0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Tribollet egaf9

231

Published on

EGAF 9 Laboratorio de Gestión de Activos UC Rodrigo Pascual

EGAF 9 Laboratorio de Gestión de Activos UC Rodrigo Pascual

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
231
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
0
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. The Cost of Corrosion Introduction to Corrosion UPR15 du CNRS, Laboratoire des Interfaces et Systèmes Electrochimique Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France Bernard TRIBOLLET
• 2. The Cost of CorrosionThe Cost of Corrosion Italy GNPItaly GNP ≈≈ 10101212 Euro/yearEuro/year Cost of corrosionCost of corrosion ≈≈ 3 103 101010 €/year, i.e.€/year, i.e. ≈≈ 500 €/person/year500 €/person/year
• 3. Corrosion cost
• 4. Corrosion cost CAPEX = capital expenditure
• 5. Corrosion cost OPEX = Operational expenditure
• 6. Corrosion cost
• 7. Corrosion cost
• 8. Corrosion cost
• 9. Introduction to corrosion The metal or metal alloy dissolves in presence of water For example Fe can dissolves as Fe2+ according to the reaction: Fe → Fe2+ + 2 e- This electrochemical reaction is depending of the electrode potential V This dependance is given by the Tafel’s law : )Vbexp(ki FeFe= The metal is isolated on an electrical point of view, then the produced electrons must be consumed by another reaction. This other reaction could be the water or the oxygen reduction can be considered: H2O+e- ↔1/2 H2 + OH- or O2 + 4 H2O + 4 e- → 4 OH- The corresponding Tafel’s law is: )Vbexp(ki 22 OO −−=
• 10. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 i=10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 11. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 ic =10 -4 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 12. Application to corrosion IiI = I ic + ia I -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 13. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia =ic ic =10 -4 exp(-40ηs ) ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 14. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 ic =10 -5 exp(-40ηs ) ia =10 -4 exp(20ηs ) icorr = ia =ic Vcorr Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 15. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -4 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 16. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -3 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 17. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -2 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 18. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr ic = 10 -3 icorr = ia = ic ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 19. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr ic = 10 -2icorr = ia = ic ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
• 20. Corrosion on heterogeneous surface Alliage AZ91
• 21. 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) Without biofilm : 0 mm/y Z(µA/mm²) X(mm) Y(m m ) Localized corrosion : biocorrosionLocalized corrosion : biocorrosion 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 5 days biofilm, before scratch : 0 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) With biofilm, immediately after scratch : 2.1 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 24 h after scratch : 2.9 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 72 h after scratch : 0.9 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 96 h after scratch : 1.1 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) After biocide injection : 0 mm/y Z(µA/mm²) X(mm) Y(m m )
• 22. CONCLUSIONSCONCLUSIONS The corrosion is an heterogeneous phenomena The corrosion is a non steady phenomena