Controlled Vocabularies and Text Mining - UseCases at the GoettingenState and University LibraryRalf Stockmann (UGOE)
ENVIRONMENTS                  Enhanced                Context-Search  RESEARCH                                      Visual...
ENVIRONMENTS                                 Enhanced                               Context-Search                 RESEARC...
Projekt: eAqua• Partners:  – Institut of Computer Science - Computerlinguistic,    Leipzig (Büchler, Eckart, Heyer, Baumga...
Search Term „socialism“ on title          elements
„Mephisto“ on fulltext
ENVIRONMENTS                                                    Enhanced                                                  ...
ConceptMAP
ConceptMAP             TIMELINE
ConceptMAP             TIMELINE
Refinement         • Multiple data layers         • Interaction         • Animation         • Aggregation of data         ...
Technological Framework•   OpenLayers•   Simile Timeline/Timeplot•   GeoNames (Geoparser...)•   Explorer Canvas (Google)• ...
Data Model                                WHAT?                               NAMEMANDATORY                               ...
Exchange Format: KML (XML)
Questonnaire
Questonnaire
Questonnaire
Questonnaire
Questonnaire
Datasets•   Library catalog                      Flickr: „tsunami“•   Flickr•   IMDB•   DBpedia•   WikiLeaks
Use your own data in 5 easy steps!1. Take a look at the .kml specification   http://tinyurl.com/e4d-kml2. Build your own K...
Ressources• e4D info website:• Europeana thoughtLab:  http://www.europeana.eu/portal/thoughtlab.  html
Controlled Vocabularies and Text Mining - Use Cases at the Goettingen
Upcoming SlideShare
Loading in …5
×

Controlled Vocabularies and Text Mining - Use Cases at the Goettingen

752 views
662 views

Published on

The amount of online data that supplies geo-spatial and temporal metadata has grown rapidly in recent years. Social networks like Twitter, Flickr, and YouTube are popular providers of masses of data that are hard to browse.
Our europeana 4D interface – e4D – enables comparative visualisation of multiple queries and supports data annotated with time span data. We implemented our design in a prototype application in the context of the European project EuropeanaConnect. It is based on a client-server architecture that charges the client with the main functionality of the system.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
752
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Controlled Vocabularies and Text Mining - Use Cases at the Goettingen

  1. 1. Controlled Vocabularies and Text Mining - UseCases at the GoettingenState and University LibraryRalf Stockmann (UGOE)
  2. 2. ENVIRONMENTS Enhanced Context-Search RESEARCH Visualisation Multilingual Annotation Access Tools Scholars Crowd- sourcingCOMPUTING Textmining DBPedia Relationship , ... Graphs Named Entity Libraries Recognition Reposi- tories Linked Open DataRESSOURCES Metadata Ontologies DATA Catalog Data OCR/Fulltext
  3. 3. ENVIRONMENTS Enhanced Context-Search RESEARCH Visualisation Multilingual Annotation Access Tools Scholars Crowd- sourcingUse case #1: COMPUTING Textmining DBPediaeAqua Relationship , ... Graphs Named Entity Libraries Recognition Reposi- tories Linked Open Data RESSOURCES Metadata Ontologies DATA Catalog Data OCR/Fulltext
  4. 4. Projekt: eAqua• Partners: – Institut of Computer Science - Computerlinguistic, Leipzig (Büchler, Eckart, Heyer, Baumgardt) – SUB Göttingen (Stockmann, Kothe, Mahnke)• Comparing semantic graphs between – Headings of journal articles and – Fulltext of the same articles
  5. 5. Search Term „socialism“ on title elements
  6. 6. „Mephisto“ on fulltext
  7. 7. ENVIRONMENTS Enhanced Context-Search RESEARCH Visualisation Multilingual Annotation Access Tools Scholars Crowd- sourcing Use case #2: COMPUTING Textmining DBPedia Europeana 4D visualisation Relationship , ... Graphs Named Entity Libraries Recognition Reposi- tories Linked Open Data RESSOURCES- Prof. Dr. Gerik Scheuermann Metadata Ontologies DATA- Stefan Jänicke- Christian Mahnke Catalog Data- Ralf Stockmann OCR/Fulltext
  8. 8. ConceptMAP
  9. 9. ConceptMAP TIMELINE
  10. 10. ConceptMAP TIMELINE
  11. 11. Refinement • Multiple data layers • Interaction • Animation • Aggregation of data • Connections • Drilldown • Historical/custom maps • Result table • Splitting Datasets • ...
  12. 12. Technological Framework• OpenLayers• Simile Timeline/Timeplot• GeoNames (Geoparser...)• Explorer Canvas (Google)• GeoServer (OpenStreetmap, Google Maps)• Google Web Toolkit (GWT)• KML (XML)
  13. 13. Data Model WHAT? NAMEMANDATORY description optional url WHERE? KML WHEN? COORDINATES TIMESTAMP address range
  14. 14. Exchange Format: KML (XML)
  15. 15. Questonnaire
  16. 16. Questonnaire
  17. 17. Questonnaire
  18. 18. Questonnaire
  19. 19. Questonnaire
  20. 20. Datasets• Library catalog Flickr: „tsunami“• Flickr• IMDB• DBpedia• WikiLeaks
  21. 21. Use your own data in 5 easy steps!1. Take a look at the .kml specification http://tinyurl.com/e4d-kml2. Build your own KML dataset3. Upload it to a webserver4. Put the URL into the prototype at http://tinyurl.com/e4d- demo5. Share your set via the magnetic link!
  22. 22. Ressources• e4D info website:• Europeana thoughtLab: http://www.europeana.eu/portal/thoughtlab. html

×