Data	
  Network	
  for	
  be-er	
  European	
  organic	
  market	
  informa6on	
  	
  
	
  Comprehensiveness	
  and	
  
co...
The	
  following	
  mul0media	
  presenta0on	
  is	
  an	
  abridged	
  
compila0on	
  of	
  the	
  following	
  Project	
...
 
©Copyright	
  2013	
  
Università	
  Politecnica	
  delle	
  Marche	
  	
  
All	
  rights	
  reserved	
  	
  
www.organi...
Welcome	
  to	
  the	
  OrganicDataNetwork	
  mul0media	
  
presenta0on	
  series.	
  
	
  
The	
  purpose	
  of	
  this	
...
 	
  
Hello!	
  
In	
  this	
  presenta0on	
  we	
  will	
  give	
  an	
  overview	
  of	
  	
  
different	
  organic	
  ma...
Introduc0on	
  
ü Today,	
  there	
  are	
  many	
  businesses	
  in	
  the	
  organic	
  
sector	
  and	
  there	
  are	...
Introduc0on	
  
ü Relevant	
  market	
  data	
  is	
  only	
  available	
  in	
  a	
  few	
  
countries	
  and	
  official	...
Introduc0on	
  
ü Besides,	
  the	
  majority	
  of	
  poten0al	
  end-­‐users	
  
have	
  limited	
  access	
  to	
  rel...
Introduc0on	
  
ü The	
  poten0al	
  for	
  further	
  market	
  growth	
  can	
  
best	
  be	
  realized	
  by	
  harmon...
Data	
  Quality	
  &	
  its	
  dimensions	
  
ü The	
  European	
  Sta0s0cal	
  Agency	
  Eurostat	
  has	
  
defined	
  	...
Relevance	
  &	
  Accuracy	
  
ü Relevance	
  	
  is	
  defined	
  as	
  the	
  degree	
  to	
  which	
  
sta0s0cal	
  out...
Timeliness	
  &	
  Punctuality	
  
ü Timeliness	
  is	
  defined	
  as	
  the	
  length	
  of	
  0me	
  
between	
  the	
 ...
Accessibility	
  &	
  Clarity	
  
ü Accessibility	
  refers	
  to	
  the	
  ease	
  with	
  which	
  users	
  
can	
  acc...
Coherence	
  &	
  Comparability	
  	
  
ü Coherence	
  refers	
  to	
  the	
  use	
  of	
  the	
  same	
  
concepts	
  an...
Current	
  Best	
  Prac0ce	
  
ü One	
  way	
  to	
  judge	
  the	
  quality	
  of	
  the	
  data	
  
collected	
  is	
  ...
Our	
  survey	
  
ü In	
  order	
  to	
  evaluate	
  the	
  exis0ng	
  data	
  collec0on	
  
methods,	
  we	
  have	
  co...
Survey	
  content	
  
ü The	
  survey	
  covered	
  the	
  following	
  aspects:	
  	
  
ü  Type	
  of	
  data	
  collec...
Survey	
  content	
  &	
  quality	
  dimensions	
  
ü Each	
  ques0on	
  in	
  the	
  survey	
  belongs	
  to	
  one	
  o...
Relevance	
   Accuracy	
   Comparability	
   Coherence	
   Accessibility/	
  
Clarity	
  
Timeliness/	
  
Punctuality	
  
...
Results	
  
ü The	
  survey	
  responses	
  were	
  analysed	
  using	
  basic	
  
sta0s0cs,	
  revealing	
  the	
  differ...
Data	
  collec0on	
  methods	
  by	
  data	
  type	
  
Data	
  Type	
   Data	
  collec6on	
  method	
  (most	
  frequently...
Results	
  
ü Examples	
  of	
  “best	
  prac0ce”	
  in	
  organic	
  market	
  
data	
  collec0on	
  were	
  iden0fied	
 ...
Performance	
  criteria	
  
ü Main	
  focus	
  of	
  
organisa0on	
  is	
  closely	
  
related	
  with	
  data	
  uses	
 ...
Examples	
  of	
  Best	
  Prac0ce	
  
Criterion	
   Organisation	
  
Relevance	
   Agence	
  Bio,	
  AMI	
  
Accuracy	
   ...
Assess	
  your	
  data	
  collec0on	
  methods	
  
ü Are	
  you	
  an	
  organic	
  market	
  data	
  collector?	
  
ü I...
Don’t	
  miss	
  our	
  next	
  presenta0on	
  on:	
  
	
  
	
  “Methodologies	
  for	
  data	
  quality	
  improvement	
 ...
Data	
  Network	
  for	
  be-er	
  European	
  organic	
  market	
  informa6on	
  	
  
Project	
  manager	
  
Dr.	
  Danie...
Upcoming SlideShare
Loading in...5
×

OrganicDataNetwork Comprehensiveness & Compatibility of different organic market data collection methods

142

Published on

The presentation is an abridged compilation of the following OrganicDataNetwork publications:

Feldmann, C. and Hamm, U. (2013). Executive summary report on the comprehensiveness and compatibility of organic market data collection methods. University of Kassel, Witzenhausen (D3.2) available at http://orgprints.org/23011/.

Feldmann, C. and Hamm, U. (2013). Report on collection methods: Classification of data collection methods University of Kassel, Witzenhausen (D3.1) available at http://orgprints.org/23010/.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
142
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

OrganicDataNetwork Comprehensiveness & Compatibility of different organic market data collection methods

  1. 1. Data  Network  for  be-er  European  organic  market  informa6on      Comprehensiveness  and   compa0bility  of  different  organic   market  data  collec0on  methods  
  2. 2. The  following  mul0media  presenta0on  is  an  abridged   compila0on  of  the  following  Project  publica0ons:     -­‐  Feldmann,  C.  and  Hamm,  U.  (2013).  Execu0ve  summary   report  on  the  comprehensiveness  and  compa0bility  of   organic  market  data  collec0on  methods.  University  of   Kassel,  Witzenhausen  (D3.2)  available  at   hQp://orgprints.org/23011/.   -­‐  Feldmann,  C.  and  Hamm,  U.  (2013).  Report  on  collec0on   methods:  Classifica0on  of  data  collec0on  methods   University  of  Kassel,  Witzenhausen  (D3.1)  available  at   hQp://orgprints.org/23010/.  
  3. 3.   ©Copyright  2013   Università  Politecnica  delle  Marche     All  rights  reserved     www.organicdatanetwork.net    
  4. 4. Welcome  to  the  OrganicDataNetwork  mul0media   presenta0on  series.     The  purpose  of  this  series  is  to  communicate  the   project  results  in  an  easily  accessible  and   understandable  way.   Check  out  our  website  for  more  presenta0ons  to   come!  
  5. 5.     Hello!   In  this  presenta0on  we  will  give  an  overview  of     different  organic  market  data  collec0on  methods,   their  comprehensiveness  and  compa0bility.  
  6. 6. Introduc0on   ü Today,  there  are  many  businesses  in  the  organic   sector  and  there  are  many  policy  programmes   and  ini0a0ves  suppor0ng  organic  farming   throughout  Europe.       ü Despite  the  growth  of  the  organic  market,  the   availability  of  good  quality  data  on  this  market     is  s0ll  problema0c.  
  7. 7. Introduc0on   ü Relevant  market  data  is  only  available  in  a  few   countries  and  official  sta0s0cs  of  the  European   market  for  organic  farming  do  not  exist  across   all  countries.     ü Un0l  now  available  country  data  has  been   inconsistent  or  incomparable,  because  different   methodologies  and  interpreta0ons  lead  to   contradictory  results.    
  8. 8. Introduc0on   ü Besides,  the  majority  of  poten0al  end-­‐users   have  limited  access  to  reliable  market-­‐related   informa0on.     ü In  some  cases,  this  can  lead  to  incorrect   entrepreneurial  decisions,  which  in  turn  might   result  in  market  disturbances  and  the   reconversion  of  organic  farms  to  conven0onal   agriculture.  
  9. 9. Introduc0on   ü The  poten0al  for  further  market  growth  can   best  be  realized  by  harmonising  data  collec0on   and  processing  and  by  improving  exis0ng  data   sources.   ü Providing  tools  for  the  improvement  of  organic   market  data  collec0on  prac0ces  in  Europe  is   one  of  the  aims  of  this  Project.      
  10. 10. Data  Quality  &  its  dimensions   ü The  European  Sta0s0cal  Agency  Eurostat  has   defined    the  following  quality  dimensions  to   evaluate  sta0s0cal  data  and  its  sources:     ü relevance,     ü accuracy,     ü timeliness  &   punctuality   ü accessibility  &  clarity     ü comparability,  and     ü coherence  
  11. 11. Relevance  &  Accuracy   ü Relevance    is  defined  as  the  degree  to  which   sta0s0cal  outputs  meet  current  and  poten0al   user  needs.     ü Accuracy  refers  to  the  closeness  of  es0mates  to   the  true  values  and  covers  sampling  as  well  as   non-­‐sampling  errors.    
  12. 12. Timeliness  &  Punctuality   ü Timeliness  is  defined  as  the  length  of  0me   between  the  event  or  phenomenon  the  data   describe  and  their  official  availability.     ü Punctuality  means  the  0me  lag  between   release  date  and  target  date  of  data   publica0on.    
  13. 13. Accessibility  &  Clarity   ü Accessibility  refers  to  the  ease  with  which  users   can  access  sta0s0cs.  If  data  are  only  available   on  certain  media  or  need  to  be  purchased,   accessibility  is  restricted.     ü Clarity  has  to  do  with  simplicity.  It  implies  that   data  should  be  presented  in  a  clear  and   understandable  form.  Clear  data  allow  proper   interpreta0on  and  meaningful  comparisons.    
  14. 14. Coherence  &  Comparability     ü Coherence  refers  to  the  use  of  the  same   concepts  and  harmonized  methods.   ü Comparability  is  defined  as  a  special  case  of   coherence.   ü Comparability  can  be  regarded  over  0me  and   across  regions,  while  coherence  can  be   evaluated  internally,  but  also  in  comparison   with  other  sta0s0cs.  
  15. 15. Current  Best  Prac0ce   ü One  way  to  judge  the  quality  of  the  data   collected  is  via  the  concept  of  Current  Best   Prac0ce.       ü Current  Best  Prac6ce  describes  the  quality  of   sta0s0cal  data  as  an  ongoing  improvement  of   the  data  produc0on  process.    
  16. 16. Our  survey   ü In  order  to  evaluate  the  exis0ng  data  collec0on   methods,  we  have  conducted  an  online  survey   in  all  European  countries.     ü An  invita0on  to  par0cipate  in  the  survey  was   sent  to  all  stakeholders  that  are  involved  in   organic  market  data  collec0on,  processing,  or   dissemina0on.  
  17. 17. Survey  content   ü The  survey  covered  the  following  aspects:     ü  Type  of  data  collectors   ü  Type  of  data     ü  Geographical  coverage   ü  Degree  of  detail  of  data   ü  Frequency  of  data   collec0on     ü  Method  of  data  collec0on   (ques0onnaires,   observa0ons,  tests)   ü  Sample  size     ü  Type  of  quality  checks   ü  Depth  of  data  analysis   ü  Purpose  for  data  collec0on   ü  Obligatory  or  voluntary   basis  for  data  providers  to   deliver  data   ü  Offer  of  payments  or   incen0ves  to  data   providers   ü  Administra0ve  details  of   organisa0on  
  18. 18. Survey  content  &  quality  dimensions   ü Each  ques0on  in  the  survey  belongs  to  one  of   the  aspects  and  was  allocated  to  at  least  one  of   the  quality  dimensions,  as  shown  in  the   following  table.    
  19. 19. Relevance   Accuracy   Comparability   Coherence   Accessibility/   Clarity   Timeliness/   Punctuality   Main  focus  of   organisa0on   Data  sources   Methods  of   data  collec0on   Methods  of   data   collec0on   Voluntary  or   obligatory  to   provide  data   Frequency  of   data   collec0on   Data  sources   Methods  of   data   collec0on   Disaggrega0on   of  data       Publica0on  of   data   Frequency  of   publica0on   Data  uses   Details  of   analysis   Sample  size       Availability  of   data       Type  of   analysis  &   details  of   analysis   Quality  checks   &  details  of   quality  checks           Format  of   publica0on       Sample  size                       Start  of  data   collec0on                       Survey  content  &  quality  dimensions    
  20. 20. Results   ü The  survey  responses  were  analysed  using  basic   sta0s0cs,  revealing  the  differences  in  collec0on   and  processing  of  organic  market  data  between   different  organisa0ons  and  market  actors.    
  21. 21. Data  collec0on  methods  by  data  type   Data  Type   Data  collec6on  method  (most  frequently  used)   Production  volumes   Census   Production  values   Expert  estimates   Retail  sales  volumes   Consumer/household  panel   Retail  sales  values   Consumer/household  panel  and  e-­‐mail  survey   Farm  level  prices   Telephone  survey   Consumer  prices   Consumer/household  panel  and  telephone  survey   Import  volumes   Census   Import  values   E-­‐mail  survey   Export  volumes   E-­‐mail  survey   Export  values   E-­‐mail  survey  
  22. 22. Results   ü Examples  of  “best  prac0ce”  in  organic  market   data  collec0on  were  iden0fied  by  measuring   the  performance  for  each  quality  dimension  of   each  data  collec0on  and  processing  approach.   ü The  performance  was  measured  according  to   the  a  set  of  criteria  related  to  the  quality   dimensions.  These  criteria  are  reported  in  the   following  table.  
  23. 23. Performance  criteria   ü Main  focus  of   organisa0on  is  closely   related  with  data  uses   ü Data  source  is  closely   related  to  data  type   ü Sample  size   ü Data  collec0on  method  is   closely  related  to  data   type     ü Frequency  of  collec0on   and  frequency  of   publica0on   ü Experience  in  data   collec0on  (start  date)   ü Level  of  complexity  of  the   analyses  performed  on   data   ü Quality  checks   ü Level  of  data   disaggrega0on   ü Publica0on  of  data   ü Format  of  publica0on   (number  of  media)   ü Public  availability  
  24. 24. Examples  of  Best  Prac0ce   Criterion   Organisation   Relevance   Agence  Bio,  AMI   Accuracy   Agence  Bio,  AMI   Comparability   Agence  Bio,  AMI   Coherence   Soil  Association,  Agence  Bio,  AMI   Accessibility/Clarity   Eurostat,  Statistics  Denmark,  Soil  Association,  Agence  Bio   Timeliness/Punctuality   AMI  ,  Bio  Suisse  
  25. 25. Assess  your  data  collec0on  methods   ü Are  you  an  organic  market  data  collector?   ü If  yes,  you  can  assess  the  quality  of  your  data   collec0on  and  processing  methods  by   answering  the  ques0onnaire  available  at:   hQp://www.organicdatanetwork.net/ 1723.html#c9618.    
  26. 26. Don’t  miss  our  next  presenta0on  on:      “Methodologies  for  data  quality  improvement   along  the  whole  supply  chain”     Showing  soon  on  this  website!  
  27. 27. Data  Network  for  be-er  European  organic  market  informa6on     Project  manager   Dr.  Daniela  Vairo   Università  Politecnica  delle  Marche   e-­‐mail:  daniela@agrecon.univpm.it   tel.:  +39/071/2204994       Project  coordinator:   Prof.  Raffaele  Zanoli   Università  Politecnica  delle  Marche   e-­‐mail:  zanoli@agrecon.univpm.it   tel.:  +39/071/2204929         Thank  you!     www.organicdatanetwork.net  
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×