Treatment Options For The Chronic Stable Angina

5,601 views

Published on

10th Post Graduate Course PAFP Pangasinan Chapter

Published in: Health & Medicine
2 Comments
12 Likes
Statistics
Notes
No Downloads
Views
Total views
5,601
On SlideShare
0
From Embeds
0
Number of Embeds
78
Actions
Shares
0
Downloads
0
Comments
2
Likes
12
Embeds 0
No embeds

No notes for slide
  • Treatment Options For The Chronic Stable Angina

    1. 1. Treatment Options for the Chronic Stable Angina Jubilia Balderas-De Guzman, MD DDVMH
    2. 2. Agenda <ul><li>Overview </li></ul><ul><ul><li>Epidemiology </li></ul></ul><ul><ul><li>Definition, symptoms </li></ul></ul><ul><li>Usual treatment of angina </li></ul><ul><li>Trimetazidine: a metabolic agent for the treatment of angina </li></ul><ul><ul><li>Review of pathogenesis of chest pain </li></ul></ul><ul><ul><li>Mechanism of Action </li></ul></ul><ul><ul><li>Clinical Trials </li></ul></ul><ul><ul><li>Indications and Contraindications </li></ul></ul><ul><ul><li>Dosage and Administration </li></ul></ul><ul><ul><li>Precautions and Side Effects </li></ul></ul><ul><li>Summary </li></ul>
    3. 3. Overview <ul><li>Epidemiology of Ischemic Heart Disease </li></ul><ul><ul><li>US </li></ul></ul><ul><ul><ul><li>>12M have ischemic heart disease </li></ul></ul></ul><ul><ul><ul><li>>6M experience angina </li></ul></ul></ul><ul><ul><ul><li>>7M have sustained myocardial ischemia </li></ul></ul></ul>
    4. 4. Overview <ul><li>Epidemiology of Ischemic Heart Disease </li></ul><ul><ul><li>Pinoy Health Incidence Report of Angina </li></ul></ul><ul><ul><ul><li>12.5% have angina </li></ul></ul></ul><ul><ul><ul><li>CVD account for 76% of 100,000 death annually making it the leading cause of mortality among Filipinos </li></ul></ul></ul>
    5. 5. Overview <ul><li>Myocardial “ischemia” </li></ul><ul><ul><li>an imbalance between myocardial oxygen supply and myocardial metabolic demand </li></ul></ul>
    6. 6. Overview <ul><li>Angina Pectoris </li></ul><ul><ul><li>Chest pain </li></ul></ul><ul><ul><li>Chronic Stable </li></ul></ul><ul><ul><li>angina </li></ul></ul><ul><ul><ul><li>Increase O2 demand </li></ul></ul></ul><ul><ul><ul><li>Predictable </li></ul></ul></ul><ul><ul><ul><li>Caused by </li></ul></ul></ul><ul><ul><ul><li>tachycardia, exercise </li></ul></ul></ul><ul><ul><ul><li>emotional and mental </li></ul></ul></ul><ul><ul><ul><li>stress </li></ul></ul></ul>
    7. 7. Treatment <ul><li>Usual Intervention </li></ul><ul><ul><li>Classic hemodynamic agents </li></ul></ul><ul><ul><ul><li>Beta blockers </li></ul></ul></ul><ul><ul><ul><ul><li>Most effective in reducing cardiac work and myocardial consumption </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Decrease heart rate and aorticm pressure, depress myocardial contractility </li></ul></ul></ul></ul><ul><ul><ul><li>Calcium Channel blockers </li></ul></ul></ul><ul><ul><ul><ul><li>With prominent coronary vasodilating capacity </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Negative chronotropic and inotropic activity </li></ul></ul></ul></ul>
    8. 8. Treatment <ul><li>Usual Intervention </li></ul><ul><ul><li>Classic hemodynamic agents </li></ul></ul><ul><ul><ul><li>Nitrates </li></ul></ul></ul><ul><ul><ul><ul><li>Causes systemic vasodilation </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Decreases myocardial wall tension and oxygen requirements by dilating epicardial arteries </li></ul></ul></ul></ul><ul><ul><ul><li>ASA </li></ul></ul></ul>
    9. 9. Treatment options <ul><li>Metabolic agents </li></ul><ul><ul><li>Trimetazidine </li></ul></ul><ul><ul><li>Ranolazine </li></ul></ul><ul><ul><ul><li>Improves blood flow by and indirect action on calcium overload </li></ul></ul></ul><ul><ul><li>Nicorandil </li></ul></ul><ul><ul><ul><li>Potassium channel activator, relaxes smooth mm cells and produce reduction of the afterload </li></ul></ul></ul><ul><ul><li>Ivabradine </li></ul></ul><ul><ul><ul><li>Cardiotonic agent and acts by reducing heart rate </li></ul></ul></ul>
    10. 10. Trimetazidine: A Metabolic Agent for the treatment of stable angina <ul><li>Review of the pathogenesis of chest pain </li></ul>
    11. 11. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>ATP which is the energy that drives myocardial contractility is derived from 2 pathways: </li></ul><ul><ul><li>Glycolytic metabolism </li></ul></ul><ul><ul><ul><li>Glycolysis </li></ul></ul></ul><ul><ul><ul><li>Glucose oxidation </li></ul></ul></ul><ul><ul><li>Fatty acid metabolism </li></ul></ul>
    12. 12. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>ATP which is the energy that drives myocardial contractility is derived from 2 pathways: </li></ul><ul><ul><li>Glycolytic metabolism </li></ul></ul><ul><ul><ul><li>Glycolysis </li></ul></ul></ul><ul><ul><ul><li>Glucose oxidation- product is Acetyl CoA </li></ul></ul></ul><ul><ul><li>Fatty acid oxidation- is the other source of Acetyl coA </li></ul></ul>
    13. 13. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>Acetyl co A enters the Kreb’s cycle and provides reduced NAD and FAD for the electron transport chain </li></ul><ul><li>In the presence of oxygen, the electron transport chain will facilitate the phosphorylation of ADP to ATP in a process termed oxidative phosphorylation. </li></ul>
    14. 14. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>In the normal myocardium, </li></ul><ul><ul><li>Fatty acid is a major source of ATP production in the heart </li></ul></ul><ul><ul><li>Acetyl CoA from FA oxidation competes with glucose oxidation as a source of acetyl CoA for the Kreb’s cycle. </li></ul></ul><ul><ul><li>The reduced FAD and NAD from beta oxidation further inhibits glucose oxidation and glycolysis </li></ul></ul>
    15. 15. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>However </li></ul><ul><ul><li>Fatty acids require more oxygen than glucose to produce an equivalent amount of ATP, and thus may not be an efficient source of ATP in ischemic heart </li></ul></ul><ul><ul><li>The rate of glucose oxidation becomes lower than glycolytic rates. This leads to an accumulation of lactate and can cause an increase in intracellular calcium, which requires more ATP to re-establish ionic homeostasis </li></ul></ul>
    16. 16. Trimetazidine: A Review of the Pathogenesis of Chest Pain <ul><li>Ischemic myocardium: </li></ul><ul><ul><li>The contribution of anaerobic glycolysis to ATP production becomes more important </li></ul></ul><ul><ul><li>If the heart relies on fatty acid beta oxidation, cardiac efficiency decreases further </li></ul></ul><ul><ul><li>Optimize energy metabolism in the ischemic heart </li></ul></ul><ul><ul><ul><li>Inhibiting FA oxidation which will indirectly stimulate glucose utilization </li></ul></ul></ul><ul><ul><ul><li>Stimulate glucose oxidation directly </li></ul></ul></ul>
    17. 17. Trimetazidine: Mechanism of Action <ul><li>Newer antianginal agent </li></ul><ul><ul><li>Inhibits mitochondrial 3-ketoacyl coA thiolase (3-KAT) </li></ul></ul><ul><ul><ul><li>This shifts substrate utilization from FA to glucose metabolism </li></ul></ul></ul><ul><ul><li>By decreasing the intracellular concentrations of protons, trimetazidine prevents calcium and sodium overload </li></ul></ul><ul><ul><li>It protects the heart from the destructiive effects of fatty acid accumulation and increased protons </li></ul></ul>
    18. 18. <ul><li>Limits intracellular acidosis </li></ul><ul><li>Stabilizes ionic membranes </li></ul><ul><li>Prevents free radicals </li></ul>Trimetazidine: Mechanism of Action
    19. 19. <ul><li>The therapeutic value of a cardioprotective agent in patients with severe ischemic cardiomyopathy. Brottier et al European Heart Journal 1990 11:207-12 </li></ul><ul><ul><li>Improvement of ejection fraction by more than 9% among patients with severe ischemic cardiomyopathy given trimetazidine 20mg 3x a day for 6 months </li></ul></ul><ul><li>Trimetazidine and left ventricular ischemic dysfunction: an overview of clinical evidence. Chierchia et al. European Heart J Suppl (2001) </li></ul><ul><ul><li>Improves resting ventricular function in patients with IHD and various degrees of contractile impairment </li></ul></ul><ul><ul><li>Improves contractile response to moderate inotropic stimulation as well as functional capacity as assessed by cardiopulmonary testing </li></ul></ul>Trimetazidine: C linical Trials
    20. 20. <ul><li>Metabolic therapy in the treatment of ischemic heart disease: the pharmacology of trimertzidine. Stanley WC, Marzilli M . Fundam Clin Pharmacol. 2003 Apr;17(2):133-45 </li></ul><ul><ul><li>Significantly improved symptom-limited exercise perfocrmance in chronic stable angina patients when used either as monotherapy or in combination with beta blockers and Ca channel antagonists </li></ul></ul><ul><ul><li>Excellent alternative for classic hemodynamic changes </li></ul></ul><ul><ul><li>Unique in its ability to reduce symptoms of angina when used in patients resistant to hemodynamic treatment </li></ul></ul>Trimetazidine: C linical Trials
    21. 21. <ul><li>Clinical Benefits of a metabolic approach in the management of CAD . Marzilli M Cardio Thoracic Department, University of Pisa, Italy. Rev Port Cardiol. 2000 Nov;19 Suppl 5:V25-30 </li></ul><ul><ul><li>Exerts its beneficial effects by increasing cell tolerance to ischaemia and improving functional recovery at the time reperfusion. </li></ul></ul><ul><ul><li>Trimetazidine lowered the frequency of ischaemic attacks and prolonged the time to ishaemia during exercises as compared to Ca2 + channel antagonists with CHF. </li></ul></ul><ul><ul><li>Trimetazidine is expected to especially benefit diabetic patients in whom metabolic </li></ul></ul><ul><ul><li>alteration contribute to the pathogenesis of ischaemia by improving energy metabolism and restoring membrane homeostasis </li></ul></ul><ul><li>  </li></ul>Trimetazidine: C linical Trials
    22. 22. <ul><li>Clinical Benefits of a metabolic approach in the management of CAD . Marzilli M . Cardio Thoracic Department, University of Pisa, Italy. Rev Port Cardiol. 2000 Nov;19 Suppl 5:V25-30 </li></ul><ul><ul><li>Trimetazidine + Propranolol was found superior to nitrates in reducing ischaemic </li></ul></ul><ul><ul><li>attacks. </li></ul></ul><ul><ul><li>·         </li></ul></ul><ul><ul><li>Trimetazidine lowered the frequency of ischaemic attacks and prolonged the time </li></ul></ul><ul><ul><li>to ishaemia during exercises as compared to Ca2 + channel antagonists. </li></ul></ul><ul><ul><li>·         </li></ul></ul><ul><ul><li>Trimetazidine has been shown to improve left ventricular dysfunction in patients </li></ul></ul><ul><ul><li>with CHF. </li></ul></ul><ul><ul><li>·         </li></ul></ul><ul><ul><li>Trimetazidine is expected to especially benefit diabetic patients in whom metabolic </li></ul></ul><ul><ul><li>alteration contribute to the pathogenesis of ischaemia by improving energy metabolism and restoring membrane homeostasis. </li></ul></ul><ul><li>  </li></ul>Trimetazidine: C linical Trials
    23. 23. <ul><li>Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatinine/adenosine triphosphate ratio in opatients with heart failure. Gabrielle Fragasso et al. European Heart Journal March, 2006 </li></ul><ul><li>        </li></ul><ul><ul><li> Trimetazidine improves functional class and LV function in patients with heart failure. These effects are associated to the observed trimetazidine-induced increase in PCr/ATP ratio, indicating a preservation of myocardial high energy phosphate levels </li></ul></ul>Trimetazidine: C linical Trials
    24. 24. <ul><li>Metabolic therapy for the diabetic patients with ischaemic heart disease Rosano GM, Vitale C, Volterrani M, Fini M Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy Coron Artery Dis. 2005 Nov;16 Suppl 1:S17-21 </li></ul><ul><li>·         </li></ul><ul><ul><li> Trimetazidine should always be considered for the treatment of diabetic patients with ischaemic heart disease with or without left ventricular dysfunction because of its effect on cardiac metabolism at rest, its effects on myocardial ischaemia and left ventricular function. </li></ul></ul>Trimetazidine: C linical Trials
    25. 25. <ul><li>Angina Pectoris or ischemic heart disease </li></ul><ul><li>Myocardial infarction as sequelae </li></ul>Trimetazidine: Indications and Contraindications
    26. 26. <ul><li>Trimetazidine 20 mg/tab 3x a day after meals </li></ul>Trimetazidine: Dosage Administration
    27. 27. <ul><li>Pregnancy and lactation </li></ul><ul><li>Children </li></ul><ul><li>Impaired renal and hepatic function </li></ul><ul><li>Hypersensitivity reactions </li></ul>Trimetazidine: Precautions and Contraindications
    28. 28. <ul><li>Headache </li></ul><ul><li>Vertigo </li></ul><ul><li>Nausea </li></ul><ul><li>Gastrointestinal discomfort </li></ul>Trimetazidine: Side Effects
    29. 29. Summary <ul><li>Trimetazidine, a new antianginal drug that selectively inhibits fatty acid beta oxidation and is devoid of any direct hemodynamic effects </li></ul><ul><li>It improves myocardial glucose utilization, by facilitating cells to derive energy from glucose more than from fatty acids, thus needing less oxygen </li></ul><ul><li>Unique in its ability to decrease symptoms of angina when used in patients resistant to hemodynamic treatment </li></ul>
    30. 30. Summary <ul><li>In numerous trials, trimetazidine has been tested as an antianginal agent, both as monotherapy or when used as an alternative and/or combined with “classical “ anti-ischemic compunds </li></ul><ul><li>It does not decrease HR or BP and is not contraindicated in any medical condition. Adverse effects are mild and tolerable </li></ul><ul><li>It promotes preservation of membrane structures and cellular function </li></ul><ul><li>It is expected to benefit mostly diabetic patients in whom metabolic alterations contribute to the pathogenesisi of ischemia by improving energyenergy metabolism and restoring membrane homeostatsis </li></ul>
    31. 31. Next Steps <ul><li>Large clinical trials are needed to evaluate hard endpoints using these anti-anginal agents </li></ul>
    32. 32. Thank you!!

    ×