
  7. 7. US Patents M-K Rail
  8. 8. US Patent GE Locomotive
  9. 9. US Patents Bombardier
  10. 10. Traction Steering Papers <ul><li>EMD Radial [1989 IHHA]: </li></ul><ul><ul><li>steering performance deteriorates with traction </li></ul></ul><ul><li>IAVSD 2005, Grassie & Elkins </li></ul><ul><ul><li>Yaw relaxation bogies </li></ul></ul><ul><ul><li>Steering performance deteriorates to rigid bogie performance levels </li></ul></ul>
  11. 11. Active Steering <ul><li>Secondary Yaw Control </li></ul><ul><ul><li>Braghin, Bruni, Resta, VSD v44 </li></ul></ul><ul><ul><li>Reduces lateral loads </li></ul></ul><ul><li>Actuated Wheelset Yaw </li></ul><ul><ul><li>Goodall, Mei [many publications] </li></ul></ul><ul><ul><li>Bombardier Mechtronic bogie </li></ul></ul><ul><li>Independent Wheels </li></ul><ul><li>Directly Steered </li></ul>
  12. 12. 3 Angles of Idealised Steering
  13. 13. Perfect Steering <ul><li>Goodall, Bruni & Mei (IAVSD 2005) </li></ul><ul><li>Minimise wheel-rail creep forces </li></ul><ul><ul><li>No longitudinal creep [pure rolling] </li></ul></ul><ul><ul><li>Equal lateral creep for all wheelsets [equal angle of attack] </li></ul></ul><ul><li>Some creep in the lateral direction is desirable to compensate for any cant-deficiency </li></ul><ul><li>Requires profile conicity sufficient for the curve </li></ul>
  14. 14. Gravitational Stiffness <ul><li>Contact angles of 10 degrees before flanging </li></ul><ul><li>Ignored in linear models </li></ul>
  15. 15. Traction Ideal Steering <ul><li>Longitudinal creep are not zero </li></ul><ul><ul><li>Longitudinal creep need only be +ve </li></ul></ul><ul><ul><li>Lateral creep force are not needed </li></ul></ul><ul><ul><li>Contact lateral forces to balance acceleration </li></ul></ul>
  16. 16. Bogie Curving Forces
  17. 17. Research Program <ul><li>Traction Steering Ideal </li></ul><ul><li>Passive Bogie Simulation </li></ul><ul><li>New Bogie Design </li></ul><ul><li>Active Bogie Simulation </li></ul>
  18. 18. Simulation <ul><li>117 tonne 6 axle Locomotive </li></ul><ul><li>Coupler loads </li></ul><ul><li>Steering movements subject to friction damping [mu = 0.05] </li></ul><ul><li>Traction , 16.6% 60 kph 186 kN, 37% 416 kN </li></ul><ul><li>Active control delay 16 Hz input and output filter. </li></ul><ul><li>Test track 600m reversing curves, </li></ul><ul><li>Equal amounts of tangent, transition and curve </li></ul>
  19. 19. Stability Testing
  20. 20. Passive Bogie, Traction Steering
  21. 21. Steering at High Traction Bogie Pitching Steering
  22. 22. Simson Bogie Patent <ul><li>Active bogie yaw control </li></ul><ul><li>Forced steered </li></ul><ul><li>Australian provisional patent 2007900891 </li></ul>
  23. 23. Control Methods <ul><li>Semi Active </li></ul><ul><ul><li>Longitudinal Creep Forces </li></ul></ul><ul><ul><li>Yaw Moment difference </li></ul></ul><ul><li>Full Active </li></ul><ul><ul><li>Yaw misalignment </li></ul></ul><ul><ul><li>Target yaw for track position </li></ul></ul>
  24. 24. Semi Active Control, Sensing Creep Forces
  25. 25. Full Active Control, Sensing Yaw Alignment of Bogies
  26. 26. High Traction Curving Actuated Bogies
  27. 27. Curvature Estimation <ul><li>Active Yaw Dampers </li></ul><ul><ul><li>Braghin F., Bruni S., Resta F., (2006) VSD 44 </li></ul></ul><ul><li>Curve Radius Estimate from: </li></ul><ul><ul><li>Bogie yaw velocity transducers </li></ul></ul><ul><ul><li>Vehicle speed </li></ul></ul><ul><li>Trail simulations have problems identifying curve transition vs instability </li></ul><ul><ul><li>Increased wear energy in transition </li></ul></ul><ul><ul><li>Target yaw in transition to be developed </li></ul></ul>
  28. 28. Sensor, Actuator Placement <ul><li>Actuated Wheelset Yaw </li></ul><ul><ul><li>Actuators and sensors at primary suspension </li></ul></ul><ul><li>Actuated Yaw, Force Steered (Simson) </li></ul><ul><ul><li>Actuators at secondary suspension </li></ul></ul><ul><ul><li>Sensors bogie frame mounted or higher </li></ul></ul>
  29. 29. Conclusions <ul><li>Traction steering requires ideal steering </li></ul><ul><ul><li>Steering angle control </li></ul></ul><ul><ul><li>Bogie yaw angle control </li></ul></ul><ul><ul><li>Minimal or zero angle of attack </li></ul></ul><ul><li>Simson bogie – yaw activated force steered – achieves better (ideal) steering even at low friction to adhesion ratios. </li></ul><ul><ul><li>Steering bogies must trade of transition curving performance against stability </li></ul></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×