
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Natural convection in a differentially heated cavity plays a
major role in the understanding of flow physics and heat
transfer aspects of various applications. Parameters such as
Rayleigh number, Prandtl number, aspect ratio, inclination
angle and surface emissivity are considered to have either
individual or grouped effect on natural convection in an
enclosed cavity. In spite of this, simultaneous study of these
parameters over a wide range is rare. Development of
correlation which helps to investigate the effect of the large
number and wide range of parameters is challenging. The
number of simulations required to generate correlations for
even a small number of parameters is extremely large. Till
date there is no streamlined procedure to optimize the number
of simulations required for correlation development.
Therefore, the present study aims to optimize the number of
simulations by using Taguchi technique and later generate
correlations by employing multiple variable regression
analysis. It is observed that for a wide range of parameters,
the proposed CFDTaguchiRegression approach drastically
reduces the total number of simulations for correlation
generation.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment